
 
 
 
 
 

Chapter 11 
 
WHAT IS DATA ASSIMILATION REALLY 
SOLVING, AND HOW IS THE CALCULATION 
ACTUALLY DONE?   
 
 
Ichiro Fukumori 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA 
 
 
Abstract: Data assimilation is reviewed in the context of an inverse problem. The 

mathematical nature of the problem is examined and some of its common 
solutions are described, clarifying some of the implicit assumptions that underlie 
both problem and solution.  For instance, Kalman filtering and Rauch-Tung-
Striebel smoothing can be identified as recursive least-squares inversions of the 
assimilation problem but of different parts of the problem.  The temporal 
evolution of a filtered solution is not physically consistent, but that of a smoothed 
solution is.  Understanding these characteristics is essential in effectively 
assimilating observations as well as in utilizing and further improving the 
assimilated solution.  Practical steps in implementing a filtering and smoothing 
algorithm are illustrated by examples from the Consortium for “Estimating the 
Circulation and Climate of the Ocean” (ECCO).    
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1. Introduction 
 

Data assimilation is a procedure in which observations are combined 
with models.  The observations correct model errors on the one hand, and 
the models extrapolate the data information in space, time, and among 
different properties on the other.  The result of assimilation is generally a 
more complete and more accurate description of the state of the modeled 
system than those obtained by either observations or model simulations 
alone.  However, data assimilation is not a panacea for correcting every 
model error or for compensating all deficiencies of observations. 

Because ocean models have finite degrees of freedom, model estimates 
are inherently different from observations regardless of errors in 
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measurements.  Moreover, most data assimilation schemes incorporate 
approximations and/or simplifications that dictate what is being solved and 
how the results could be utilized.  For instance, because of data increments, 
budgets of heat and other properties cannot be closed in a physically 
consistent manner for many sequential data assimilation estimates while for 
other estimates budgets can be closed.  Understanding what is being solved 
and how it is done so are fundamental to utilizing data assimilated estimates 
and to devising means of improving them further. 

The nature of the data assimilation problem and some of its solutions are 
reviewed to clarify these underlying properties and to elucidate their 
implications.  The data assimilation problem is mathematically identified in 
Section 2.  In Section 3, the Kalman filter and Rauch-Tung-Striebel 
smoother are compared in the context of a least-squares solution to this 
mathematical problem.  The nature of data and model errors that are utilized 
as weights in assimilation is reviewed in Section 4.  Practical issues in 
implementing these solutions are described in Section 5, using examples 
from the near real-time data assimilation system of the Consortium for 
“Estimating the Circulation and Climate of the Ocean” (ECCO; Stammer et 
al. 2002.)   The discussion is summarized in Section 6.   

 
2. Data assimilation as an inverse problem 
 

Mathematically, data assimilation can be identified as an inverse 
problem; the state of a dynamic system (model), , and its controls, u, (non-
state variables of the model) are estimated given a set of observations, 

x
y , 

and a model; e.g.,   
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where … denote similar equations at different instances, t, indicated by the 
subscripts.  Variable x consists of all the model’s prognostic variables and u 
includes forcing, boundary condition, and sources of model error. Terms that 
include quantities to be solved (x and u) are on the left hand side and the rest 
are placed on the right hand side.  The upper part of Eq (1) relates the model 
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state to the observations by the observation operator H.  The lower part 
describes the model’s temporal evolution by operators A and G that embody 
the model physics and dynamics.  The right hand side of the model equations 
(lower part of Eq 1) is identically zero as all terms of the model are generally 
uncertain and are placed on the left hand side.  (Sources of model error are 
included in u.) 

For simplicity, we assume a linear model for most of this discussion.  
The problem above and the solutions discussed below can be extended to 
non-linear models with suitable linearization.  Bold upper and lower case 
characters represent matrices and column vectors, respectively.  The time 
increment from t to t+1 above denotes an arbitrary increment, as opposed to 
a single model time-step, and corresponds to instances at which observations 
are available.   

As in most geophysical inverse problems1, Eq (1) is rank deficient. In 
particular, there are generally more unknowns than the number of constraints.  
For example, the dimension of x, excluding the temporal dimension, is of 
order several million for typical general circulation models, whereas there 
are only about 20,000 hydrographic profiles during the entire World Ocean 
Circulation Experiment. Consequently, there are an infinite number of 
solutions that could satisfy Eq (1).  Different criteria are used to derive 
particular solutions.  One such criterion is least-squares, and is reviewed 
below.  
 
3. Kalman filter and Rauch-Tung-Striebel smoother as 

least squares inversions  
 
The least squares solution (cf. Chapter 10) provides a general solution to 

inverse problems such as Eq (1).  Namely, the least squares solution  (^ 
denotes an estimate) and its error covariance matrix  for a general linear 
inverse problem,  

â
ˆ ˆaaR

  (2) =Ea b
when the right hand side b is given (known), are,  
  ( ) (1

0 0ˆ T T −
= + + −aa aa bba a R E ER E R b Ea )  (3) 

 ( ) 1
ˆ ˆ

T T −
= − +aa aa aa aa bb aaR R R E ER E R ER  (4) 

                                                 

 

1 Basic matrix algebra is fundamental to mathematical discussions below and 
data assimilation in general.  See, for instance, Wunsch (1996) for a general 
discussion of inverse methods that includes a brief summary of matrix and 
vector algebra relevant to the subject. 
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where  is a prior estimate of a, and  and  are prior error 
covariance matrices of  and b, respectively.  (The latter includes 
representation error for E.  See Section 4.1 for further discussion.)  Filtering 
and smoothing algorithms can be identified as such least squares inversions 
and are reviewed below focusing on what they respectively solve.     

0a aaR bbR

0a

A least-squares solution is identical to a minimum variance estimate 
when weights used in least-squares are suitable inverse error covariance 
matrices.  These solutions are optimal in the sense that they optimize a given 
criteria (function) and that the expected error variance of  is minimum 
among all (linear) estimates.  Least-squares, as well as filtering and 
smoothing described below, do not necessarily assume Gaussian statistics.  
When the statistical distribution of a is Gaussian, the least-squares estimate 
is also a maximum likelihood estimate.  Otherwise, the least-squares solution 
and the maximum likelihood estimate are distinct.   

â

 
3.1 What do Kalman filters solve?  
 

The Kalman filter (e.g., Chapter 11) corrects model forecasts ˆ f
tx and its 

error covariance matrix f
tP by, 

 
   
öx t

a = öx t
f + Pt

f HT HPt
f HT +R t( )−1

yt −Höx t
f( ) (5) 

  (6) 
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a = Pt
f − Pt

f HT HPt
f HT +R t( )−1

HPt
f

using notation defined in Eq (1).  R is the data error covariance matrix (cf 
Section 4.1). Superscripts f and a denote model forecast and filter analysis, 
and  and  are the Kalman filter’s state analysis and its corresponding 
error covariance matrix, respectively.  The correspondence between Eqs (3) 
and (5) and between (4) and (6) shows that the Kalman filter can be regarded 
as a least squares inversion of operator H.   

ˆ a
tx a

tP

However, given that the data assimilation problem is a combined 
inversion of observations and model equations (Eq 1), the Kalman filter does 
not solve (invert) the entire data assimilation problem, in particular, the 
model equations (lower part of Eq 1).  In fact, combining Eq (5) with the 
model forecasting step, , where  is the a priori estimate 
of the control, the temporal evolution of the Kalman filter analysis satisfies,  

0
1ˆ ˆf a

t t−= +x Ax Gût
0ˆ tu

 ( ) ( )10
1 1ˆ ˆ ˆ ˆa a f T f T f

t t t t t t t t

−

− −= + + + −x Ax Gu P H HP H R y Hx  (7) 

Eq (7) is different from the model equations (lower half of Eq 1) due to the 
filter’s data increment (third term of Eq 7).   As illustrated in Figure 1, the 
data increment (black line) is not ascribed to particular processes as are the 
first two terms of Eq (7) (dotted black curve), and thus the temporal 
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evolution between  and  is physically inconsistent.  For instance, 
budgets of heat and other properties cannot be closed between the two 
instances.   

1ˆ a
t−x ˆ a

tx

 

 
Figure 1. Schematic of a state element’s temporal evolution in a typical sequential 
assimilation. Abscissa is time and ordinate is the state’s value.  Filtering progresses by a 
model forecasting step integrating the model along the dotted black curve from an analysis 

 (black cross) to a forecast  (gray cross).  At time t the Kalman filter corrects the 

forecast to another analysis  (black cross), bringing the model state closer to the 

observations  (gray triangle) along the solid black line. This filter correction is inverted by 
a smoother that corrects the model’s prior evolution (dotted black curve) and the prior 
analysis  (black cross) as depicted by the dashed gray curve and gray circle, respectively.  
In turn, differences at earlier times can be further inverted backwards in time. A general 
smoothed estimate and its temporal evolution initiated at some future instant is depicted by 

the white circles (e.g.,  and ) and the solid gray curve, respectively. 

1ˆ a
t−x f

tx̂
f
tx̂ a

tx̂

ty

1ˆ a
t−x

s
t 1−x̂ s

tx̂
 
3.2 What is a smoother?  
 

Whereas filters solve only the upper part of Eq (1), smoothers invert the 
entire data assimilation problem identified by Eq (1).  The data increment in 
Eq (7) represents errors in the model that is being corrected by the 
assimilated data.  These errors include those of the prior model evolution 
(dotted black curve in Figure 1) as well as those of the state at the previous 
assimilation instant from which the model forecasting step was taken (black 
crosses).  The correspondence between the data increment and these errors 
can be recognized as another inverse problem defined by the lower half of 
Eq (1) that has not been solved by the Kalman filter (Eq 5).  The sequential 
smoother described below employs the filtered solution to invert the model’s 
temporal evolution that defines this lower half of Eq (1).  

Namely, given the data assimilated analysis at time t, , the model 
equations of Eq (1) define another inverse problem,   

ˆ a
tx
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to estimate the model state and control at time t-1, denoted by superscript s.  
Eq (8) can also be solved by least squares (Eq 3).  In particular, as model 
error sources (process noise, See Section 4.2) are explicitly included in the 
formulation (u), an exact solution can be sought that would satisfy model 
constraints (e.g., closed heat budget, etc) by estimating these errors.  This 
amounts to setting  in Eq (3).  The filtered estimate 0=bbR 1ˆ a

t−x  and the a 
priori control  provide the prior solutions in (3), and their error 
covariance matrix defines the equivalent of ;  

0
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where Q denotes the error covariance of .  Standard Kalman filtering 
assumes temporally uncorrelated process noise that makes errors in 

0û
1ˆ a

t−x  and 
 uncorrelated to each other, and thus off-diagonal blocks are zero in Eq 

9.   

0
1ˆ t−u

Substitution of these elements in Eq (3) yields new estimates 1ˆ s
t−x  and 

1ˆ s
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Previous filtered estimates at time t-2 can be improved and be made 
consistent with this estimate using these results ( 1ˆ s

t−x  as opposed to the filter 
analysis  in Eq 8) in another inversion.  By induction, other filtered 
estimates at earlier instances can be improved by such inversion recursively 
back in time such that,  

1ˆ a
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in general.  (Note the use of ˆ s
tx  in the last term instead of , thus defining a 

recursion.) 
ˆ a

tx
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S) fixed-interval smoother.  The RTS smoother can be shown to 

d 
bac

The recursive relation Eq (11) can be recognized as the Rauch-Tung-
Striebel (RT
provide estimates of the state and control using all observations within a 
fixed time interval and is a general solution to the assimilation problem (Eq 
1).  (The smoother alters all filtered estimates except that at the end of the 
fixed time-interval; i.e., The Kalman filter estimate at the end of the time-
interval is a least-squares solution of Eq (1) but not at intervening times.)   

In Eq (11), past data information is contained in the Kalman filtered 
analysis 1ˆ a

t−x  while information of formally future observations is carrie
kward in time by the smoothed estimate ˆ s

tx .  Owing to the additional 
information from formally future observations, the smoothed estimates are 
generally more accurate (has smaller error) than corresponding filtered 
estimates.  The error covariance matrix of the smoothed estimates 1ˆ s

t−x  and 

1ˆ s
t−u  (Eq 11), 1

s
t−P  and 1

s
t−Q , respectively, is given by,  

( ) 1T T T
1 1 11 1

a a as a
t t tt t

s

−

− − −− −
−

⎛ ⎞+⎛ ⎞
= −⎜ ⎟

P A AP A GQ G APP

 

1

1T T T1 1 1 1 1 1

1 1

1 1

                

t

at t t t t t

Ta
t t t

Ta
t t t

−

− − − − − −

− −

− −

⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ +⎝ ⎠
⎛ ⎞

+ ⎜ ⎟⎜ ⎟
⎝ ⎠

P
Q Q Q G GQ G AP A GQ

L P L

M P M

 (12) 

where,  

( )

 
( )
( )

1 1T T T T
1 1 1 1 1

1 1T T T T
1 1 1 1 1

a a a f
t t t t t t

a f
t t t t t t

− −

− − − − −

− −

− − − − −

≡ + =

≡ + =

L P A AP A GQ G P A P

M Q G GQ G AP A Q G P
 (13) 

re the coefficient matrices in Eq (11) (smoother gain matr
for shorthand notation.   
a ices) introduced 

The correspondence between Eqs (11) and (3) and between (12) and (4) 
shows that the RTS smoother is a recursive inversion of the model (Eq 8).  
In particular, the smoothed state estimate (upper part of Eq 11) and 
smoothed control estimate (lower part of Eq 11) can be identified as 
inversions of A and G, respectively.  Moreover, as illustrated above, the 
smoother solution was derived to exactly satisfy the model equation, which 
can also be found by substituting results of Eq (11) to the right hand side of 
Eq (8) to yield, 
 1 1ˆ ˆ ˆs s s

t t t− −= +
last) term in Eq (12) relative to (4) reflects the uncertainties 

f the left hand side of Eq (8), and similar e

x Ax Gu  (14) 
The additional (
o quations at other instances, while 
the smoother solves for such exact solution.  The inversion and the physical 
consistency of the smoothed estimates are illustrated by the gray curves in 
Figure 1.     
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asaki, 1970) that assumes that models have no errors except in 
init

Although smoothed solutions satisfy model equations (Eq 14), 
smoothing should not be confused with the so-called “strong constraint” 
estimation (S

ial condition.  In fact, the model solution by itself does not satisfy the 
model; viz., 0

1 1ˆ ˆs s
t t t− −≠ +x Ax Gu . Smoothing is generally a “weak constraint” 

inversion that allows for model errors, but one that explicitly provides 
estimates of these inaccuracies.  The explicit estimation of these model error 
sources as opposed to leaving them unknown ( ˆ s

tu in Eq 14 instead of 0ˆ tu ), is 
what allows for the temporal evolution of the smoothed solution to be 
physically consistent. 

While the discussion above has focused on sequential smoothing, there 
are other equally effective smoothing algorithms.  In particular, when model 
error sources are made part of the estimate, the so-called adjoint method or 
4dVAR (Chapter 10) is equivalent to the RTS smoother (Eq 11).  The 
adjoint estimation directly solves for the smoothed solution ( ˆ sx  and ˆ su ) 
without deriving intermediate filter estimates. 

 
 

4. What are data errors and model errors?  
 

” error covariance R and “model” error covariance Q in effect 
qs 5 and 11).  (P 

 a function of R and Q.) Their understanding and specification are, 
ther

Data” and “model” errors can be best understood by considering the 
vis-à-vis that of the observations and the ocean.  

The following discussion follows that of Cohn (1997).  For instance, the 
mod

 “Data
define the solution to the data assimilation problem (e.g., E
is

efore, fundamental to assimilation and in utilizing their results.  In fact, 
as described below, a part of what is commonly regarded as “model” error 
should in fact be considered “data” error.  R and Q are better considered 
error covariances of the “data constraint” and the “model constraint”, 
respectively.  

 
4.1 “Data” Error 

 
“

true nature of the model 

el’s true state tx  (overbar denotes true solution) can be recognized as 
representing the ocean in finite dimension, 
 t t≡x Πw  (15) 
Function Π  defines the model state given the complete state of the ocean 

tw  (which has infinite degrees of freedom).  Observations ty  are samples of 
this ocea  that could be written as,  
 

n tw

t t ε= +y Ew  (16) 
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(e.
s o e rewritten as,   

where E describes the sampling operation and ε denotes measurement errors 
g., instrument error).   

In term f the model, Eq (16) can b
{ }t t t t ε= + −y Hx Ew HΠ +w  (17)  

The last two terms of Eq (17), 
 { }t t ε− +Ew HΠw  (18) 
can ation t t=y Hx be identified as the error of the observation equ  that 

efines the data assimilation problem (Eq 1), i.e.,
e difference between error free observations 

) and error-free equivalent of the m
tire spec

model 

r.”  Other common examples of 
repr

cally employ larger 
“data” o ervations so as to 
maximi with 
observa n ting 
the data o rrors in the model 
evo

93).  Such measurements (Lagrangian 
traj

d  the covariance of Eq (18) 
is R. The first part of (18) is th
( odel ( tHΠw ).  The two are tEw
generally different because the model does not simulate the en trum 
of the ocean but only parts of it (Eq 15).  

For instance, a coarse resolution model of 1º horizontal resolution does 
not simulate meso-scale variability, and a 1.5-layer reduced-gravity model 
does not simulate barotropic motion.  What a cannot simulate 
constitutes part of the errors of the observation equation as described by Eq 
(18) and is termed “representation erro

esentation error include, 
• Baroclinic variability for a barotropic model 
• External gravity waves for a rigid-lid model 
• Skin temperature for most models with thick surface layers 
• Micro-structure for most large-scale models 

In numerical weather forecasting, meteorologists typi
err r than the measurement accuracy of the obs
ze the skill of their forecasts.  Forcing models to agree 
tio s that the models cannot simulate, result in models propaga
 c rrection incorrectly in time, causing larger e

lution than otherwise.  
Some observations are dominated by representation error, making them 

difficult to utilize.  For instance, individual drifter and float trajectories can 
depend on small-scale variabilities of the ocean, such that two floats 
deployed a short distance away from each other have dramatically different 
trajectories (e.g., Paduan and Niiler, 19

ectory as opposed to Eulerian velocities along the trajectory) that are 
dominated by representation errors do not provide strong data constraints, 
and cannot be used effectively.  
 
4.2 “Model” Error 

 
The nature of model process noise Q can be deduced in a similar fashion 

as data error above.  The model can be written in shorthand as,  
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( )0
1 ˆ,t tA+ =x x u t  (19) 

function describing the evolution of the model 
stat

e
volution can be thought of similarly as,  

where A denotes a general 
e.  û  denotes the model’s particular control that includes its forcing, 

boundary condition, and parameters. For generality, 0û  also includes other 
ources of process noise as discuss d belo

0

s w that are zero a priori.  The ocean 
e
 ( )1 ,t t tL+ =w w v  (20) 
where L describes the evolution of the ocean and tv  is the forcing and 
boundary conditions of the ocean. 

Then, the model evolution in terms of the true model state can be written 
as,   

( )
( ) ( ) ( ){

1 1

0 0ˆ ˆ, , ,
t t t t

t tA L A
+ +

= + −x u Π w v Πw u
 (21)  }

,

t t t t

L= =x Πw Π w v

usin
model error (process noise) is; process noise is the difference between 

the true evolution of the ocean projected to the model space 

g Eqs (15), (19) and (20).  The last term in {} mathematically describes 
what 

( ),t tLΠ w v  and 
e model evolution given the true model state and ith ts particular control 
( )0ˆ,t tA Πw u . 

As shown by Eq (21), process noise could be due to errors in the given 
control ( tv  versus its equivalent in 0ˆ tu ) and to differe odel 
algorithm A and the true model evolution L and their interaction with 
operator Π .  The former includes, for example, errors in the particular 

nces in m

external forcing, boundary condition, and model parameters used by the 
mod

, 

covariances are not trivial.  For instance, it is not entirely 
lear what operator that defines these errors is for different models, let 

 practical 
e 

o-c

el.  The latter includes errors due to finite differencing, truncation, and 
interaction with scales and processes ignored by the model.  The two types 
of error sources could be considered external and internal errors of the model 
algorithm respectively, and are both identified as elements of the model 
control vector.   
 
4.3 Specification of Data Error and Model Error  
 

While their principles are understood, the actual specification of data 
and model error 

Π  c
alone the errors’ statistical properties.  However, there are some

eans of quantifying these errors prior to assimilation.  Here we describe thm
s alled “covariance matching” method described by Fu et al. (1993).   
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n

ero means.)  Then, the covariance amo

Observations y a d their model simulation’s equivalent m could be 
written as the sum of the true signal s (1st term on the right hand side of Eq 
17) and their respective uncertainties r and p,   

 
= +y s r
= +m s p

 (22) 

To first approximation, we may assume s, r, and p to have zero means and to 
be uncorrelated with each other.  (See section 5.2.5 for dealing with non-
z ng these elements can be written as, 

T T T

T T T

T T

= +

=

mm ss pp

ym ss

 (23)  

= +yy ss rr

where brackets denote statistical expectation.  Assuming ergodicity and 
tationarity, quantities on the left hand side co

the data and model estimates in time.  Then,  
s uld be estimated by averaging 

T T T

T T T= −

rr yy ym

pp mm ym
 (24) 

The former is a direct estimate of data er

 
= −

ror covariance matrix R, while 
the latter provides an indirect estimate of process noise covariance Q.   

amely, given a process noise model (u in Eq
corresponding model simulation error can be estimated using standard 
met

N  1) and its covariance Q, the 

hods.  In particular, using the notation defined in Eq (1), the stationary 
limit of such error simP  is the solution to the Lyapunov Equation,  
   sim sim T T= +P AP A GQG  (25) 
which is related to the empirical estimate Eq (24) by, 
 sim T T=HP H pp  (26) 

Eq  calibrate the process noise s (24), (25) and (26) provide a means to

ltimetric sea level data with a coarse (1º) 

ariability that constitutes the model’s representation error 
(Se

estimate Q.   
Figure 2 illustrates an example of such estimate for assimilating 

a resolution model.  Because of the 
model’s limited spatial resolution, the data error estimate (a) is dominated by 
meso-scale v

ction 4.1), as evidenced by large values in western boundary regions.  
Wind error (c) is estimated to be the dominant source of model error for 
simulating large-scale sea level variability.  Note the first order 
correspondence between the empirical (b) and theoretical (d) error estimates 
of model simulated sea level. 
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y done?   

W
assim  large computational requirements  

 

5. Examples of implementing assimilation; how is 
assimilation actuall

 
hile the theory of data assimilation is well understood, implementing 

ilation is often nontrivial owing to its

 

 
Figure 2. An example of prior error (variance) calibration; (a), (b) error estimates of 
altimetric sea level constraint and model simulated sea level, respectively, based on a model-
data comparison (Eq 24), (c) calibrated wind stress error estimate (zonal component), (d) 

e specifying prior error estimates 
was described in section 4.3.  Other examples of actually carrying out 

 (ECCO) 

experi  to study ocean circulation 

model simulated sea level error estimate based on (c).  Note the first order consistency
between (b) and (d) (Eq 26). The model is an ocean general circulation model with a 1º spatial 
resolution.  (Adapted from Fukumori, et al., 1999.)   

 
and to a number of approximations and simplifications that are necessary to 
make the calculations tractable.  An exampl

 

assimilation are described below to further elucidate some practical steps 
employed in an assimilation system.  The examples are taken from the 
assimilation system of the Consortium for “Estimating the Circulation and 
Climate of the Ocean (ECCO).” 

 
5.1 Consortium for “Estimating the Circulation and 

Climate of the Ocean”
 
The ECCO Consortium focuses on advancing data assimilation from an 

mental tool to an operational means
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(Stammer et al., 2002.)  ECCO estimates are characterized by their physical 
con

es of large-scale global ocean circulation 
(73º

he recursive nature of the Kalman filter and RTS smoother is 
ion.  However, the 

com utational requirements of evaluating the state error covariance matrix P 
mak

ori, 2002).  
Th a time-

invar  the computational 
cost el integration of the state error 
cov

sistency (Section 3.2) owing to smoothing algorithms (RTS smoother 
and adjoint method).  The estimates are based on a state-of-the-art primitive 
equation model (MITgcm; Marshall et al. 1997) and employ a diverse suite 
of in situ and satellite remote sensing observations including temperature 
and salinity profiles and sea level.   

The ECCO estimates are available from its data server at 
http://www.ecco-group.org/las.  In particular, ECCO has established a near 
real-time analysis producing estimat

S~73ºN) on a regular basis (http://ecco.jpl.nasa.gov/external).   The 
model employed is of moderate resolution (1º telescoping to 1/3º within 10º 
of the equator, 10m layers within 150m of the surface with a total of 46 
vertical levels) with its parameters adjusted by a Green’s function estimation 
(Menemenlis, et al., 2004.)  The near real-time analysis is conducted by an 
approximate Kalman filter and RTS smoother.  Aspects of this near real-time 
assimilation are reviewed below. 

 
5.2 ECCO near real-time analysis system 

 
T

particularly suitable for near real-time computat
p
e direct application of these methods impractical for most state-of-the-

art ocean circulation models.  Therefore, various methods have been put 
forth that approximate the derivation of P so as to make Kalman filtering 
and RTS smoothing feasible.  In ECCO, three approximations are 
concurrently employed:  

I. Time-asymptotic approximation (Fukumori et al. 1993),  
II. State reduction (Fukumori and Rizzoli, 1995), 

III. Partitioning (Fukum
e time-asymptotic approximation evaluates and employs 

iant representative limit of P, thereby eliminating
associated with the continued mod

ariance matrix.  Evaluation of this asymptotic limit is simplified by 
partitioning and state reduction where independent elements of P are 
evaluated separately from one another (partition) and within each partition 
only the dominant modes of the error are estimated (state reduction).  A 
reduced-state model is derived for each partition to evaluate the errors while 
the original fully nonlinear unapproximated model is used to integrate the 
state.  The smaller dimensionality of each partitioned-reduced-state model 
reduces the computational cost of evaluating P.  Unlike global single-stage 
state reductions, the partitioning permits retaining many of the estimation 
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heoretical aspects of these and other approximations.  Here 
we 

ng process noise  
 

ferent model errors sources could be 
considered independent of one another.  Then different process noise and 
thei

s in large-scale wind 
can

e errors.  This estimate should not 
be c

 
s in temporal and spatial scales, wind-driven 

barotropic errors could be considered independent of baroclinic errors and 
thus

problem’s degrees of freedom without incurring excessive computational 
requirements.  

The reader is referred to Chapter 11 and to references above for further 
discussion on t

review examples of implementing the approximations and their 
implications.   
 
5.2.1 Identifyi

To first approximation, dif

r consequent model state errors could be evaluated separately in the 
context of a partitioned estimation (Fukumori, 2002).   

Different sources of process noise cause different errors in the modeled 
state.  For instance, the response of a model to change

 be effectively described in terms of the gravest few vertical dynamic 
modes (e.g., Cane, 1984).  In comparison, a model’s response to changes in 
air-sea heat flux is to first approximation confined to the sea surface.  The 
modeled process noise dictates the most effective state approximation (e.g., 
state reduction and partitioning), and, therefore, its identification is the first 
step in designing an assimilation system.   

The ongoing ECCO near real-time assimilation estimates uncertainties 
of wind forcing and its resulting model stat

onfused as one that considers all model errors are due to errors in wind, 
but it is an estimate of only a part of the errors, as discussed above, albeit 
one of the dominant ones.  The model’s controllability (ability to uniquely 
solve u in Eq 1) limits aliasing of other model error sources to the particular 
process noise being estimated.  The ECCO near real-time assimilation 
system described below is correspondingly designed to resolve the dominant 
response of the ocean to large-scale wind errors.   
 
5.2.2 Regional partitions 

Due to large difference

 estimated separately.  Having sub-basin length scales, the baroclinic 
components are estimated individually among seven different basins across 
the globe (Figure 3).  These regions include three separate tropical basins 
(Indian, Pacific, Atlantic) and four mid- and high-latitude basins (North 
Pacific, North Atlantic, South Atlantic and Indian, South Pacific).  The 
regions overlap each other to minimize edge effects caused by the regional 
approximation; errors in overlapping areas are considered to be split among 
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.2.3 State reduction 

Within each partition, additional vertical and horizontal approximations 
are 

the different regions.  The barotropic component, due to its large spatial 
scales, is estimated simultaneously over the entire model domain. 
 
5
 

defined to further reduce the errors’ dimension.  Vertically, state errors 
are expanded in terms of vertical dynamic modes of velocity and vertical  

 

 
 

. Coarse horizontal grid employed in ECCO partitioned reduced-state approximation.  

isplacement.  For each baroclinic partition (Figure 3) the first five 

l and 
mer

 amplitudes au, av, 
aη defined on a coarse grid for zonal and meridional velocity and vertical 

Figure 3
The different symbols denote different regional reduced-grid partitions used to estimate 
baroclinic errors of the model state.   
 
d
baroclinic modes are retained.  Horizontally, large-scale errors are estimated 
by defining a coarse horizontal grid and an interpolation operator to map the 
coarse grid errors onto the model (fine) grid.  The process noise (wind error) 
is reduced likewise, utilizing the same horizontal mapping operation.  

The coarse grid is defined as a 5º-by-3º and 6º-by-6º (zona
idional resolution) grid for baroclinic and barotropic partitions, 

respectively.  Objective mapping (Bretherton et al., 1976) is employed as the 
coarse-to-fine grid interpolation operator, which can also be identified as a 
least-squares operator in itself (Eq 3).  The interpolation assumes no 
underlying error and a Gaussian covariance function using the coarse grid 
dimensions as the correlation distance.  To prevent spurious correlation 
across land (e.g., Pacific Ocean to Atlantic Ocean across the Isthmus of 
Panama), distances between model grid points used to define the mapping 
operation are computed around the model’s land points.    

The reduced state error thus consists of dynamic mode
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displacement, respectively.  The approximated control aτ is the magnitude of 
wind error defined on the same coarse horizontal grid.  These approximated 
errors are related to those of the model state and model forcing by, 
  ,   ,   ,   vel u vel v η η τδ δ δ δ= = = =u D Oa v D Oa η D Oa τ Oa  (27) 
where δu, δv, δη, and δτ are errors of model zonal and meridional velocity, 
ve Ds consist of rtical displacement, and wind stress, respectively.  The 
structures of vertical dynamic modes of respective variables that project the 
errors vertically to the model grid. O denotes the horizontal mapping 
operator from the coarse grid to the model grid. Errors of other state 
variables are diagnostically derived using estimates in Eq (27).  For instance, 
errors of temperature T and salinity S are derived from those of 
displacement by, 

 ,   
z z

δ δ δ δ∂ ∂
= =
∂ ∂

nd errors of sea level can be defined as a 
perature and salinity).  Errors from different

cell consisting of nearly 
120

 

T ST η S η  (28) 

a function of δη and density 
(tem  partitions are summed 
together to form the overall model error estimate.     

The total dimension of each partitioned-reduced-state is summarized in 
Table 1.  The largest partition is the tropical Pacific 

00 elements.  In comparison, the total dimension of the model state 
(horizontal velocity, temperature, and salinity on the model grid) is 8 million. 
 

Partition Grid Points Dimension
Tropical Indian 308 4620
Tropic

T

South 

Glob

al Pacific 787 11805
ropical Atlantic 350 5250

South Pacific 633 9495
Atlantic & Indian 664 9960

North Pacific 271 4065
North Atlantic 198 2970

al Barotropic 963 2889
 
Table 1. The reduced-state dimension of seven baroc artitions and bal barotropic 

artition.  Each barocl e five t baroclinic m ach partition 

x is derived for each 
eparate partition by computing the asymptotic limit of the respective Riccati 

equ

linic p
 graves

the glo
odes.  Ep inic partition employs th

has three variables; zonal and meridional velocity and vertical displacement.  
 
 

.2.4 Derivation of state error covariance matrix 5
 

A time-invariant state error covariance matri
s

ation.  (The Riccati equation describes the temporal evolution of the state 
error covariance matrix when integrating the model and assimilating 
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ed reduced-state model and is 
com

observations.  See Chapter 10)  The computation employs a representative 
approximation of the assimilation problem in which time-invariant system 
matrices A, G, H, Q, and R, (Eqs 1, 5 and 10) are derived and used.  The so-
called “doubling algorithm” provides an effective means to integrate the 
corresponding Riccati equation in increasing time-steps of powers of two 
(i.e., doubling) (Fukumori et al. 1993).     

Model matrices A, G, and H are derived using a coarse grain Green's 
function of the corresponding partition

puted by combining the state approximation and the original 
unapproximated model.  For instance, a general state and control 
perturbation (error), δx and δu, can be written as,  

 
δ δ

δ δ

′ +

′ +

x = B x Nn
u = B u Nm

( (  (29) 

w  space of a particular partitioned here B and N define the range and null
reduced state (control) approximation described in Sections 5.2.2 and 5.2.3, 
respectively, and δ ′x  and n are their amplitudes.  B

(
, N
(

, δ ′u  and m are 
corresponding counterparts for the control.   

Then, given a general (nonlinear) model, Eq ( 9)
satisfy,  

1 , the perturbations 

 ( ) ( )1 , ,t t tA Aδ δ δ+ + + −x = x x u u x u% % % %  (30) 
where x%  and are a representative state and control, respectively

eans e used.)  Substituting Eq (29) into (30) and
u%  .  (Time-

m  multiplying both sides  ar
of the equation with the pseudo inverse of B, denoted *B , and noting the 
orthogonality between B and N, we have, 
 ( ) ( )( )*

1 ,t t t t tA Aδ δ δ+′ ′ ′+ + + + −x = B x B x Nn u B u Nm u
( (

,x% % %

n and m
f error in defining a reduced-state model.  However, beca

orth

%  (31) 

The approximation’s dependence on the null space ( ) is a source 
o use of their 

ogonality, this dependency could be ignored if range and null space 
perturbations remain within their respective domain through the model 
integration, as *B  in Eq (31) will nullify any resulting null space 
perturbation.  For example, to first approximation, a particular dynamic 
mode remains the same mode and large-scale perturbations remain large-
scale.  Then Eq (31) could be approximated in closed form in the reduced-
space as, 
 ( ) ( )( )*

1 , ,t t tA Aδ δ δ+′ ′ ′+ + −x = B x B x u B u x u
(

% % % %  (32) 

d
 

efining the partitioned reduced-state model. 
Corresponding partitioned reduced-state matrices ′Α  and ′G  that 

linearize Eq (32) around the representative state and control (  and x% u% ), 
 ( ) ( )( )* , ,t t t tA Aδ δ δ δ′ ′ ′ ′ ′+ + − ≈ +B x B x u B u x u A x G u′

(
% % % %  (33) 
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re derived as coarse grain Green’s functions.  (The prim
equivalent.)  Namely

a e denotes the 
individual partitioned reduced-state , an arbitrary 
column of the two matrices, ( ′Α )i and ( ′G )i, can be numerically derived as, 

 
( ) ( ) ( )( )
( ) ( ) ( )( )

* , ,i ii
A A′ ′ ′= + = + −A A e G 0 B x Be u x u% % % %

(  (34) 
* , ,i ii

A A′ ′ ′= + = + −G A 0 G e B x u Be x u% % % %

here ei is the corresponding column of the identity mat
dimension and 0 is a vector of zeroes.  

vari
stra

w rix of appropriate 

Model implementation of Eq (34), and in particular, the pseudo inverse 
*B , requires some consideration. Since vertical displacement is not a 

able in most models and inverting Eq (28) can be difficult where 
tification is weak, vertical velocity is integrated in time in Eq (34) to 

diagnose δη (cf. Section 5.2.3). Because of their orthogonality, 
implementing the pseudo inverse of the vertical transformation (the Ds in Eq 
27 that make up B) is trivial.  However, the pseudo inverse of the horizontal 
operator O is not.  The objective mapping operator is relatively sparse, and, 
therefore, O in Eq (27) is implemented as a sparse matrix multiplication 
retaining only significant elements of the matrix.  However, the pseudo 
inverse of O tends to be a fairly large and dense matrix.  An effective means 
of implementing the inversion of O is as, 
  ( ) 1* T T−

=O O O O  (35) 

Matrix ( ) 1T −
O O  is a relatively small mat

mically 

rix that can be precomputed and 

stored.  The left multiplication by O transpose can be achieved 
algorith given the sparse matrix O that is already available.  (A 
multiplication by TO  is an adjoint of O.)    

The partitioned reduced-state observation matrix ′H  can be numerically 
derived similarly t hose in Eq (34): o t
 ( ) ( ) ( )i ii

H H′ ′= =

ning the model equivalent
The time-asymptotic approximation employs a

+ −H H e x Be x% %  (36) 
here H is a function defiw  of the observations.  

 time-invariant system in 
which not only the model ( ′Α  and ′G ) but the observation matrix ′H  and 
the data and model error covariance matrices R and ′Q are stationary.  (Only 
the operators ′Α , ′G , and ′H  and the statistics R and ′Q  are assumed 
stationary, not the state, control, or observation.)  However, since in practice 
what is observed (H varies i time, a representative set of observations is 
assumed to be available regularly in deriving the state error covariance 
matrix.  For instance, to simulate the coverage and accuracy of satellite 
altimeter data, a three-day assimilation cycle is assumed during which all 

) n 
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s are used to integrate the corresponding 
Ric

5.2. plementation 

Although the derivation of P assumed a 3-day assimilation interval, 
actu

ion employs an alternate form 
of t

satellite altimeter data within the 10-day repeat period is available but with 
3-times the assumed data error.   

The resulting system matrice
cati Equation to its asymptotic limit utilizing the doubling algorithm.   
 
5 Im

 

al assimilation is performed every 6-hours (model time-step is 1 hour), 
assimilating all available observations within 3-hours of the assimilation 
instant.  No observation is utilized more than once as dictated by standard 
estimation theory.  The 6-hour assimilation interval is a compromise 
between computational requirements associated with applying the Kalman 
filter more frequently and the resolution of high frequency variability of the 
ocean (e.g., wind-driven barotropic motion).   

For computational efficiency, the assimilat
he Kalman gain matrix from the common formulation of Eq (5), 

 ( ) 1 1f T f T a T
t t t t t

− −+ =P H HP H R P H R  (37) 

he alternate form on the right hand side of Eq (3

ate formulation, the filter (data) increment 
(the

t i  (38) 

where, 

T 7) employs the analysis 
error covariance instead of the forecast error covariance, and has fewer 
computational steps than the left hand side, when the respective state error 
covariance matrices are given.   

In the partitioned reduced-st
 difference between analyzed state and forecast state, i.e., the third term 

of Eq 7), ˆ a
t∆x , can be written as a sum of the increments in different 

partitions, 
 ,ˆ ˆa a

t i
i

′∆ = ∆∑x B x

 ( )( )1
, ,ˆ ˆTa a f

t i i t i t t tH−′ ′ ′∆ = −x P H R y x  (39) 

 the filter increment of an individual partitioned ris educed-state (subscript i).  
In Eq (39), the reduced state observation matrix ′H  (Eq 36) can be used.  
Alternatively, Eq (39) could be implemented as, 
 ( )( )1

,ˆ ˆTa a T f
t i i i t t t H−′ ′ t∆ = −x P B H R y x  (40) 

sing the adjoint of the model observation o

e marine geoid estimate, the analysis 
assimilates altimetric sea level anomaly relative to its temporal mean instead 

u perator H as the left 
multiplication HT.  Eq (40) involves less approximation and is of particular 
convenience when the observation operator is an implicit function of the 
state and its adjoint is available.  

Due to inaccuracies in th
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of absolute sea surface height.  For each partitioned reduced state, Eq (39) is 
computed by, 
 ( ) ( )( )( )1

,ˆ ˆTa a f
t i t t t tH−′ ′ ′∆ = − − −x P H R y y x m  (41) 

where y  and m  are time-mean altimetric sea level and 

y 

cations (or operations) of the innovation vector (i.e., 
data

ther; second term on the 
righ

its model simulation 
equivalent, respectively.  This particular formulation corrects the model sea 
level variabilit without altering the model time-mean within the linearized 
time-asymptotic approximation.  Such approximation is further sensible 
considering that errors in the time-mean state (bias) are due to time-
correlated errors for linear models.  Standard Kalman filtering and 
smoothing formulations assume temporally uncorrelated process noise and 
such correlated model errors require modification to the canonical estimation 
procedure.  Thus, assimilation of other observations (e.g., temperature 
profiles) is similarly restricted to their temporal anomalies.  Time-invariant 
process noise can alternatively be estimated separately from such temporally 
uncorrelated errors.   

For computational efficiency, Eq (41) is carried out from the right as a 
series of left multipli

-model difference) and its products; i.e., no matrix-matrix multiplication 
is performed to compute the coefficient matrix in Eq (41).  Contributions 
from different partitions are summed together (Eq 38) to correct the entire 
model forecast.  The unapproximated fully nonlinear model is then 
integrated in time using the resulting analysis with all diagnostic variables 
updated consistently with these data increments.   

In terms of the partitioned reduced-state formulation, the smoother 
increment (difference between analysis and smoo

t hand side of Eq 11) can also be written as a sum of smoother 
increments in the partitioned reduced state; 

 ,ˆˆ
ˆˆ ,

ss
i t it

ss

′⎛ ⎞∆⎛ ⎞∆
= ⎜⎜ ⎟ ′∆∆⎝ ⎠
∑

B xx
B uu
(

i i t it
⎟

⎝ ⎠
 (42) 

here, 

∆  (43) 

re the smoother increments of state and control of a
reduced state.  The partitioned form of the smoother increment recursion, Eq 

w

 ( )
1T

,
1, 1,1T

,

ˆ
ˆ ˆ

ˆ

a fs
i i it i s a

t i t is f
t i i i i

−

+ +−

⎛ ⎞′ ′ ′′⎛ ⎞∆
⎜ ⎟ ′ ′= ∆ +⎜ ⎟ ⎜ ⎟′∆ ′ ′ ′⎝ ⎠ ⎝ ⎠

P A Px
x x

u Q G P
a  particular partitioned 

(43), uses the second form of the smoother gain in Eq (13) and the 
definitions of ˆ s∆x  and ˆ a∆x  to rearrange the last term in Eq (11).  Unlike the 
filter, elements of the approximate smoother gain matrix in Eq (43) are time-
invariant and thus, for computational efficiency, the gain matrix can be 
explicitly derived and used in deriving the smoother increments. Smoother 
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increments of different partitions are summed together to correct the entire 
model state and control (Eq 42).  However, because of the approximations, 
the resulting smoothed state and smoothed controls do not exactly satisfy the 
model equations and are, strictly speaking, physically inconsistent.  Instead, 
estimates of a smoothed state that is fully consistent with the control are 
derived by re-integrating the model in time using the smoothed control 
estimates.   
 
 

 
Figure 4. Model explained observed altimetric sea level anomaly variance; simulation 
(broken curve), Kalman filter (gray curve), smoother (solid curve).  The explained variance is 

n is assessed by examining its self-consistency and by 
omparisons with independent observations.  Being a least-squares estimate, 

the 

e difference between observations and their model 
equ

defined as the difference between data variance and model-data residual variance.  Note the 
smoother results being nearly indistinguishable from the filter’s (except near the end, 
2001~2002) whereas the simulation’s explained variance is substantially less than these 
throughout the experiment.  Results are from the ECCO near real-time assimilation.   
 
5.2.6 Assessment 
 

The assimilatio
c

estimates’ errors are non-increasing functions of the amount and 
accuracy of the observations that are assimilated.  An estimates’ systematic 
degradation would indicate the assimilation’s inaccurate assumption and/or 
errors in the implementation.  Some examples of such assessment are briefly 
described below.   

One of the useful and readily available measures for assessing 
assimilation is th

ivalent, in particular, the innovation sequence (i.e., difference between 
observations and a filter’s forecast).  For instance, Figure 4 compares the 
amount of data variance (sea level) explained by the different model 
estimates.  Explained variance is defined as,   

 



ICHIRO FUKUMORI 338 

( )( ) ( )( )TT H H− − −yy y x y x  (44)  

T iance of what the model 
cannot explai variance (first term) is a 

he second term, the residual variance, is the var
n, and thus the difference with the data 

ulation without data  

measure of what the model resolves.  As the forecast does not yet utilize the 
particular observations, the innovation sequence also provides a measure of 
skill with respect to independent observations.   

Figure 4 illustrates that the approximate Kalman filter explains 
significantly more data variance than does the model sim

 

 
Figure 5.  An assessment of model-data residuals with respect to their theoretical expectations.  
The panels show reductions in root-mean-square sea level residuals by assimilation of

ure shows that the smoothed estimate 
(sm thed-wind-driven model simulation) explains nearly as much variance 

 their theoretical expectations, i.e., formal error 
estimates computed and utilized by the Kalman filter algorithm.  Figure 5 

 
satellite altimeter data with a global ocean general circulation model.  Panels (a) and (b) are 
differences between simulation and forecast and its theoretical expectation based on estimated 
errors, respectively; a positive value indicates an improvement by the latter model.  Panels (c) 
and (d) are the same except between forecast and analysis.  Note the first order consistency 
between (a) and (b) and between (c) and (d).  Gray areas in (a) and (c) denote regions with no 
observations.  Results correspond to assimilation using calibrated prior error estimates of 
Figure 2.  (From Fukumori, et al., 1999.) 

 
constraints.  Moreover, the fig

oo
as does the Kalman filter (model forecast), thus demonstrating the fidelity of 
the approximate smoother.  

The assimilation’s self-consistency can be assessed by comparing 
model-data differences with
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illu

inve
  

strates an example of such comparison.  Differences between different 
model residuals are comparable to their respective theoretical expectations in 
both overall amplitude and spatial distribution.  The absolute magnitudes of 
these estimates are statistically consistent, as the model-data difference of 
the simulation is also comparable with its theoretical expectation (Figure 2).  

The fidelity of the assimilated analyses permits diverse studies and 
applications of not only ocean circulation (e.g., Fukumori et al., 2004) but 
also of ocean biogeochemical processes (e.g., McKinley, 2002) and geodetic 

stigations (e.g., Dickey et al., 2002.)  For instance, Figure 6 illustrates 
such an application and an assessment of the data assimilated model estimate. 

 

 
Figure 6. Coherence between observed and modeled excitation of Earth’s wobble (polar 
motion); NCEP atmosphere reanalysis (thin black; “no ocean”), ECCO simulation plus NCEP 
atmosphere (gray; “simulation”), ECCO assimilation plus NCEP atmosphere (thick black; 

ive to the terrestrial frame) 
nd that estimated by atmospheric (National Centers of Environmental 

“assimilation”).  Also shown are the 95% and 99% confidence levels.  (Gross, 2003, personal 
communication.  See Gross et al., 2003, for related results.) 
 
The figure shows coherence between observed excitation of Earth’s polar 
motion (the wobble of Earth’s rotation axis relat
a
Prediction (NCEP) Reanalysis, Kalnay et al., 1996) and oceanic models.  
While changes in atmospheric circulation (thin black curve) account for 
most of the observed polar motion, adding the ocean estimate (gray curve) 
significantly improves the coherence at almost all frequencies.  Moreover, 
the ocean assimilation (thick black curve) further improves the coherence 
illustrating the impact of ocean data assimilation in improving the estimate 
of ocean circulation.  Satellite navigation employs estimates of polar motion 
and thus would benefit from forecasts as well as near real-time ocean 
analysis systems.  
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Data assimilation concerns correcting models using observations.  
 straightforward, there are various subtleties involved 

 both what data assimilation solves and how the computation is carried out.  
A 

ught.  However, given that all models are in one way or another 
app

ions that consist of those relating the model state to the 
obs

moothers 
add

el error corrections, 
and

udgets of heat 
and

 
6. Summary 
 

Although the concept is
in

careful understanding of these issues is helpful in assimilating 
observations, in utilizing their results, and in further improving their 
estimates.  

Data assimilation can be considered a process of fitting models to 
observations.  A solution that is consistent with both observations and model 
physics is so

roximations of the real world (ocean), there are some, sometimes many, 
aspects of the observations that are real but inconsistent with the models.  
These aspects that models cannot inherently simulate (representation errors) 
therefore cannot be part of the assimilated solution and must be properly 
accounted for.  Forcing models to agree with such measurements can lead to 
increased inaccuracies and inconsistencies.  An assessment of what models 
do and do not simulate is important in carrying out the assimilation, and an 
understanding of what the assimilated estimates resolve is fundamental to 
utilizing the results.  

Mathematically, data assimilation is an inverse problem.  The temporally 
evolving state of the model and sources of model error are estimated by 
inverting model equat

ervations and those describing the model’s temporal evolution. 
The Kalman filter and other common filtering methods are inversions of 

the model equivalent of the observations but not of the model evolution, and, 
therefore, do not completely solve the assimilation problem.  S

itionally invert the model evolution completing the estimation, providing 
estimates of both model state and model error sources.   

While state estimation is often used synonymously with data 
assimilation, it is in fact the estimation of the model error sources (process 
noise) that is most fundamental.  Given smoothed mod

 apart from corrections to the initial condition, the smoothed state can be 
derived by integrating the model in time, but not vice versa.   

Because of model errors, data assimilated state estimates by themselves 
are not physically consistent, in the sense that the estimated states’ temporal 
evolution cannot be physically accounted for.  For instance, b

 other properties cannot be closed in terms of explicit physical processes.  
The smoother’s explicit estimation of model error sources resolves the 
physical inconsistency, rendering the assimilated solution amenable to 
various process studies and applications.   
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odels’ large dimension and their 
com

eir application.  However, existing 
pro

 sensible 
(ide

Although methods of data assimilation are well known, their 
implementation is often hampered by the m

plex nonlinearities.  Many approximations have been put forth that 
render their implementation feasible and practical.  The near real-time 
assimilation system of the Consortium for “Estimating the Circulation and 
Climate of the Ocean” (ECCO) employs a hierarchy of such approximations 
to maximize utilization of observations.   

The fidelity and scope of these and other analyses lend themselves to 
various studies in ocean circulation and th

ducts are in certain respects yet incomplete.  The present near real-time 
ECCO estimates utilize a simplification by only estimating errors resulting 
from uncertainties in wind forcing.  Other ECCO estimates also estimate 
errors in diabatic forcing and uncertainties in some of the model parameters.  
However, there are many other model error sources that have not yet been 
addressed.  Expanding the estimated suite of process noise remains a central 
task in further improving ECCO and other assimilation estimates.   

For the approximate Kalman filter and RTS smoother, such extension 
requires an explicit modeling of the process noise that is physically

ntification of operator G in Eq 1) and in identifying an effective 
approximation (partition and state reduction operators and basis set B and B

(
 

in Eq 32) that would resolve the corresponding errors in the model state.  An 
effective basis set not only has a small dimension but must also form  
closed dynamic system (Eq 31 approximated as Eq 32).  Understanding the 
nature of the modeled system is imperative to such design.  
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