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Abstract Physics actually represented in an ocean model depend on each model’s
resolution and its parameterization of subgridscale effects. This chap-
ter is a review of parameterizations used in ocean models, focussing
on operational ocean forecasting systems for the North Atlantic and
Mediterranean Sea. This review is limited to z-coordinate models. A
detailed presentation of the physics underlying each parameterization is
out of the scope of this short chapter, but we try to discuss some uncer-
tainties of the physical basis of current parameterizations. The concept
of subgrid scale effects and some interesting properties of the diffu-
sion equation are presented first. Because ocean turbulence is strongly
anisotropic, parameterization in the vertical and horizontal (or isopyc-
nal) directions differ and are presented separately. Special sections are
devoted to bottom boundary layers, flow topography interactions, and
the dynamical effects of mesoscale eddies.

Keywords: Parameterizations, ocean modelling, numerical models, subgrid scale
physics, diffusion, viscosity.

A simplistic view of the surface ocean circulation is often found in
geographical maps, with arrows displaying the direction and location
of the main surface currents. Those are the large scale, wind driven
currents which Sverdrup and Stommel, among others pioneers, have tried
to understand. The first models of the wind-forced ocean circulation that
they built were two-dimensional, used the simplified quasi-geostrophic
equations, and the western boundary currents were viscous boundary
layers.

This linear, viscous ocean is still what is represented in most climate
models today. The sea surface height distribution in the South Atlantic
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Figure 1. Sea surface height (ssh) in the south Atlantic in the global ORCA2 model
(G. Madec). The ssh is averaged over one year, at the end of a 100 year experiment.
Contour interval is 0.1 m, the zero contour is indicated in dark.

from the global 2◦ model ORCA2 (Fig. 1) is completely in agreement
with the image of the ocean conveyed by simplified maps. Of course, the
climate models are three dimensional, so that they are able to represent
the global overturning circulation. In fact, the latter is often represented
by a diagram of the “conveyor belt”, similar to the sketchy geographical
maps of surface currents.

Observations show that the real ocean is turbulent over a wide spec-
trum of spatial and temporal scales, and non-viscous. Today high reso-
lution models begin to represent realistically the ocean we observe, and
provide pictures in stark contrast with Fig. 1. One example is the POP
1/10◦ global model represented in Fig. 2 (Maltrud and McClean, 2004).

ORCA2 and POP 1/10 are so different that one may argue they do
not represent the same ocean. A similar contrast exists between the
ATL1 and ATL6 models of the CLIPPER group (Treguier et al., 2001).
ATL1 and ATL6 are Atlantic models with 1◦ and 1/6◦ spatial resolution,
respectively. Fig. 3 represents float trajectories during 5 years in the
deep western boundary current of the South Atlantic, at 1800m. The
coarse resolution ATL1 model depicts a sluggish western boundary cur-
rent, with a well-defined southward velocity. Most of the floats reach
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Figure 2. Sea surface height (ssh) in the south Atlantic in the global POP 1/10◦

model. The ssh is averaged over one year (fifth year of the experiment). Contour
interval is 0.1 m, the zero contour is indicated in dark.

30◦S after 5 years. In the ATL6 model, some trajectories go north in-
stead of south because the western boundary current at that latitude
often breaks down in a series of eddies (this has recently been observed
by Dengler et al. (2004). Only one ATL6 float goes farther south than
30◦S, but it gets there faster than the ATL1 floats, and many ATL6
floats escape into the interior of the ocean: this behavior is illustrative
of chaotic mixing. The flow of the deep water in models like ATL1
is consistent with our simplified picture of the “conveyor belt”; high
resolution models like ATL6 provide a picture much more difficult to
interpret. They are closer to the real ocean, and yet too far from it
to give us confidence in quantitative estimates. For example, the eddy
kinetic energy at 2400m near 34◦W, 22◦S is 7.1 cm2s−2 in ATL6 while
a value of 62.1 cm2s−2 has been measured there (Treguier et al., 2001).
Underestimation of eddy kinetic energy at depths is very common in
ocean models (Penduff et al., 2002).

It is important to realize that ATL1 and ATL6 are the same model,
from the numerical and computational point of view. Both solve the
same primitive equations, with the same code (OPA8.1, Madec et al.
1998). However, they are not models of the “same ocean”, because they
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Figure 3. Trajectories of 15 numerical floats seeded at 1800 m, at 13◦S every 1/4◦

from 37.75◦W to 34.25◦W. The trajectories are integrated during 5 years in the ATL1
1◦ model.

do not use the same parameterizations. In choosing the resolved spatial
and temporal scale, and the parameterizations of the subgrid scales, the
modeller effectively chooses the ocean he (or she) wishes to model. The
present chapter discusses these choices.

When setting up an ocean model configuration, we have to ask our-
selves which parameterizations are the most suitable, which coefficients
to use for those parameterizations, and how changes in those coefficients
would affect our solutions. We can answer surprisingly few of those
questions for realistic ocean models, due to the complex interaction be-
tween different parameterizations (not to mention the interplay between
physical parameterizations and numerical schemes). This is especially
true for eddy permitting models for which extensive parameterization
studies are not yet feasible due to the computational cost and the long
time scales involved.

This chapter includes a discussion of sub-grid scale effects and gen-
eral properties of the diffusion equation (part 2), and a discussion about
parameterizations used in ocean models (parts 3 to 6). The parame-
terization issue has recently been the subject of a whole set of courses
(Chassignet and Verron, 1998) It is discussed in the context of climate
models in a paper by Griffies et al. (2000a), and also in Griffies’ book
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Figure 4. Same as Fig. 3, for the ATL6 1/6◦ model.

(Griffies, 2004) where the relationship between numerical schemes and
parameterizations is analyzed in depth. In this short course I will survey
parameterizations, hopefully providing a useful (albeit superficial) intro-
duction to the more exhaustive material. Focus is on current practice,
with little discussion of the underlying physical processes. The inter-
ested reader is referred to Chassignet and Verron (1998), or references
therein.

1. Sub-grid scale effects in ocean models

1.1 Convergence of numerical solutions

We can write the prognostic equations of an ocean model in the general
form:

∂Y

∂t
+ V.∇Y + F (Y) = 0 (1)

where Y = (V, T, S) is the vector of prognostic variables with V the
velocity vector, T the potential temperature, S the salinity. The second
term is nonlinear advection and the third term F represent all other
terms, including external forcings. The equations must be discretized
in order to be solved numerically: in ocean models this is usually done
by choosing a mesh of grid points and using finite difference formulae.
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The model solves for YR which is the resolved state of the ocean, on
spatial scales of a grid cell, at discrete times. Using the terminology of
Boer and Denis (1997), YR results from applying a ”numeric resolution”
operator ()R to the state vector Y. The definition of the ”resolved”
scales involves some kind of averaging: appropriate averaging operators
for ocean dynamics are discussed extensively by Griffies (2004). Let us
apply the operator ()R to (1):

∂YR

∂t
+ VR.∇YR + FR(YR) =

− ((V.∇Y)R − VR.∇YR) − (F (Y)R − FR(YR)) . (2)

We have to account for the effect of unresolved scales on the evolution
of YR (the right hand side of (2)). When this effect is not represented
correctly we make a parameterization error, which is different from the
numerical error made by using a finite difference approximation in solv-
ing the left hand side of (2). Note that the advective contribution to
subgrid scale effects (first term on the right hand side of (2)) does not
vanish even in an inviscid fluid. This happens because turbulent motions
usually generate a cascade of variance of the resolved quantity towards
small scales (say, for a tracer, as discussed for example in Dubos and
Babiano (2002). It is necessary for the parameterization to dissipate
tracer variance to represent this cascade in the limited spectral space of
a numerical model, even when the physical processes involved are related
to stirring rather than mixing.

¿From a mathematical point of view, one would like to see the solution
of an ocean model to converge as the resolution is increased (that is, pro-
gressive refinements of the resolution should bring smaller and smaller
changes in the solution). However, when we refine the grid (as between
Fig. 1 and Fig. 2) we also change the parameterizations on the right
hand side, and thus we solve different equations. The huge differences in
the solutions of ORCA2 and POP 1/10 do not come from a faulty numer-
ical scheme; rather they come from the fact that the parameterizations
differ. Let us note, however, that even the numerical (mathematical)
convergence of z coordinates model solutions is not demonstrated, and
indeed there are examples of non-convergence (Gerdes, 1993) due to the
staircase representation of the topography.

Taking a physical point of view, convergence can be expected only
over a range of scales where the dynamics of the flow remains qualita-
tively the same, so that the same parameterizations can be consistently
applied. Atmospheric scientists have been able to set up test problems
to look for the convergence of the dynamical core of their climate models
(allowing representation of synoptic scale turbulence). Boer and Denis
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(1997) present such a setting: an aquaplanet (no topography), a dry
atmosphere, with a large scale forcing including prescribed heating and
weak relaxation to a temperature profile. In the ocean it is much more
difficult to find test problems that are relevant to climate. Two similar
problems have been submitted to a convergence test. The first one is the
flat-bottom, quasigeostrophic basin, relevant to the study of the upper
ocean wind forced response (Siegel et al., 2001). The domain had a width
of 3500 km with six layers in the vertical; the smallest dynamical spatial
scale, the sixth internal Rossby radius, was close to 10 km. The second
test case is a layered model of the North Atlantic (Hurlburt and Hogan,
2000) with 6 layers in the vertical, realistic coastline and topography
restricted to the bottom layer. In both studies the authors still found
significant differences between horizontal resolutions of 3 and 1.5 km
(1/32◦and 1/64◦), either in energy and potential vorticity fluxes or in
local aspects of the circulation. However, the differences were smaller
than between lower resolution cases (say, between 1/8◦and 1/16◦), sug-
gesting that the highest resolution cases approached convergence.

It is possible to relate the oceanic case to the atmospheric case con-
sidering the different dynamical scales (Rossby radii) in the two fluids.
Boer and Denis (1997) consider in their test case that the dynamics have
converged at T63, that is, a resolution of 1.87◦ (about 150 km at mid lat-
itudes). This is 18% of the first internal Rossby radius Ro which is about
800 km in the atmosphere. An equivalent resolution in the ocean would
be 7 km in the subtropics (Ro = 40 km) and 2 km in subpolar regions
(Ro = 12 km). Those results suggest that none of today’s basin scale
models can be called ”eddy resolving” in the subpolar regions, and that
parameterizations should take into account the part of the mesoscale
spectrum that is not resolved.

1.2 Subgrid scale turbulence

The first subgrid scale effects that usually come to mind are those
related to the nonlinear advection terms, that is, the first term on the
rhs of (2). To develop parameterizations one further assumes that

(V.∇Y)R − VR.∇YR = (V ′.∇Y′)R, (3)

where Y′ = Y − YR is the subgrid scale part of Y. This is true only
if the ”resolution operator” has the properties of a Reynolds average,
which is not the case for a spatial truncation (among other properties, a
Reynolds average commutes with spatial and temporal derivatives, and
the average of the deviation Y′ is zero). Assuming a Reynolds decom-
position (for lack of something more accurate) the subgrid scale effects
appear as the divergence of eddy fluxes. Equations can be written for
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those eddy fluxes, such as the Turbulent Kinetic Energy (TKE) equa-
tion. They involve higher order moments of the turbulent variables so
that a “closure hypothesis” is required to solve them: this consists in
using an empirical relationship to express higher moments in term of the
lower-order moments. A classical example of closure model for vertical
mixing in the ocean is provided by Mellor and Yamada (1982). The sim-
plest closure applies to the advection of a passive tracer by homogeneous
and isotropic turbulence. Eddy fluxes in that case can be modelled by
analogy with the molecular diffusivity (Fickian hypothesis): for example

(w′T ′)R = −κ
∂TR

∂z
. (4)

The vertical eddy temperature flux is down the gradient of resolved
temperature.

It is usually assumed that the ocean turbulence is isotropic at the
centimeter scale, so this simple parameterization would apply. At larger
scales, the physical processes that one needs to parameterize are more
complex and no longer isotropic. The first ingredients that break isotropy
are the effects of gravity and stratification. Stratified fluid supports
internal waves, which can carry energy far from their generation site;
stratification inhibits cross-isopycnal motion and cross-isopycnal mixing.
Furthermore, when it is unstable, stratification generates convective in-
stabilities. These must be parameterized regardless of the grid scale and
time step of the model when the hydrostatic approximation is made (it
is the case in primitive equation models). An additional physical process
in the ocean is the double diffusive convection arising from the different
molecular diffusivities of heat and salt. Going to larger scales, the earth
rotation comes into play (time scale of one day, horizontal scale of hun-
dreds of meters). It creates the possibility of resonant inertial motions,
and further inhibits vertical motion. Finally, at the mesoscale, the varia-
tion of the Coriolis parameter with latitude is important. The vanishing
of the Coriolis force at the equator makes it a waveguide and allows
inertial instability. The β effect at mid latitudes tends to favor zonal
motions and inhibit meridional mixing. All those physical processes are
reviewed in detail in the book edited by Chassignet and Verron (1998).

In three dimensions, a linear relationship as (4) between local eddy
fluxes and local mean gradient components can be expressed as the prod-
uct of the gradient vector by a matrix:

(v′iT
′)R = −Tij

∂TR

∂xj

, (5)

where vi are the velocity components and Tij is the mixing tensor. Math-
ematically, the tensor can be decomposed as the sum of a symmetric part
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Kij and an antisymmetric Sij part. With classical isotropic diffusion,
Kij is diagonal with mixing coefficient κ along the diagonal, and Sij is
zero. Taking into account the anisotropy of ocean motions requires a
different coefficient for horizontal and vertical mixing. More generally,
the symmetric tensor Kij can be diagonalized along principal mixing di-
rections; in the ocean those are assumed to be along and across isopycnal
(isoneutral) directions respectively (see section 5.2). The corresponding
paramerization in the temperature and salinity equations for an ocean
model is called “isopycnal laplacian diffusion”, by contrast with horizon-
tal diffusion.

One way to understand the antisymmetric part Sij is the following.
With eddy fluxes defined by (5) the equation for the resolved tempera-
ture TR includes the divergence of the eddy fluxes, with a contribution
from the antisymmetric tensor written as:

∇(−Sij

∂TR

∂xj

). (6)

It is easily demonstrated that this term is identical to an advection of
TR by a velocity V ∗ with components defined by:

v∗i =
∂Sij

∂xj

. (7)

As a consequense, in our idealized framework of a linear relationship
between eddy fluxes and mean gradients, parameterizations can be clas-
sified in three components: the vertical (cross isopycnal) and the lateral
(isopycnal) mixing associated with the symmetric tensor Kij , and the
advective eddy effect associated with Sij. Those three components will
be considered in turn in sections 3, 5 and 6 of this chapter. The inter-
ested reader will find a complete discussion of the mixing tensor (as well
as an alternative presentation using the notion of skew flux) in Griffies
(2004).

1.3 The diffusion equation

Parameterizations often assume a flux gradient relationship like (4),
and look like a diffusion. It is important to realize that the diffusion
equation has some unexpected properties when the mixing coefficient is
allowed to vary. Let us consider for example the evolution of a vertical
profile of potential temperature, when the vertical eddy flux is parame-
terized by (4). The initial temperature perturbation T is sinusoidal over
a depth H and evolves according to the equation:

∂T

∂t
=

∂

∂z

(

κ
∂T

∂z

)

= κ
∂2T

∂z2
+

∂κ

∂z

∂T

∂z
. (8)
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With constant κ this is a classical diffusion equation and the perturba-
tion decays with a characteristic time τ = H2/(π2κ).

When κ varies vertically, the second term on the right-hand side of
(8) is non zero. It is similar to a vertical advection with velocity

wκ = −∂κ/∂z.

This term can lead to a sharpening of the large scale gradients (P. Klein,
personal communication). To see this, let us consider the equation for
the temperature gradient Tz, obtained by taking the vertical derivative
of (8):

∂Tz

∂t
= κ

∂2Tz

∂z2
+ 2

∂κ

∂z

∂Tz

∂z
+

∂2κ

∂z2
Tz. (9)

The first term is the diffusion, the second the advective contribution,
and the third term can cause an exponential growth of the temperature
gradient when ∂2κ/∂z2 is large enough. This happens if κ varies more
rapidly in space than T . Let us assume, for instance, that the initial T
profile has some small scale variations superimposed on it, and that the
physical processes generating mixing are very sensitive to the presence
of those small scales. This situation is displayed in Fig. 5. The mixing
cofficient has large values where the small scales are present, in the up-
per third part of the water column. Instead of decaying, the profile of
temperature after 120 days has a much stronger gradient. The T pro-
file, initially of typical scale H, varies now with the typical spatial scale
of the κ profile. The temperature perturbation has also been advected
downwards. Note that although a sharpening of the gradient has oc-
curred, diffusion has smoothed the local extrema in the initial profile as
expected (this property of the diffusion equation is independent of the
structure of the diffusion coefficient).

Even more interesting things happen when κ is a nonlinear decreasing
function of ∂T/∂z. When κ is nonlinear enough, the parameterization
can generate discontinuities and staircases in the temperature profile.
Fig. 6 shows the final state of the evolution of eq.(8) with κ proportional
to exp(−(dT/dz)2). This effect was noted by Phillips (1972) and more
recently by Ruddick et al. (1989)

Letting κ be a decreasing function of the vertical temperature gradient
is precisely what parametrizations of vertical mixing do: stratification
inhibit vertical mixing by providing a strong restoring force (buoyancy
force), thus limiting vertical displacements. Most parameterizations of
vertical mixing are based on the Richardson number of the large scale
flow. Let us define first the Vaisala frequency N :

N2 =
−g∂ρ/∂z

ρ0

,
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Figure 5. Initial and final solution of the diffusion of a tracer according to (8) with
no flux boundary conditions, when κ = 0.005 tanh(α(z − H/3)) + 1) m2.s−1, with
H = 500 m and α = (0.05H)−1. The profile of the mixing coefficient κ is multiplied
by 100 to be displayed on the same scale as T .

where ρ is density and g gravity. The Richardson number is:

Ri =
N2

(∂u/∂z)2 + (∂v/∂z)2
,

with u and v the horizontal components of velocity. This dimensionless
number expresses the competition between the stabilizing effect of strat-
ification and the destabilizing effect of the shear. Parameterizations of
vertical mixing always produce mixing coefficients that are strongly non-
linear functions of the Richardson number, displaying an almost ”step-
like” behavior with strong mixing at low Richardson numbers and little
mixing for Richardson numbers above critical (see for example fig 23 of
Blanke and Delecluse, 1993, or Fig. 5 of Large, 1998). This behavior is
sound physically and is observed in the ocean, but may create numerical
problems. Modellers need to be aware of the profound implications of
spatially variable mixing coefficients.

1.4 Subgrid scale effects of external forcings and
boundary conditions

Besides the nonlinear interactions inside the fluid itself, external forc-
ings also generate subgrid scale effects: it is the case for ocean-atmosphere
interactions. For example, heat fluxes and evaporation depend on the
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Figure 6. Initial and final solution of the diffusion of a tracer according to (8) with
no flux boundary conditions, when κ = 0.01 exp(−(0.59HdT/dz)2), with H = 500 m.

sea surface temperature, and can be very different above mesoscale ed-
dies. Arhan et al. (1999) estimate an average heat loss of 620 W.m−2

above an Agulhas eddy in 6 months, much higher than climatological
values in the area. No attempts have been made yet to parameterize
this effect in climate models where eddies are absent. In eddy resolving
ocean models, subgrid scale effects arise because of the low resolution
of the forcing fields or the atmospheric models used for coupling. The
mesoscale response of the atmosphere to SST perturbations is ignored in
such models. Finally, according to the temporal resolution of the forc-
ing fields, there may be non-resolved time scales as well: for exemple
the effect of wind bursts, or the diurnal cycle of radiative forcing. These
sub-grid scale effects will not be discussed further here but should be
kept in mind.

Perhaps the most important and complex sub-grid scale effect arises
through the boundary conditions, namely the shape of the ocean basins.
The first example is the communication between ocean basins and semi-
enclosed seas: according to the spatial resolution of the model, it is
possible or not to represent some straits. Some aspects of the parame-
terizations of subgrid scale topography are presented in section 4.

2. Parameterizations in the vertical

After introducing sub-gridscale effects, let us now review parameteri-
zations, considering in turn the vertical direction (this section), bottom
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Parameters PSY2 FOAM MFS-MOM MFS-OPA

Code OPA MOM MOM OPA

Time step δt = 800s δt =1200s δt =900s δt =600s

Domain N. Atlantic+Med N. Atlantic Mediterranean

Horizontal grid:
Max δx 7 km 12 km 12 km 6 km
Min δx 3 km 12 km 9.8 km 4.9 km

Vertical grid:
levels 43 20 31 72
Max δz 300 m 615 m 300 m 300 m
Min δz 6 m 10 m 10 m 3 m

Lateral boundary
condition: partial-slip no-slip no-slip no-slip

Table 1. Grid and domain for four z-coordinate models used in forecasting systems:
PSY2 (MERCATOR, France), FOAM (U.K. Met Office) and two MFS systems (Italy)

and topographic effects (section 4), mixing laterally or along isopycnals
(section 5) and dynamical effects of mesoscale eddies (section 6). Be-
cause this book is about operational oceanography, I will consider as
examples three z-coordinates ocean models that are currently part of an
operational forecasting system (table 1).

The parameterizations used in those models are listed in table 2.
Three of the models, PSY2, MFS-OPA and MFS-MOM have quite simi-
lar, rather simple parameterizations. FOAM has more complex parame-
terizations, mainly because this eddy permitting model has been derived
from a lower resolution climate model (Gordon et al., 2000). It would
be interesting to know the impact that those more elaborate parameter-
izations have on the results of the forecasting system.

In this section we discuss the parameterization of processes that cause
vertical mixing in the surface boundary layer or in the interior: convec-
tive mixing, shear instabilities, inertial waves breaking, double diffusion.
It is important to note that the parameterizations of those processes are
often lumped together in one package. This is the case of the “KPP”
parameterization (Large et al., 1994). Its originality lies in the parame-
terization of the surface mixed layer, using a prescribed vertical profile
of fluxes adjusted on a mixed layer depth (K-profile), but Large et al.
(1994) also propose a parameterization of convection, interior and double
diffusive mixing. This is why the parametrizations for vertical diffusivity
and viscosity in the interior and in the upper mixed layer are lumped
together in table 2.
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PSY2 FOAM MFS-MOM MFS-OPA

Vertical

diffusivity

Background 1. 10−5m2s−1 3. 10−5m2s−1 3. 10−5m2s−1

Ri dependent TKE PP81 none none
Other Surf.E KPP+KT67 none none

Vertical

viscosity

Background 1. 10−4m2s−1 1.5 10−4m2s−1 1.5 10−4m2s−1

Ri dependent TKE PP81 none none
Other Surf.E KPP+KT67

Convection

Adjustment no yes yes no
Enhanced mix-
ing

1 m2s−1 1 m2s−1

Lateral

diffusivity

Hor. Bihar-
monic

3 109m4s−1 none 1.5 1010m4s−1 3 109m4s−1

Spatial varia-
tion

∝ δx3 Constant Constant

Laplacian none 100 m2.s−1 none none
Orientation hor iso hor hor
slope limitation no GE91 no no
Horizontal
background no 10 m2.s−1 no no

Lateral

viscosity

Biharmonic 9 109m4s−1 2.6 109m4s−1 5 109m4s−1 5 109m4s−1

Laplacian none 30 m2.s−1 none none
Spatial varia-
tion

∝ δx3 no no no

Bottom

friction

Type Quadratic Quadratic none quadratic
Coefficient Cd =1.3 10−3 Cd =1.225 10−3 Cd =10−3

Bottom

boundary

layer

Type none GO00 none none

Table 2. Parameterizations for four z-coordinate models used in forecasting systems.
Schemes are TKE (Blanke and Delecluse, 1993), PP81 (Pacanowski and Philander,
1981), KPP Large et al., 1994, KT67 (Kraus and Turner, 1967). Note that in FOAM
KPP is a modified version (Gordon et al., 2000). Surf.E is an enhancement of back-
ground coefficients near the surface. The orientation is either horizontal (hor) or
iso-neutral (iso). Note that locally, neutral and isopycnal directions are identical. In
the case of isopycnal mixing, modellers have to modify the algorithm whe slopes are
too steep. In FOAM this is done using the scheme GE91 of Gerdes (1993). The Bot-
tom boundary layer (GO00) used in FOAM is documented in Gordon et al. (2000).
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2.1 Local and non-local parameterizations

As reviewed in detail by Large (1998) parameterizations can be clas-
sified into local and nonloncal. Local parameterizations following (4)
assume that the eddy fluxes depend on the local properties of the large
scale flow. They are often based on one-dimensional turbulence closure
models, like the TKE model of Blanke and Delecluse (1993). The one-
dimensional “stand-alone” models are implemented with grid spacing
of order one meter in the vertical; it is unclear how they perform with
the typical grid spacing of ocean models (5-10 m at the surface, quickly
increasing to 20-50 m at 100 m depth). It is important to keep in mind
that the classical Ekman layer depth is he =

√

2ν/f . At mid latitudes,
the vertical viscosity ν has to be larger than 5. 10−3m2.s−1 for he to be
larger than 10 m (that is, for the Ekman depth to be larger than the
first model layer thickness). In the absence of high frequency forcing, in
the absence of night time convection, and with low vertical resolutions,
turbulent closures cannot produce high enough mixing at the top layer
interface. This explains why non-local parameterizations are attractive,
like the old Kraus-Turner (Krauss and Turner, 1967) parameterization
and the new KPP scheme (Large et al., 1994) used in the FOAM model
(Table 2). This is also the rationale for “ad-hoc” fixes like the increase of
the background coefficient in the upper layers found in the PSY2 model.

The present versions of the MFS models do not use any parameteriza-
tion of the surface mixed layer (table 2). In that case, convection is the
only source of enhanced mixing. Convection driven by surface cooling
allows to reach realistic mixed layer depths in winter in the Medditer-
ranean sea (see Crosnier and Le Provost in this volume). In summer, a
shallow convection is driven by the penetration of incoming short wave
radiation which warms the water down to a depth of about 15 m, while
the outgoing longwave radiation cools the top layer only. Without pen-
etrative solar radiation the mixed layer depth in MFS in summer would
be restricted to the first model layer.

The performance of different vertical mixing schemes in realistic ocean
models is not well documented, so that it is very difficult to make an
objective choice among the different parameterizations. The use of KPP
instead of crude parameterizations, like an imposed uniform mixed layer
depth, clearly brings an improvement (Large, 1998). An improvement
was also found by Blanke and Delecluse (1993) when using TKE in-
stead of the Richardson-dependent scheme of Pacanowski and Philan-
der (1981). On the other hand, a recent comparison of KPP with the
TKE scheme (Chanut and Molines, 2004) shows little difference in the
1◦ CLIPPER Atlantic model. What makes the picture even fuzzier is
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the fact that changing tunable constants within one parameterization
package has significant effects (Matteoli, 2003). This lack of thorough
sensitivity studies, especially for eddy permitting models, will stand out
as we discuss the different processes leading to vertical mixing.

2.2 Convection

Early primitive equation models (Cox, 1984) represented convection
by an iterative adjustment, which modified temperature and salinity in
a water column. Adjustment schemes have convergence problems in
some cases and tend to be costly; moreover the time scale of adjustment
is one time step, which is too short in high resolution configurations.
Despite these shortcomings, they are still in use in some forecasting
models (Table 2).

Nowadays convective adjustment is more frequently represented by
increasing the vertical mixing coefficient to a very large value in the
case of convection. This procedure has been found to be a satisfactory
parameterization of the effect of convective plumes by Klinger et al.
(1996), with a mixing coefficient of 10 m2.s−1. Scalings suggest values up
to 50 m2.s−1 (Send and Käse, 1998). The PSY2 model uses a coefficient
of 1 m2.s−1 (table 2); the ORCA2 model uses 100 m2.s−1. Users of the
KPP scheme take values from 0.1 to 10 m2.s−1.

The criterion for the onset of convection varies among models; con-
vection is active as soon as the Vaisala frequency N2 is negative in some
models (PSY2) while the criterion in KPP is N2 < −0.2 10−4s−2. The
relative mixing of momentum and tracers also varies between models.
Momentum should be mixed like tracers in convective plumes if the
time scale tmix for a parcel to move down the plume is shorter than the
1/f , the time for geostrophic adjustment. With plume vertical velocities
w of order 3 to 10 cm/s (Klinger et al., 1996), tmix = h/w reaches 12 h
for deep convection, thus comparable to 1/f . Tests performed with the
ORCA2 model (Matteoli, 2003) show important differences in mean sur-
face velocities (up to 10 cm.s−1) in the Antarctic circumpolar current,
with and without momentum mixing in the case of convection.

2.3 Interior mixing

As emphasized in the review by J. Toole (Toole, 1998), observations
have shown increased levels of mixing in the abyss and over rough to-
pography, compared with the low values found in the thermocline by
microstructure measurements and tracer releases. More recently, the
role of internal tides as an energy source for mixing has been empha-



OCEAN MODELS 91

sized. Maps of energy flux have been derived from tidal models leading
to parameterizations of vertical mixing (Laurent et al., 2002)

Spatially variable vertical mixing coefficients based on topographic
roughness or tidal mixing have yet to be tested extensively in models.
Studies by Hasumi and Suginohara (1999) and Simmons et al. (2004)
show modest improvements in coarse resolution models integrated to
equilibrium. The effect of such parameterizations over shorter time
scales in higher resolution models needs to be assessed, since uniform
mixing coefficients are clearly not acceptable based on the observations.

One has to be aware that z coordinate models have difficulty achieving
the vertical mixing coefficients of order 10−5m2.s−1 in the thermocline,
depending on their advections scheme (Griffies et al., 2000b). Since
the last decade modellers tend to abandon centered advection schemes,
which lead to the generation of unphysical temperatures and salinities
near fronts (note, for example, that the ATL6 model of Fig. 4 has one
grid point with temperatures lower than -3◦C at the bottom of the Faroe
Bank channel outflow; salinities close to 42 PSU are found downstream
of Gibraltar in the 1/10◦ model of Smith et al., 2000). Diffusive schemes
like FCT (Flux Corrected Transport) avoid such problems, but in eddy
permitting z-models they can cause a large amount of diapycnal mixing
(Griffies et al., 2000b). The same is true for non-eddy resolving models
when the western boundary current is marginally resolved: Griffies et
al. (2000b) find spurious diapycnal mixing of 3 10−4m2.s−1 due to the
advection scheme in that case.

2.4 Double diffusive mixing

Double diffusion occurs in stably stratified situations, either when
warm and salty water overlies cold, fresh water (salt fingering) or when
cold, fresh water overlies warm and salty water (diffusive convection).
Those processes generate turbulent mixing of heat and salt with different
coefficients, dependent on the density ratio Rρ = α∂zT/β∂zS, where α
and β are coefficients of thermal expansion and saline contraction. A
parameterization has been proposed by Large et al. (1994) but it has not
been thoroughly tested. A slightly different one has been proposed by
Merryfield et al. (1999) and tested in a coarse resolution model, showing
and improvement in the representation of water mass temperature and
salinity although the effect on the circulation was small. None of the
forecasting models listed in Table 2 uses a parameterization for double
diffusion, even though this dynamical process is important in the ocean
(Schmitt, 1998). A better and cleaner representation of “background”
interior vertical mixing may be needed in z-coordinate models before
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adding a parameterization of double diffusion can have a demonstrable
positive impact on the solutions.

3. Bottom boundary layer and topographic
effects

3.1 Bottom friction

Two-dimensional geostrophic turbulence has the property that en-
ergy cascades towards large scales, and enstrophy (the relative vorticity
squared) cascades towards small scales (Batchelor, 1969). Thus, if eddies
have their energy source at a scale close to the internal Rossby radius,
nonlinear interactions tend to transfer this energy to larger scales where
it must be dissipated. Viscous bottom drag can provide the energy sink
which is required to equilibrate the flow. It is thus necessary to include a
parameterization of bottom drag in eddy-resolving models. The strength
of the bottom drag can have an influence on the spatial organisation of
the flow because it affects the baroclinic instability of eastwards jets
(Riviere et al., 2004).

Another interesting effect of bottom drag happens in overflow regions.
In a rotating fluid, and under the hydrostatic approximation, dense
plumes have a strong tendency to follow isobaths rather than plunging.
A high bottom friction makes the flow less geostrophic and increases the
rate of descent of the plumes (Stratford and Haines, 2000).

Despite such important dynamical effects, there does not seem to be
any study documenting the effect of bottom drag in high resolution basin
flows, especially in the presence of bottom topography. Most models use
a quadratic bottom drag with constant coefficient (Table. 2).

3.2 Effects of overflows

Overflows are currents from marginal or semi-enclosed seas into the
main ocean basins, through sills or along continental slopes. They set
the properties of many water masses (Price and Yang, 1998). A major
difficulty in modelling overflows is that many of them are subgrid scale
physics for a given choice of resolution: the width of the strait or channel
is narrower than the grid size. Note that straits can be one grid point-
wide on a staggered ”C” grid such as used in the OPA code, but two
grid points are necessary to allow throughflow on a ”B” grid with no-slip
boundary condition (see Haidvogel and Beckmann, 1999, for a definition
of staggered grids). The modeller may decide to open too wide a strait.
In that case, the transport may be too large due to the exaggerated
cross-section. G. Madec (personal communication) decreases the grid
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size locally at a strait: but this trick is possible only when the strait is
between land points because the grid size δx, δy does not depend on z.
It cannot be used for deep fracture zones in the middle of ocean basins.

The influence of overflow waters is especially important in the North
Atlantic, with North Atlantic Deep water (at depths of 2000-3000 m)
coming over Denmark Straits and the Faroe-Scotland ridge, Mediter-
ranean water (1000 m depth) coming through Gibraltar, and Antarctic
bottom water (4000 m depth) spreading over sills in the mid-Atlantic
ridge (Romanche and Vema fracture zones, for example). The overflows
are very badly represented in z coordinate models with staircase topog-
raphy, generally leading to excessive mixing (Willebrand et al., 2001).
There are simple models (such as streamtubes) to calculate exchange
between basins in simplified cases, that could be the basis for param-
eterizations (Price and Yang, 1998). The problem with this method is
that each overflow must be specified at a given grid cell or set of grid
cells, which is quite cumbersome in a world ocean. Another drawback
is that such a parameterization introduces grid scale sources and sinks
that may not be handled well by the numerics.

Modellers look for parameterizations valid everywhere in the domain,
such as the “Bottom boundary layer” (BBL) parameterization (Beck-
mann and Döscher, 1997). Since this pioneering work, BBL parame-
terizations have been implemented in many ocean models. However, we
don’t have yet a complete picture of their efficiency, depending on model
characteristics. Dengg et al. (1999) find that a BBL parameterization
induces a large improvement in a 1/3◦ model of the Atlantic using a
centered advection scheme. However in the 1/6◦model of the Atlantic
we find that the improvement is modest, although the BBL parame-
terization is similar and both models use the same isopycnal mixing of
tracers (Fig. 7). What causes the different performance of the BBL
parameterization in those two models is unclear; numerical details may
matter.

The FOAM model was developped from the HadCM3 ocean compo-
nent at 1.8◦ resolution. In the latter, a variant of a diffusive BBL scheme
was implemented that dramatically improved the representation of the
Nordic seas overflows (Gordon et al., 2000). In this scheme, when bot-
tom water at a grid cell is denser than the deeper water colums around,
the algorithm looks for the level of neutral buoyancy of that bottom
water and mixes the dense water into that model level. Lighter water
is then moved up in the water column to replace the dense water. The
behavior of this scheme in the 1/9◦ version of FOAM has no yet been
evaluated in detail.
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Figure 7. Zonal maximum of bottom density in the Irminger Sea (45◦W-25◦W), in
the climatology and in two ATL6 experiments with and without BBL (the average of
the 13rd model year is used).

A new difficulty has appeared with the generalization of the “partial
cell” representation of bottom topography in z coordinate models. BBL
parameterizations generate fluxes of tracers between bottom cells situ-
ated in neighbouring fluid columns. With partial cells the thickness of
those bottom cell can vary widely, which may introduce spurious noise
in the BBL fluxes.

In this chapter we have chosen examples from z-coordinate models
only, but the choice of vertical coordinate is very important for the rep-
resentation of overflows (Griffies 2005, this book). σ coordinate models
handle overflows very well provided their vertical resolution near the
bottom is good enough. This was not the case in the DYNAMO σ
model, (Willebrand et al., 2001), but one example is the model of the
Mediterranean outflow by Jungclaus and Mellor (2000). It is possible
in σ models to retain a spatially homogeneous vertical resolution in the
bottom boundary layer, which seems ideal for overflow representation,
but does have an extra numerical cost.

3.3 Other flow-topography interaction

The interaction of flow with subgrid scale topography can generate
internal waves, which can propagate in the water column and increase
vertical mixing if they break. This process is generally parameterized
as part of the vertical mixing due to internal waves, which has been
discussed in section 3.4.
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Regarding low frequency motions, the statistical effect of unresolved
topographic roughness has been explored in the framework of the quasi-
geostrophic (QG) equations, starting with Rhines (1977). The main
effect of bottom roughness is to scatter the barotropic energy into baro-
clinic modes, and decrease the energy of mesoscale motions in the deep
layers. There has been no attempt to parameterize this effect in ocean
models. On the contrary, the effect of bottom roughness is probably
overestimated already in standard z-coordinate models with unsmoothed
staircase topography. Penduff et al. (2002) show that in such a model
the eddy kinetic energy below 1000 m is lower than in a σ-coordinate
model, the latter being in better agreement with observations. By per-
forming sensitivity experiments with the z model they show that the
grid-scale topographic roughness is responsible for a too rapid decay of
the eddy kinetic energy with depth.

Beside allowing overflows, deep passages and fracture zones often act
to sharpen and focus fronts. This effect can influence the whole water
column when major currents cross topographic ridges. One example is
the flow of the North Atlantic current across the Mid Atlantic ridge,
which seems to be distributed in three branches corresponding to three
fracture zones (Bower et al., 2002). There is no parameterization of this
effect in low resolution models.

4. Lateral mixing parameterizations

4.1 Prandtl number

Let us assume that lateral momentum and tracer mixing are parame-
terized as laplacian operators with turbulent viscosity ν and diffusivity
κ. The ratio of viscosity to diffusivity is the Prandtl number, Pr = ν/κ.
For molecular viscosity and heat diffusivity in sea water, it varies from
13 (at 0◦C) to 7 (at 20◦C). Molecular values are irrelevant at the scale
of ocean models, and the Prandlt numbers used in models parameteri-
zations vary widely. This is not based on physics but rather the result of
numerical stability constraints which seem more stringent on viscosity
than diffusivity. In low resolution climate models, Prandtl numbers as
high as 50 can be found.

At the scale of quasi-geostrophic eddies, the Prandtl number could
be one if one accepts that QG eddies essentially mix potential vorticity.
In that case, mixing of vortex stretching (with diffusivity κ) has to be
the same as mixing of relative vorticity (with viscosity ν). At the sub-
mesoscale, I do not know of theories nor observations that would guide
modellers in a choice of Prandtl number.



96 ANNE-MARIE TREGUIER

4.2 Isopycnal mixing of tracers

Let us consider lateral mixing operators in our eddy permitting mod-
els (table 2). Some models use a laplacian operator rotated to follow
the isopycnal (neutral) direction, others use a horizontal biharmonic
(bi-laplacian) operator. The biharmonic operator has been introduced
in quasi-geostrophic models based on the properties of two-dimensional
turbulence. Because it is more scale-selective, it allows a model to rep-
resent a larger part of the mesoscale spectrum at a given grid resolution,
while removing variance at the grid scale at a sufficient rate to avoid
grid scale noise. However, the biharmonic operator can cause spurious
overshoots in tracer properties (Mariotti et al., 1994), so that it has dis-
advantages as well as advantages. The inconveniences are pointed out
in more detail by Griffies (2004).

Examination of the basin-scale water mass properties reveals that they
spread along isopycnals (not horizontally), due to advection and stirring
by mesoscale eddies. Analysis of tracer release experiments (Ledwell et
al., 1998) suggest that mixing is isopycnal down to scales of 100 m, so
that there is no evidence to support the choice of a horizontal mixing
as in PSY2 or MFS. Toole (1998) reviews the processes that may be
responsible for isopycnal mixing at different scales. Shear dispersion
due to near-inertial internal waves can cause an isopycnal diffusivity
of ≈ 0.07 m2.s−1 at scales between 100 m and 1 km. Vortical modes
could be responsible for diffusivities of ≈ 2 m2.s−1 at scales 1 to 30 km,
and mesoscale eddies can cause diffusivities up to 1000 m2.s−1 at scales
larger than 300 km. The eddy resolving models using isopycnal mixing
cannot be run with diffusivities as low as observed; FOAM for example
uses κ = 100 m2.s−1. This large value is needed to avoid numerical
accumulation of enstrophy at the model grid scale (12 km).

¿From the observations of Ledwell et al. (1998), it seems that isopy-
cnal diffusivities increase roughly linearly with the length scale. This
would justify the choice made by some modellers to make the diffusivity
proportional to the grid scale (or the third power of the grid scale in the
case of a biharmonic operator), as for example in the DYNAMO models
(Willebrand et al., 2001), or in PSY2.

The above considerations would support the choice of a biharmonic
operator (for its scale selectiveness), rotated along isopycnals for consis-
tency with observations. Often though, modellers do not want to pay
the computational cost of rotating the biharmonic. This explains why
the two alternatives found in table 2 are a horizontal biharmonic and an
isopycnal laplacian. Those two parameterizations were compared during
the CLIPPER project. Two experiments were run with the ATL6 model,
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one using a horizontal biharmonic coefficient (like PSY2 and MFS) with
value of 5.5 1010m4.s−1 at the equator, and the other one using a isopy-
cnal laplacian mixing (like FOAM) with coefficient 200 m2.s−1. Results
were not conclusive. The meridional overturning was enhanced by 2 Sv
with the isopycnal mixing, which was assumed to be an improvement,
but the deep jets analyzed by Treguier et al. (2003) were weaker with
isopycnal mixing and the Agulhas eddies seemed too stable.

To make progress with the parameterization of lateral mixing at the
sub-mesoscale, we need to understand the physical processes better.
Sub-mesoscales are difficult to observe, but high resolution quasi-geostro-
phic or two-dimensional models give us insights into their behavior. One
key phenomenon in the tracer cascade to small scales is the formation of
elongated filaments, which occurs preferentially at critical points around
the eddies when they interact with each other. This flow structure with
energetic eddy cores surrounded by filaments is found in all high resolu-
tion models. Fig. 8 shows an example in the PSY2 model without data
assimilation). Recent studies help understand where and when filaments
form as a function of resolved flow quantities (see for example Klein et
al., 2000). Parameterizations based on such analysis in physical space
(by opposition to the more usual biharmonic or hyperviscosities based
only on the cascade in spectral space) look promising, like the one by
Dubos and Babiano (2002). So far they have not been implemented in
realistic primitive equation models.

If mixing at the submesoscale is mainly performed by the combined
action of vertically sheared inertial oscillations and vertical mixing as
proposed by Young et al. (1982), then a parameterization must include
the effect of mesoscale eddies on the inertial oscillations. Such a param-
eterization is tested by Klein et al. (2003) in quasi-geostrophic models
and shown to cause an assymetry between anticyclonic and cyclonic
structures.

One important issue that is too often ignored in parameterizations of
isopycnal mixing is the large inhomogeneity of the mesoscale eddy field,
which is now very well mapped from satellite altimetry. Obviously the
isopycnal diffusivity κ in non-eddy resolving model should depend on
the eddy activity. One possible way to achieve that is to use a scaling
based on the time scale for baroclinic instability (Treguier et al., 1997).
Such spatially variable coefficients have been used to represent the dy-
namical effect of eddies (see next section), but their use for mixing of
tracers along isopycnals is not documented. Note that sharp variations
in the eddy mixing coefficient κ can increase the gradients of tracers
along isopycnals, as shown in Fig. 5. It will also create an advection of
tracers away from the regions of active eddies. This advection is different
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Figure 8. Relative vorticity (in s−1)at 17m depth in the PSY2 model without data
assimilation (averaged over 5 days).

from the advective effect of the antisymmetric component of the mixing
tensor (7), because contrary to V ∗ the velocity Vκ due to the spatial
variation of κ is divergent. Both V ∗ and Vκ are needed to fully represent
the difference between Eulerian and Lagrangian velocities (Plumb and
Mahlman, 1987).

Another well known feature of diffusivity due to mesoscale eddies is
its anisotropy. Because of the β-effect, mesoscale motions have longer
zonal than meridional scales (Rhines, 1977). Ledwell et al. (1998) found
a factor of two between the zonal and meridional diffusivity deduced from
the spreading of his tracer. Despite this evidence, the use of anisotropic
diffusivity in ocean models is not documented.

4.3 Lateral mixing of momentum

There are no observations similar to the tracer releases that would
give us insight in the mechanisms of momentum mixing in the ocean, and
theories do not help much either. Well known properties of mesoscale
eddies, like their tendency to concentrate momentum in an eastward
jet on a β plane (McWilliams and Chow, 1981) are very difficult to
parameterize because they would involve counter-gradient fluxes.

For lack of physically motivated parameterizations, modellers gener-
ally use simple laplacian or biharmonic viscosity operators. The values
of the coefficients are subject to two numerical constraints. In basin
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scale models, the smallest spatial scale is often the width of the western
boundary current. When it is controlled by laplacian friction it is called
a Munk boundary layer. The condition that the grid scale δx be smaller
than the Munk layer width results in a minimum bound for viscosity
(Smith and McWilliams, 2003): ν > νM ≈ βδx3. On the other hand,
viscosity cannot be arbitrarily large due to the stability constraint (sim-
ilar to the CFL criterion for advection). This criterion is more severe
in ocean models that use explicit leap-frog time stepping schemes for
nonlinear advection, with the viscous terms lagged by one time step for
stability. For laplacian viscosity ν < δx2/8 δt. For a biharmonic op-
erator the criterion is ν < δx4/64 δt (biharmonic coded as in the POP
model) or ν < δx4/128 δt (biharmonic coded as in the OPA model).

For the laplacian operator on coarse grids, the Munk layer constraint
implies very large viscosities: with δx=10 km at 45◦N, νM = 16 m2.s−1,
but with δx=100 km, νM = 16000 m2.s−1. It is impossible to rep-
resent equatorial dynamics with such a large viscosity, which is why
this constraint is not always taken into account. For example, in the
FOAM 1◦ model the viscosity is 5100 m2.s−1. In that case, some level of
grid point noise usually develops near the western boundary. A second
strategy is to decrease the viscosity at the equator, while increasing the
meridional resolution there (parameterization of the ORCA2 model with
ν = 2000 m2.s−1 at the equator and ν = 40000 m2.s−1 at mid-latitudes,
Madec et al., 1998). Finally, Large et al. (2001) have proposed to make
the viscosity anisotropic, noting that the equatorial current are domi-
nantly zonal while Munk boundary currents are predominantly merid-
ional. This solution however does not prevent the apparition of numer-
ical noise.

For the biharmonic operation the numerical stability criterion is of-
ten more stringent than the Munk layer constraint. With δx=10 km,
the latter gives ν > βδx5 = 1.6 109 m4.s−1. With a 1200 s time step,
numerical stability requires that ν < δx4/64 δt = 1.3 1011 m4.s−1. A de-
crease of the biharmonic coefficient with the grid spacing is often needed
in order to ensure stability on spatially variable grids, as in the case of
PSY2 (Table 2). Based on numerical experiments with a 1/12◦ isopycnic
model, Chassignet and Garraffo (personal communication) suggest that
the Gulf stream separation is improved using together a laplacian and
a bilaplacian operator. This has prompted the use of both operators in
FOAM (Table 2).

Smagorinsky (1963) has proposed to make the laplacian viscosity pro-
portional to the deformation rate times the squared grid spacing δx2.
Such a parameterization can be physically motivated in three dimen-
sional turbulence and is used in large eddy simulations. In ocean mod-
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els it has mainly been used in MICOM (Bleck and Boudra, 1981). A
study by Griffies and Hallberg (2003) suggests that using a biharmonic
operator with Smagorinsky-like viscosity is better in eddy permitting
simulation when the flow is non homogeneous (in the presence of west-
ern boundary currents, for instance) because it allows lower levels of
viscosity in the interior.

This short review emphasizes numerical constraints as the basis for
the choice of parameterizations of momentum mixing. We can hope
that more physically based parameterizations will emerge in the future.
Smith and McWilliams (2003) have developed a promising framework
by deriving a general form for anisotropic viscosity, and an elegant func-
tional form for the discretization following a similar work by Griffies et
al. (1998) on the isoneutral diffusion.

For completeness we must mention here another approach to param-
eterizations. It consists in using the properties of numerical advections
schemes to represent the cascade of enstrophy to small scales (this also
applies to cascade of tracer variance reviewed in the previous section).
With that strategy, no explicit parameterization is needed. Shchepetkin
and McWiliams (1998) advocate this approach, claiming that higher
Reynolds numbers can be simulated that way, compared with the com-
bination of a classical advection scheme and hyperviscosity. Those au-
thors also claim that it is more computationaly efficient to increase the
accuracy of the advection scheme rather than increasing the spatial res-
olution. This is certainly true for the idealized turbulence experiments
they perform, but it is probably not yet true for realistic ocean mod-
els. Subgrid scale topographic effects are the reason for this. Refining
the grid offers the opportunity to better represent key straits and pas-
sages, which a higher order scheme cannot provide. This is certainly
the reason why most ocean models still use second order, inexpensive
advection schemes. This situation may change in the future, as higher
spatial resolutions are allowed by the computational resources.

5. Dynamical effects of mesoscale eddies

5.1 Baroclinic instability

Gent and McWilliams (1990), hereafter GM, have noted that param-
eterizing the mixing of salinity and temperature anomalies on isopycnals
by mesoscale eddies is not enough, because this leaves aside the dynam-
ical effect of eddies on the density field. Most of the eddy energy in the
ocean is believed to arise due to baroclinic instability of the mean flow.
Baroclinically unstable eddies extract available potential energy from the
mean flow, thus tending to flatten isopycnals. The GM parameteriza-
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tion proposes that this effect is best represented using the antisymmetric
part of the diffusion tensor (5), that is, by an additional advection of
the density field. They propose to make this velocity proportional to
the isopycnal slope (a pedagogical presentation of their parameteriza-
tion is found in Gent et al., 1995). This parameterization was the first
physically-based original parameterization for coarse resolution ocean
model, and as such it has known a rapid success. It certainly improves
the climate model solutions especially in the Antarctic circumpolar cur-
rent, although too large advective velocities for the GM parameterization
have negative effects there (Speer et al., 2000).

It is useful to consider the parameterizations in the quasigeostrophic
limit (Treguier et al., 1997), in which case GM corresponds to a mixing
of potential vorticity (more precisely, the vortex stretching contribution
to potential vorticity) along isopycnals. Therefore, the coefficient used
for the GM parameterization can be considered as a mixing coefficient
for potential vorticity, while the coefficient used for isopycnal mixing is
relevant to a passive tracer (temperature and salinity anomalies along
isopycnal surfaces). Two-dimensional turbulence emphasizes the simi-
larity between the dynamics of vorticity and passive tracers; although no
similar studies exist with primitive equations in three dimensions there
is no physical argument to justify widely different mixing coefficients
for the two parameterizations. It is thus very surprising to find that
many modellers take coefficients for their GM parameterizations that
are spatially dependent on the level of baroclinic instability as proposed
by Treguier et al. (1997) or Visbeck et al. (1997), thus correctly taking
into account the inhomogeneity of the eddy activity in the ocean, while
they keep the isopycnal mixing coefficient constant. Maybe modellers
are reluctant to seek guidance from the quasi-geostrophic framework
because things are indeed more complex in primitive equations: for ex-
ample, the GM parameterization as usually implemented is closer to a
mixing of isopycnal depth than to a mixing of potential vorticity.

A most important open question is how to represent the unresolved
part of the mesoscale eddy spectrum in eddy permitting models. First,
it is important to note that the unresolved spectrum varies with latitude.
A typical spatial scale for baroclinic instability is the first Rossby radius
R1. Even though model grids are often of Mercator type, refined as the
cosine of latitude, they still fall short of resolving R1 in the Labrador
Sea and Nordic seas where it can be a few kilometers in winter. Per-
haps we should be more precise about what is meant by ”resolving”. A
minimum requirement could be 12 grid points per wavelength (a first
derivative estimated with a second order finite difference scheme still
has 5% error in that case), thus δx < 2πR1/12 ≈ R1/2. Chanut (2003)
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finds a dramatic improvement in the representation of restratification
after convection in the Labrador Sea between a 18 km grid and a 3-4 km
grid (1/3◦ to 1/15◦). Certainly, a full GM parameterization would be
justified in the 1/3◦ model, in the Labrador Sea but not elsewhere. The
eddy fluxes in Chanut’s high resolution case correspond to GM coeffi-
cient of up to 800 m2.s−1. If such a high value is used in the subtropical
gyre it destroys the eddy activity in the Gulf Stream. The spatially vari-
able form proposed by Visbeck et al. (1997) does not help in that case,
because baroclinic instability growth rate is higher in the Gulf Stream
than in the Labrador Sea based on the resolved flow field. Studies are
under way to propose variants of the GM parameterization that would
”switch on” when needed.

Considering a case where the first Rossby radius is well resolved (say,
a 5 km grid where R1 = 40 km), how should the dynamical effect of
sub-mesoscale eddies be parameterized? Is the unresolved part of the
spectrum mainly controlled by baroclinic instability? Roberts and Mar-
shall (1998) advocate the use of a biharmonic GM parameterization,
based on their wish to eliminate diapycnal mixing in the surface layers.
However, this requirement may not be physically defensible, consider-
ing that eddies do perform diapycnal (horizontal) mixing across surface
fronts (Treguier et al., 1997). As was the case for in the two previ-
ous parameterizations we considered (isopycnal diffusivity and lateral
viscosity) we still lack observational evidence and theory to justify pa-
rameterizations of the submesoscale effects.

5.2 Other mesoscale eddy effects

Another dynamical effect of mesoscale eddies is the so-called ”Nep-
tune” effect (see for a review Alvarez and Tintoré, 1998). In the presence
of bathymetry and β-effect, quasigeostrophic eddies have the tendency
to generate mean flows along f/H contours. This additional mean flow
must be forced by a parameterization when eddies are not represented
in a model. The problem is that we do not have enough knowledge of
the strength of this effect in realistic ocean circulations and neither do
we know the vertical structure of the generated mean flows. Certainly,
adding a parameterization forcing barotropic currents along f/H con-
tours would help Atlantic models to improve the strength of their deep
western boundary currents. However, if the models do not represent the
overflow correctly, the Neptune parameterization could have the effect
of generating spurious transport of water with the wrong properties.

Finally, mesoscale eddies tend to exist as coherent structures that
carry water far from their generation region (well-known examples are
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Meddies and Agulhas eddies). The effects of such eddies are highly non-
local, and no parameterization has yet been proposed for such processes.

6. Conclusion

Parameterizations and resolution are the two fundamental character-
istics of an ocean model. By choosing them, we actually pick up the
“ocean” we try to model. We have reviewed different parameteriza-
tions, based on the example of the forecast models listed in tables 1 and
2. What emerges from this review is a rather unsatisfactory state of
affairs. Some paramerizations are well grounded in physics (like con-
vection) and have been evaluated by comparison with more complete
models (non-hydrostatic in this case). Even then, though, we find that
some features are not completely agreed upon among modellers (like the
Prandtl number) and modifying them has a strong effect on the solution
of low resolution models. But this is the best situation. Generally, the
parameterizations do not have sound physical basis, have not been fully
evaluated against laboratory experiments or more complete models, and
there are strong numerical constraints limiting the choices of modellers.

The boundaries of the ocean, at the bottom and at the surface, are
places where progress needs to be made. Regarding the bottom, the
main problem is the representation of flow-topography interactions in
z-coordinate ocean models. This is an issue of numerics rather than
parameterization, which is discussed in the chapter by Griffies. The
main effect of staircase topography in z-coordinate models, which is
not completely alleviated by using a partial step representation, is the
existence of large and noisy vertical velocities which often contaminate
the upper layers (especially on the continental slopes). This is a big
obstacle to the use of such models for biogeochemistry. Hybrid models
like HYCOM may be better candidates for such applications, although it
is not clear that numerical factors affecting the communication between
the surface z layer and the interior isopcynic layers will not prove an
even bigger obstacle. It is quite surprising that although σ coordinate
models are extensively used for regional and coastal modelling, no larger
scale σ configurations have been built for demonstration purposes, either
for climate prediction or forecasting.

The representation of the surface layers in ocean models is perhaps
the point where progress is the most likely in the coming years. Today,
model solutions in the mixed layer critically depends on the parame-
terizations. This dependency may decrease as we resolve more physical
processes. It is possible to do so with existing parameterizations simply
by increasing the vertical resolution (to about 1 m) and using higher
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frequency forcing (thus taking into account wind-forced inertial oscilla-
tions and the diurnal cycle). Improving the representation of surface
layers is critical for operational forecast models because many clients
need accurate surface velocities. It is also important in coupled models
for climate prediction.

My personal view is that parameterization of the full mesoscale eddy
spectrum is a hopeless challenge. We can certainly improve on existing
parameterizations. Low-resolution climate models will still be necessary
tools in the future, because (fortunately) many aspects of the long-term
climate response are robust with respect to details of mesoscale eddy ef-
fects. On the other hand, growing computer power will help us to resolve
a larger part of the mesocale eddy spectrum in forecast models. It is
therefore very important to improve our knowledge of the sub-mesoscale
dynamics and develop suitable parameterizations. In this respect, it is
quite possible that progress will be easier to achieve in the ocean than
in the atmosphere. Atmospheric climate models resolve a large part of
the synoptic scale eddies and use crude parameterizations of the subgrid
scale dynamics. This is because subgrid scale physics linked to atmo-
spheric moisture (cloud physics, radiation) play a more important role
in climate than purely dynamical subgrid scale effects. Ocean models do
not have this additional level of complexity and may be a more suitable
framework to develop parameterisations for the dynamics, which would
fully take into account the spatial inhomogeneity of the mesoscale eddy
field.
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