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Abstract:  The importance of data in meteorological data assimilation can be quantified 
in the context of re-analyses performed at Numerical Weather Prediction 
centres.  The increasing quality and quantity of satellite data is seen to play a 
major role in the improvement of forecast performance, particularly in the 
Southern hemisphere. Further optimisation of the use of observations is 
possible through proper evaluation of the data impact, optimisation of the 
amount of data to be assimilated and of their error characteristics, and a 
relevant selection of data based on information content concepts. A more 
interactive forecasting system including an adaptive observation component is 
a new challenge to bring additional improvement in the forecasting of high-
impact weather. 
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1.  Introduction 

Atmospheric data assimilation consists in combining information coming 
from a forecast model together with available observations. It is usually 
performed in a sequential way, with a time series of “assimilation cycles” 
including a model integration and a correction due to observations.  As a 
new set of observations becomes available every six or twelve hours, a 
short-range forecast (so-called “background”) is updated with the new set of 
data into a new “analysis” of the atmosphere. This analysis is then 
propagated in time with the forecast model to provide a new background 
field for the next “assimilation cycle”. This series of steps in the data 
assimilation process shows that the atmospheric model is the basic 
ingredient which allows time continuity in our evaluation of the atmospheric 
flow. It also means that the observations are the crucial elements allowing to 
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constantly re-adjust the model trajectory to produce a reasonable estimate of 
the true atmospheric state. From these analyses of the atmosphere, the model 
is run daily up to a few days to produce the forecast products which will 
guide the forecasters in their prediction of the weather. At the beginning of 
the 80’s, data assimilation was a minor sub-discipline of numerical weather 
prediction, where the emphasis was mainly on the forecasting model itself. 
Simple correction methods were used to update the forecast such as nudging 
and linear optimal interpolation. Over the last two decades or so, this subject 
has expanded into quite a mature and motivating area of research and 
applications, with in particular the advent of variational methods. Such 
major scientific advances, combined with a large increase in available 
observations, has brought data assimilation to the forefront of operational 
weather forecasting. Its use is also spreading to climate applications through 
re-analyses and oceanography/chemistry applications. The experience 
gained in data assimilation in meteorology can be shared with scientists 
interested in other areas, such as oceanography. This paper will mainly 
address the issue of the importance of data in the assimilation process, in the 
context of global atmospheric modelling.  

Firstly, the impact of observations on the forecast performance will be 
illustrated through the 40-year reanalysis performed at ECMWF (European 
Centre for Medium-range Weather Forecasts). Secondly, tools will be 
described which can help to perform an optimal use of observations, through  
data selection and error tuning. Finally, current developments towards an 
adaptive system will be described in the context of the THORPEX 
programme. 

2. Impact of observations on forecast performance  

Operational data used at Numerical Weather Prediction (NWP) centres 
are consisting of various data types provided by the global observing system.  
The backbone of this system is formed by surface observations from land 
and ship stations, and vertical soundings from radiosonde and pilot balloons. 
From the 1970s, other data types emerged such as drifting buoys, aircraft 
measurements, wind profilers, satellite radiances, satellite cloud-drift winds 
and scatterometers. On the one hand, observations such as land stations and 
radiosonde observations have been providing a stable source of information 
throughout the years, but their horizontal distribution is far from being 
homogeneous. On the other hand, satellite observations are blooming and 
becoming a major and horizontally homogeneous source of information in 
current systems. How did this increase in available observations translate 
into analysis and forecast quality? As a partial answer to this question, an 
illustration of the impact of observations is now provided in the context of 
the ERA-40 project (www.ecmwf.int/research/era). As summarized in 
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Simmons (2003), a re-analysis was conducted from September 1957 to 
August 2002 based on cycle 23r4 of ECMWF forecasting system operational 
from June 2001 to January 2002. It uses six-hourly variational analysis, a 
degraded version of the operational analysis scheme.   The T159 horizontal 
resolution (~125km grid) is coarser than current operations which uses T511 
(~39km grid). This re-analysis can then be seen as a cheaper version of the 
current ECMWF operational system. Figures 1 and 2 show anomaly 
correlations of 12UTC 500hPa height forecasts as a function of forecast 
range for the extratropical northern hemisphere (Figure 1) and for a smaller 
region encompassing Australia and New Zealand (Figure 2). These anomaly 
correlation scores quantify the quality of the forecasts, 100% being the 
maximum score and 60% the score below which the forecast is not generally 
considered useful. Results are shown for many of the ERA-40 years, verified 
against corresponding ERA-40 analyses, denoted by the colour scale shown 
in legend and for ECMWF operations (verified against the corresponding 
operational analyses, labelled Ops) for the calendar years of 1980 and 2001 
and for the year ending 31 August 2003. 
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Figure 1. Anomaly correlations of 500hPa height forecasts over the Northern Hemisphere. 
From Simmons (2003). 

 
These figures provide some evidence of the general improvement of the 

analyses over time, with interannual variations in predictability. The 
northern hemisphere results in Figure 1 show that whilst the observing 
system for medium-range prediction has improved over the years, a greater 
improvement in forecasts has been derived from the improvements in data 
assimilation and forecast models achieved since 1980. This can be seen by 
comparing the improvement in the coloured solid lines (same system, 
improvement entirely due to global observing system) and the larger 
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improvement in the dashed lines (both changes in the observations and in the 
NWP system). A different picture is seen for the southern hemisphere, where 
forecast performance is mainly driven by satellite data (Bouttier and Kelly, 
2001). The area chosen for the score calculation in Figure 2 includes 
Australia and New Zealand where observational coverage is sufficient for 
some reliance to be placed on the quality of the verifying analyses 
throughout the period. Forecast quality is poor in the 1950s and 1960s. A 
dramatic jump in forecast quality occurs at the end of 1978 when the 
observing system was improved considerably with the introduction of 
radiances from the TOVS instruments and the addition of winds from 
geostationary satellites and many more data from drifting buoys and 
commercial aircraft. Observing-system improvements beyond 1979 have had 
larger impact on southern- than northern-hemisphere forecast accuracy, 
bringing forecast skill levels closer. In any case, observing system 
improvements have had a major impact on the forecast scores globally. 
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Figure 2. Anomaly correlations of 500hPa height for
From Simmons (2003). 
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integrated over a layer of the atmosphere. A set of a few of these 
measurements thus describes broad vertical structures in temperature and 
humidity.  Data assimilation in some way or another converts these radiance 
measurements in temperature/moisture profiles. Different possibilities exist 
to process this information. One can use externally generated retrievals 
(profiles deduced from a set of radiances through regression typically), 
interactive retrievals using in-house information about short-range forecasts 
(e. g. 1D-Var retrievals), or the direct use of radiances (e.g. 3D-Var or 4D-
Var).  In NWP at least, the direct assimilation of satellite raw radiances has 
progressively replaced the assimilation of retrievals (Thépaut, 2003). This 
has been made possible because 3D and 4D-Var allow for some (weak) non 
linearities in the observation operator, and radiances are non-linearly linked 
with the atmospheric profiles. Retrievals always need prior background 
information, which either comes from independent statistics or from the 
short-range forecast. The direct assimilation of radiances has the advantage 
to avoid the contamination by such an external background information for 
which error characteristics are poorly known. Another advantage of global 
variational methods is that increments brought by satellite radiances are 
further constrained by many other observations/information. Finally, raw 
radiance observations exhibit less spatially correlated errors than processed 
retrieved information. In current data assimilation schemes, this allows to 
use observations with more spatial density, a subject which will be discussed 
further in the next section. Of course this use of raw data comes at the cost 
of developing the observation operator and the quality control appropriate 
for each observation for each data assimilation system in each NWP centre, 
but some of this effort is collaborative through EUMETSAT facilities for 
instance. 

 Zooming now on the period covering the most recent years, Figure 3 
shows the number of data used in the ECMWF analysis between 1997 and 
2003. This illustrates the tremendous increase in terms of observation 
numbers which took place lately, and most of this progression in data 
numbers comes from non-conventional asynoptic observations.  

Such observation numbers have a significant impact, especially in an 
advanced data assimilation scheme such as 4D-Var which has been used 
since 1997 (Rabier et al, 2000). 4D-Var stands for Four-Dimensional 
Variational Data assimilation and it performs a global optimization of the 
model trajectory over a period of 6 to 12 hours typically. It performs an 
adjustment  of the model trajectory with the observations taken explicitly at 
the precise time of the observation, thus allowing for a consistent use of data 
spread in time throughout the optimization period, such as satellite 
observations. In the linear approximation, 4D-Var is equivalent to a Kalman 
smoother: at any time in the assimilation window, information from past and 
future observations within this window will be taken into account to provide 
the best estimate of the flow (Rabier and Liu, 2003). It can also use the time-
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tendency between various observations to adjust the model, which is 
particularly beneficial in the case of rapidly-developing weather systems 
(Järvinen et al, 1999). It is then particularly suited to the use of a large 
number of observations spread in time. 
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Figure 3. Number of observational data used in the ECMWF assimilation system, in millions. 
From Thépaut (2003). 

 
What should be kept in mind after this introductory presentation is that 

data assimilation techniques now allow to make full use of observations, and 
in particular satellite measurements. These have become a major source of 
information in NWP systems, and their increase in number and quality is 
currently booming. It is then the right time to investigate their use in the 
view of optimally extracting the information contained in these data. 

3. Optimal use of observations   

3.1 Optimal resolution of observations 

As already seen in the previous paragraph, the performance of current 
NWP systems benefits to a large extent from the increasing amount of 
globally available remotely-sensed observations used together with 
conventional observations to generate initial conditions for forecasts. Some 
of these data have fine horizontal resolution. The observation spacing can be 
smaller than the analysis grid of global NWP models. Not all of these 
observations are used in data assimilation systems because of various 
considerations. Firstly, current computing and storage power limits the use 
of all observations. Secondly, the errors affecting these observations may be 
horizontally correlated (instrument errors and/or representativeness errors); 
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current assimilation systems do not generally consider this correlation in the 
modelling of the observation-error covariance, because of a lack of accurate 
information on the correlation statistics and the technical difficulty of 
implementation. Alternatively, most NWP centres tend to use sub-optimal 
schemes for which the observation-error covariance matrix is designed to be 
diagonal. At the same time, horizontal thinning of remotely sensed 
observations is performed in order to reduce their effective error correlation.  

Liu and Rabier (2002) have used a simple one-dimensional context to 
evaluate the optimal resolution of the observations leading to the best 
analysis. The framework is a 1D circle of  a length of 8000km, with a grid-
size of 100km. Background and observation errors have the same standard-
deviation equal to 1 (arbitrary value).The background error correlation 
length-scale is taken equal to 200km. The analysis error covariance matrix is 
calculated for various observation spacings. Various scenarios were tested: 
uncorrelated observation errors and correlated observation errors with a 
correlation length of 100km. In the case of correlated observation errors, two 
analysis schemes were tested: the optimal one taking into account the proper 
observation error covariance matrix and a sub-optimal one neglecting the 
observation error correlations (similar to operational practice). Figure 4 
shows the analysis error variance resulting from these combinations of 
observation density/observation correlation/analysis scheme. The main 
results are that, for uncorrelated observation errors, increasing the density 
always improves the analysis (dash-dotted line). This is the case even when 
the observation density is finer than the background error correlation length-
scale and the analysis mesh. For correlated observation errors, increasing the 
observation  density beyond a threshold can be harmful in a sub-optimal 
scheme for which no correlations are included in the observation error 
covariance matrix, as in current systems (dashed line). These results have 
been confirmed by a further study in a more realistic 4D context (Liu and 
Rabier, 2003) and might explain some of the results found in practical NWP 
experience. 

It is also found that an optimal thinning of the dataset can extract most of 
the information contained in the data, and this approach is the pragmatic one 
used in most centres. The “optimal” observation density is usually found by 
trial and error. Another ad-hoc approach is to use most of the observations 
but to inflate artificially their errors to compensate for their correlations.  
More general solutions would of course be preferable. In particular, instead 
of performing a thinning of the observations, one might prefer to perform an 
averaging of neighbouring observations. The best theoretical framework 
might well be to model the correlations in the long term, if feasible. 
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Figure 4. Analysis error standard-deviation as a function of the observation interval in a 
simple one-dimensional framework. The black dash-dotted  line corresponds to uncorrelated 
observation errors. The solid red line corresponds to correlated observation errors, fully 
accounted for in the analysis. The dashed blue line corresponds to correlated observation 
errors, not accounted for in the analysis. From Liu and Rabier (2002). 

3.2 Advanced diagnostics 

Apart from the density issues explained in the previous section, another 
important question might arise in the use of observations, such as: what is 
the actual information content of the data? A simple data count might be 
misleading as not all observations are equal in what they measure and with 
what accuracy. In the perspective to diagnose the impact of observations on 
the data assimilation, some diagnostics were developed which are presented 
here.  

Firstly, let us recall the equations relevant for statistical estimation, from 
the point of view of least squares. Let us assume that observations y are 
available, with a known observation operator H linking them to the 
atmospheric state vector x 

 
y = Hx + εr                    (1) 

 
together with a background vector (which usually comes from a short range 
forecast) 
 

xb = x + εb 
.  

                  (2) 
 

The least-squares method for estimating the analysed state xa is to minimize 
the cost-function 
 

J(x)=1/2 (x-xb)TB-1(x-xb) + 1/2 (y-Hx) TR-1(y-Hx)      (3) 
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where B is the covariance matrix of the background error εb and R the 
covariance matrix of the observation error εr which includes the instrument 
error and the representativeness error. 
 
The solution in this linear case is given by 
 

xa = xb+K(y-Hxb)            (4) 
 
with the gain matrix K 
 

K=BHT(HBHT + R)-1
. 
        (5) 

 
The corresponding analysis error is given by 
 

εa = (I-KH) εb + Kεr .         (6) 
 

The analysis error covariance is  
 

A=(I-KH)B=(B-1+HTR-1H)-1 
. 
       (7) 

 
This is the Optimal least-square estimator, which leads to the minimum 
variance for the analysis error, or BLUE= Best Linear Unbiased Estimator. 
If all errors are Gaussian, then it is also the maximum likelihood estimate. 

When one wants to evaluate the gain brought by the observations, a pure 
data count can be misleading. If practically feasible, the computation of the 
analysis error covariance A and its comparison with the background error 
covariance matrix B will indicate how much benefit was brought by the 
observations, in terms of decreasing the error covariance of the estimation of 
the atmospheric state. Another approach is to compute the sensitivity of the 
analysis with respect to the observations. This leads to estimating the 
information content of data types. For example, one can compute the DFS = 
Degrees of Freedom for Signal  (Rodgers, 2000) 

 
DFS= Tr(KH)          (8) 

 
where the trace of the matrix KH quantifies the gain in information brought 
by the observations. As shown by 
 

Hxa= (I-HK) Hxb + HKy        (9) 
 
The HK matrix quantifies the sensitivity of the analysis to the 

observations 
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∂ Hxa=(HK)y   
T  .        (10) 

DFS=Tr(∂yHxa)=Tr(HK) characterizes how the assimilation system uses 
the observations to pull the signal from the background. In the  optimal case 
(i.e K = K true ),  this is also the relative reduction of variance (Tr (KH)=Tr 
((B-A)*B-1) = Tr(I-AB-1)). It is only an upper bound in non-optimal cases. It 
indicates  what the system does. One would need other information to give 
insight about what should be done to get the best analysis.  

How to estimate Tr (HK) ? This is not straightforward for large-
dimension systems where the matrices are often implicitly known and not 
explicitly computed. Cardinali et al (2003, 2005) compute an estimate using 
the singular vectors of the hessian of the cost function provided by the 
Lanczos/Conjugate gradient minimizer. Another method was introduced in 
Desroziers and Ivanov (2001) and  is used in Chapnik et al (2005), based on 
Girard (1987) for the evaluation of the trace of a matrix only known as an 
operator. Let us present the basis of this method, which is relatively easy to 
implement.  

Let us consider a vector ε following a normal (Gaussian) distribution 
with mean  0 and covariance matrix the identity I. Girard (1987) proposed to 
use the following mathematical identity in order to evaluate the trace of a 
matrix A only known as an operator 

  
E(εTAε)= Tr(A).         (11) 
 
The evaluation of the trace of KH, or equivalently the trace of HK can be 

perfomed based on this equation. The basic idea is to produce two analyses, 
one being deduced from the other by perturbing the observations. The 
difference between these two analyses will then be equal to the operator K 
applied to the perturbation, and applying H to this difference of analyses will 
give access to the HK operator needed.  This method, as presented in 
Chapnik et al (2005)  involves several steps 

 
1. Perform a normal analysis from the information (xb,y) producing the 

analysis vector xa 
2. Perform a perturbed analysis from the information (xb,y*) with 

perturbed observations y*=y+R1/2ε  leading to xa*. One notes that xa*- xa = 
K(y* - y). 

3. Then (y*- y)TR-1H(xa*-xa) provides an approximation to Tr(HK). 
 
 If the number of observations is large, one sequence of such steps might 

be enough to get a reasonable estimation of the trace. Otherwise, one can use 
several realizations of the analysis, and concatenate the results. 
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Figure 5. Information Content. Partition by observation type for the ECMWF system. Synop= 
surface observations, Dribu=drifting buoys, Airep=aircraft obs, Satob=winds from 
geostationary images, Temp=radiosonde obs, Pilot=wind profiler, QuikSCAT=scatterometer, 
Amsu-A +Amsu-B +AIRS +HIRS +SSM/I +Goes +Meteo =satellite radiances, Ozone=ozone 
information. From Cardinali et al (2003). 
 

For non-linear cases, H(xa*)-H(xa)= (∂y H(xa)) (y*-y). Therefore,(y*- 
y)TR-1(H(xa*)-H(xa)) gives an approximation of Tr(∂y H(xa)).This shows 
that this method allows the computation of DFS like quantities even for non-
linear schemes.  

An example of the use of the DFS as a diagnostic is shown in Figure 5. 
The partition by observation types allows to diagnose which observing 
system is pulling the analysis more or less than  the other types. It can be 
seen that globally, the satellite observations have become a dominant source 
of information. 

3.3 Observation error estimation 

Apart from its use in pure diagnostic mode, it is possible to use DFS 
related quantities to improve specified covariance matrices.  Following 
Desroziers and Ivanov (2001) and Chapnik et al (2004), suppose one can 
write the “true” perfect covariance matrices as a function of the ones actually 
used in the analysis 

 
Btrue= sb B         (12) 
Rtrue=so R        (13) 

 
so and sb being tuning coefficients. If 
  

J(x)=1/2 (x-xb)TB-1(x-xb) + 1/2 (y-Hx) TR-1(y-Hx)= Jb +Jo   (14) 
 

is the cost function used in the sub-optimal  system, with Jb the first term on 
the right-hand side and Jo the second term on the right-hand side, then 
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Jtrue(x)= Jb/sb +  Jo/so       (15) 

 
is the cost function using « true » matrices.  
Let xa be the minimizer of this cost function, then, following Talagrand 
(1999) 
 

E(2Jo(xa)/so)=Tr (I –HK)      (16) 
E(2Jb(xa)/sb)=Tr (KH)      (17) 

 
yielding the following condition for the tuning coefficients 
 

so= 2Jo(xa)/ Tr (I –HK)       (18) 
sb= 2Jb(xa)/ Tr (KH)       (19) 
As K depends on so and sb, this is a fixed-point relation, and a fixed point 

algorithm can be used to estimate the tuning coefficients. The denominator 
of those expressions can be computed using Girard’s method, which is also 
used to compute the DFS. 
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Figure 6. Observation errors, specified in the data assimilation system (dashed bars) and 
estimated by the optimisation method, for several channels of the AMSU-A instrument on 
board 3 NOAA satellites of the ATOVS series (coloured bars). From Chapnik et al (2005). 

 
An example of the tuning of the error standard-deviations for satellite 

radiances of the ATOVS series is shown in Figure 6. One can see that the 
errors are generally over-estimated in the operational French global NWP 
model, and that the method can pick up small differences between the 
various satellites (which have been confirmed by the individual monitoring 
of the data). This type of information can be very valuable for a real-size 
NWP system, for which there are too many parameters to allow to perform a 
fine tuning on each by trial and error methods. 
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3.4 Channel selection for satellite sounders   

Another optimisation of the use of observations can be the selection of 
the most valuable subset of data, if some of the global observing systems are 
providing too many pieces of information for the data processing 
capabilities. In particular, advanced infrared sounders provide thousands of 
radiance data at every observation location. The first instrument with kilo-
channel data is the Atmospheric InfraRed Sounder (AIRS) on the Aqua 
satellite launched by the National Aeronautics and Space Administration 
(NASA) in 2002. On the European side, the French space agency Centre 
National d’Etudes Spatiales (CNES) and the European Meteorological 
Satellite organization (EUMETSAT) have developed the Infrared 
Atmospheric Sounding Interferometer (IASI) to be launched at the end 2005. 
For operational NWP systems, these data will provide temperature and 
humidity information with a fine vertical resolution. The number of 
individual pieces of information is not usable in an operational NWP 
context, and several possibilities are being investigated to choose an 
“optimal” subset of data. This would allow to extract the maximum 
information content from hyperspectral sounders, with a reduced number of 
individual data. Solutions proposed to solve this problem include the 
selection of relevant limited spectral bands (Aires et al, 2002), the grouping 
of highly correlated channels in the same spectral area into super-channels, 
the use of a partial eigen-decomposition of the radiance data (Joiner and Da 
Silva, 1998), and the selection of individual channels based on objective 
criteria (Rodgers, 1996).  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Location of 300 channels (black lines) selected by an iterative procedure based on 
information content  for the retrieval of temperature and humidity for a IASI spectrum (red 
line). From Rabier et al (2002). 

 
An example of such a channel selection procedure is presented in Rabier 

et al. (2002). The selection of individual channels is performed for simulated 
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IASI spectra (8461 radiance data). The procedure is iterative, based on 
Rodgers, (1996). At each step, one channel is picked. It is the most 
informative channel among those which have not been previously selected. 
The analysis error covariance matrix is then updated before proceeding to 
the next channel selection step. The choice of channels is based on 
information content with respect to the background or current analysis 
information.  The selection criterion is the entropy reduction ER=-1/2 
log2det(AB-1) or the DFS= Tr (I- AB-1).  At each step, one optimises ER=-
1/2 log2det(Ai+1 Ai

-1) or the DFS= Tr (I- Ai+1 Ai
-1) with Ai the analysis error 

covariance when using the first i selected channels, and Ai+1 the analysis 
error covariance when using the first i+1 selected channels. Figure 7 shows 
the location of the “optimal” 300 channels selected for the retrieval of 
temperature and humidity information for a typical IASI spectrum. This type 
of work illustrates the benefit of using information content diagnostics for 
the benefit of the optimisation of data assimilation, through data selection. 

4. Towards an adaptive system  

Despite the notable increase in forecast skill over the past quarter-
century, there is a necessity for further improvements, particularly in high-
impact weather defined by their effect on society and the economy. The 
international programme THORPEX is a response to the challenge of 
improving the skill of high-impact weather forecasts. Its mission Statement 
is “Accelerating improvements in the accuracy of high-impact 1-14 day 
weather forecasts for the benefit of society and the economy”. Information 
on this programme, and in particular the science plan,  can be found on the 
World Meteorological Organisation web page (www.wmo.int).  Research 
objectives are developed under four Sub-programmes:  Predictability and 
Dynamical Processes, Observing Systems,  Data Assimilation and 
Observing-Strategies, Societal and Economic Impacts. Among the  core 
objectives, THORPEX plans to Contribute to the design and demonstration 
of interactive forecast systems which include the new concept of “targeted 
observations” and to perform THORPEX Observing-System Tests (TOSTs) 
and Regional field Campaigns (TReCs) to test and evaluate experimental 
remote-sensing and in-situ observing systems, and when feasible, 
demonstrate their impact on weather forecasts. 

  What is Targeting? In the last decade, strategies were developed that 
identify locations where additional observations would provide maximal 
improvements in the expected skill of forecasts.  Targeting strategies are 
based on techniques that predict, prior to the actual measurements, the 
influence of an observation (or set of observations) on the uncertainty of a 
subsequent forecast. Different targeting techniques have been developed: 
some involve the adjoint of the linearized version of the forecast model or of 
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the assimilation scheme, others manipulate ensembles of forecasts. This 
concept is currently operational in the US and is called the Winter Storm 
Reconnaissance Program. The National Centers for Environmental 
Prediction uses the dispersion of the ensemble of forecasts run routinely and 
a set of pre-defined flight plans to evaluate which of the flight scenario 
would bring the maximum reduction in the dispersion of the forecasts. This 
flight scenario leads to a designated aircraft flying in the area and dropping 
dropsondes at regular intervals to provide additional observations.  
Majumdar et al (2002) provide a detailed comparison of various targeting 
techniques. 

Apart from being used for selecting additional observations, targeting 
observing systems can be extended to other applications such as controlling 
the sampling rate of satellite sensors or the timing and location of mobile 
upper-air soundings. Targeting can also be used to determine which 
observations are to be discarded, i.e., to conduct effective thinning of the 
observations.  This capability will become increasingly important, given the 
very large numbers of observations that will be available from next-
generation satellites. Among the tools which can be useful for targeting, 
being able to quantify the impact of any observation on the analysis and the 
subsequent forecast is crucial. Such a tool has been developed in particular 
using the adjoint of the various operations involved (analysis step and model 
forecast) by Baker and Daley (2000) and Doerenbecher and Bergot 
(2001).This sensitivity to observations is illustrated in Figure 8. The 
“forward” step consists in the analysis represented by the Kalman gain 
matrix K and the forecast model M. From the background xb and the 
observations y, it creates the analysis xa and the subsequent forecast xf. The 
“adjoint” step consists in the adjoint of the forecast model MT followed by 
the adjoint of the analysis process KT. It allows to compute the sensitivity of 
any aspect of the forecast with respect to the observations and/or the 
background. 

This sort of tools initially developed mainly for targeting can also allow 
to compute the sensitivity of the analysis or forecast to various satellite 
sounder channels (eg Fourrié et al ,2002) and can also be used to select 
channels in an adaptive manner (Fourrié and Rabier, 2004). 

Beyond these targeting issues, NWP is also expected to progress (within 
THORPEX and also independently) in flow-dependent specification of 
various parameters used in assimilation. The major of these parameters is the 
background error covariance matrix B, where a lot of work is ongoing to 
incorporate more flow-dependence in the statistics through 4D-Var or 
ensemble methods mainly. The link to the observations is then the 
estimation of background errors in observation space (HBHT) to perform 
first-guess check (Andersson et al, 2000). There are also interesting 
developments in the context  of flow-dependent tolerances for outlier 
observations  for an adaptive buddy check (Dee et al, 2001). 
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Figure 8: Schematic representation of the analysis and forecast steps K and M leading to the 
forecast  and of its adjoints MT and KT leading to sensitivity computations. 

5. Conclusion 

In conclusion, there is ample evidence of the major improvements made 
in the last ten years or so in the context of Numerical Weather Prediction, 
and in particular in data assimilation. This can be seen in particular in the 
context of re-analyses programmes such a ERA-40, which highlight 
improvements coming from the increase in quantity and quality of data, 
mainly satellite observations, throughout the years. Satellite data are 
currently very successfully exploited by new data assimilation schemes (data 
assimilation schemes are now such that introducing additional well 
characterised satellite data generally improves the system). Variational 
methods have permitted to use such data in an innovative way, assimilating 
radiances directly in 3D/4D-Var, rather than using retrievals of temperature 
and humidity profiles obtained from the data. Furthermore, the proper 
inclusion of the time dimension in the assimilation period obtained in 4D-
Var guarantees a near-optimal treatment of data which are not centred 
around the main synoptic times (0, 6, 12 and  18 UTC). In the future, the 
combined availability of new accurate satellite observations and 
improvement of models will allow an improved extraction of information 
content from these new data. In particular, observations related to the water 
cycle (clouds, rain…) will pose a great challenge to data assimilation. In 
general, the system can only cope with a small fraction of all available 
observations, and efficient tools have been built to evaluate observation 
impact.  One of these tools is the Degrees of Freedom for Signal (DFS) 
quantity, which measures the sensitivity of the analysis with respect to 
observations. It can be used to investigate this sensitivity globally, data type 
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per data type, of by geographical areas, or even by parameters (Temperature, 
humidity, wind…). Such a diagnostic can also be used to perform optimal 
observation selection  and error tuning. Looking forward to the future, we 
are now in a position to further optimise the use of observations, including 
more flow-dependency and a more interactive forecast system through the 
WMO programme THORPEX. The basic idea beyond this programme is to 
use the forecast system itself to predict where and when additional 
observations or a better treatment of planned observations would bring a 
major improvement in the forecasting of high-impact weather likely to have 
a high economic and societal impact. The NWP community has achieved a 
major improvement in average forecast scores in the last decade and is now 
mature enough to concentrate some of its efforts on the challenge of 
improving the forecast of rare events such as storms and floods. 

Acknowledgements 

This paper has benefited from contributions from Zhiquan Liu (Chinese 
Meteorological Administration), Nadia Fourrié (CNRS), Bernard Chapnik 
(CNRM), Adrian Simmons, Jean-Noël Thépaut and Carla Cardinali 
(ECMWF). Students and Gérald Desroziers (CNRM) are acknowledged for 
their review of the manuscript. 

References  

Aires, F., A. Chédin and N. A. Scott, 2002: A regularized neural net approach for retrieval of 
atmospheric and surface temperature with the IASI instrument. J. Appl. Meteorol, 41, pp 
144-159. 

Andersson, E., M. Fisher, R. Munro and A. McNally, 2000: Diagnosis of background errors 
for radiances and other observable quantities in a variational data assimilation scheme, and 
the explanation of a case of poor convergence. Quart. J. Roy. Meteor. Soc.,  126, pp 1455-
1472. 

Baker, N. L, and Daley, R., 2000: Observation and background adjoint sensitivity in the 
adaptive observation targeting problem. Q. J. R. Meteor. Soc., 126, 1431-1454. 

Bouttier, F. and G. Kelly, 2001: Observing-system experiments in the ECMWF 4D-Var data 
assimilation system. Quart. J. Roy. Meteor. Soc.,  127, pp 1469-1488. 

Cardinali, C., S. Pezzulli and E. Andersson, 2003: Influence matrix diagnostic of a data 
assimilation system. ECMWF Seminar on Recent developments in data assimilation for 
atmosphere and ocean.  

Cardinali, C., S. Pezzulli and E. Andersson, 2005: Influence matrix diagnostic of a data 
assimilation system. Quart. J. Roy. Meteor. Soc.,  to appear. 

Chapnik, B., G. Desroziers, F.Rabier, and O.Talagrand. 2004: Properties and first applications 
of an error statistic tuning method in variationnal assimilation. Quart. J. Roy. Meteor. Soc. 
130, pp 2253-2276. 

Chapnik, B., G. Desroziers, F.Rabier and O.Talagrand. 2005: Diagnosis and tuning of 
observational error statistics in a quasi operational data assimilation setting. Quart. J. Roy. 
Meteor. Soc. Accepted for publication. 

Dee, D., L. Rukhovets, R. Todling, A. Da Silva and J. Larson, 2001: An adaptive buddy 
check for observational quality control. Quart. J. Roy. Meteor. Soc., 127, pp 2451-2471. 



360                                        FLORENCE RABIER 

Desroziers, G. and S. Ivanov. 2001, Diagnosis and adaptive tuning of information error 
parameters in a variational assimilation. Quart. J. Roy. Meteor. Soc., 127, 1433-1452.  

Doerenbecher A. and Bergot T., 2001: Sensitivity to observations applied to FASTEX cases. 
Non-linear Processes in Geophysics, 8(6), 467-481. 

Fourrié, N., A. Doerenbecher, T. Bergot and A. Joly, 2002: Adjoint sensitivity of the forecast 
to TOVS observations. Quart. J. Roy. Meteor. Soc., 128, 2759-2777 

Fourrié, N. and F. Rabier, 2004: Cloud characteristics and channel selection for IASI 
radiances in meteorologically sensitive areas. Quart. J. Roy. Meteor. Soc., 130, 1839-
1856. 

Girard. D., 1987: A fast Monte Carlo cross-validation procedure for large leastsquares 
problems with noisy data. Technical Report 687-M,IMAG, Grenoble, France.  

Järvinen, H., E. Andersson and F. Bouttier, 1999: Variational assimilation of time sequences 
of surface observations with serially correlated errors. Tellus, 51A, 469-488. 

Joiner, J. and A. M. da Silva, 1998: Efficient methods to assimilate remotely sensed data 
based on information content. Quart. J. Roy. Meteor. Soc., 124, 1669-1694. 

Liu,Z. and F. Rabier, 2002: The interaction between model resolution and observation 
resolution and density in data assimilation. Quart. J. Roy. Meteor. Soc.,  128, 1367-1386 

Liu, Z. and F. Rabier, 2003: The potential of high-density observations for numerical weather 
prediction: A study with simulated observations. Quart. J. Roy. Meteor. Soc.,  129, 3013-
3035. 

Majumdar,S.J, C.H. Bishop, R. Buizza and R. Gelaro, 2002: A comparison of ensemble-
transform Kalman-filter targeting guidance with ECMWF and NRL total energy singular 
vector guidance. Quart. J. Roy. Meteor. Soc.,  128, 2527. 

Rabier, F., H. Jarvinen, E. Klinker, J-F. Mahfouf and A. Simmons, 2000: The ECMWF 
operational implementation of four-dimensional variational assimilation. Part I: 
experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143-1170. 

Rabier, F., N. Fourrié, D. Chafaï, and P. Prunet, 2002: Channel selection methods for infrared 
atmospheric sounding interferometer radiances. Quart. J. Roy. Meteor. Soc., 128, 1011-
1027. 

Rabier,F. and Z. Liu, 2003: Variational Data Assimilation: Theory and Overview. ECMWF 
Seminar on Recent developments in data assimilation for atmosphere and ocean. 

Rodgers, C. D., 1996: Information content and optimisation of high spectral resolution 
measurements. Optical Spectroscopic Techniques and Instrumentation for Atmospheric 
and Space Research II, SPIE Volume 2830, 136-147. 

Rodgers, C. D., 2000: Inverse methods for atmospheres: Theory and practice. World 
Scientific Publishers, Singapore.  

Simmons, A., 2003: Observations, assimilation and the improvement of global weather 
prediction- Some results from operational forecasting and ERA-40. ECMWF Seminar on 
Recent developments in data assimilation for atmosphere and ocean. 

Talagrand., O., 1999: A posteriori verification of analysis and assimilation algorithms.  
In Proceedings of the ECMWF Workshop on Diagnosis of  Data Assimilation Systems, 24 
November pages 17--28, Reading.  

Thépaut, J-N., 2003: Satellite data assimilation in Numerical Weather Prediction: an 
overview. ECMWF Seminar on Recent developments in data assimilation for atmosphere 
and ocean. 

THORPEX International Science Plan: Mel Shapiro and Alan Thorpe (THORPEX Web site 
http://www.wmo.int) 
 


