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Abstract

In light of the pressing need for development and testing of reliable parameterizations of

gravity current entrainment in ocean general circulation models, two existing entrainment

parameterization schemes, K-Profile Parameterization (KPP) and one based on Turner’s

work (TP), are compared using idealized experiments of dense water flow over a constant-

slope wedge using the HYbrid Coordinate Ocean Model (HYCOM). It is found that the

gravity current entrainment resulting from KPP and TP differ significantly from one an-

other. Parameters of KPP and TP are then calibrated using results from the high-order

nonhydrostatic spectral element model Nek5000. It is shown that a very good agreement

can be reached between the HYCOM simulations with KPP and TP, even though these

schemes are quite different from each other.

1. Introduction

Most deep and intermediate water masses of the world ocean are released into the large-

scale circulation from high-latitude and marginal seas in the form of overflows. For reasons

of mass conservation, this downward transport implies upwelling elsewhere in the ocean,

and the resulting overturning circulation affects the large-scale horizontal flow through the

stretching term in the vorticity balance (e.g., Gargett, 1984). Model representations of

overflows thus determine more than just the properties of intermediate and deep water

masses in the ocean. With this background, it is easy to comprehend why ocean general

circulation models (OGCMs) are highly sensitive to detail of the representation of overflows

in these models (e.g., Willebrand et al., 2001). Specifically, the entrainment of ambient

waters into overflows is a prominent oceanic processes with significant impact on the ocean

general circulation, and the climate in general.

Parameterizing the gravity current entrainment in coarse-resolution OGCMs has proven

to be challenging. Recent simulations of the Mediterranean overflow employing isopycnic co-

ordinates (Papadakis et al., 2003) and terrain-following coordinates (Jungclaus and Mellor,

2000) appear promising, while the representation of continuous slopes as steps in geopoten-

tial vertical coordinate models remains a daunting problem (e.g., Beckmann and Döscher,

1997; Winton et al., 1998; Killworth and Edwards, 1999; Nakano and Suginohara, 2002).
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In this paper we exclusively focus on entrainment parameterization in isopycnic coordinate

models. Isopycnic models have a vertical resolution that naturally migrates to the den-

sity front atop the gravity current, and the amount of diapycnal mixing can be exactly

prescribed (i.e., no numerically-induced diapycnal mixing takes place as in geopotential co-

ordinate models, e.g., Griffies et al. 2000). We conduct and analyze a series of numerical

simulations of overflows by employing parameterizations of the entrainment simple enough

to be used in coarse-resolution climate models integrated over long time periods. Our choice

of parameterization is pragmatic, motivated by frequent current use in OGCMs. Wanting

to examine simple parameterizations first, we deliberately ignore the more complex, and

computationally-expensive schemes, such as two-equation turbulence closures, applications

to overflows being those of Jungclaus and Mellor (2000), and Ezer and Mellor (2004).

One of the schemes examined herein is the K-Profile Parameterization, KPP (Large et

al., 1994, 1999). Its non-local treatment of convection plays no role in overflows, and for

our purposes, KPP is basically a modification of the recipes of Pacanowski and Philander

(1981) and Munk and Anderson (1948), the latter ultimately going back to observations

taken about a century ago and analyzed by Jacobsen (1913). In these recipes, eddy viscosity

and eddy diffusivity are specified as a dimensional constant times a simple analytical function

of the gradient Richardson number. The constant is the maximum possible eddy coefficient.

Accordingly, the scheme cannot possibly be universally valid.

The other parameterization, henceforth referred to as TP, was adopted by Hallberg (2000)

from the laboratory experiments of Turner (1986) and Ellison and Turner (1959). Their

original work contains an analysis of the entrainment velocity into gravity currents as function

of the bulk Richardson number of this current. Ingeneously, Hallberg simply translated the

bulk Richardson number into a gradient Richardson number (Ri). Rather than prescribing

eddy coefficients as in KPP, TP thus prescribes the net entrainment velocity into a layer as

the velocity difference across the layer times an analytical function of the gradient Richardson

number. Unlike KPP, TP is hence proportional to the forcing by the shear. TP has been

implemented and tested in two isopycnic OGCMs, HIM (Hallberg Isopycnic coordinate ocean

Model; Hallberg, 2000) and MICOM (Miami Isopycnic Coordinate Ocean Model; Papadakis

et al., 2003).
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The evaluation of the realism of mixing parameterizations in OGCMs obviously requires

some ground truth. In this paper, we bypass the commonly significant difficulties of compar-

ing models to field observations by taking the recent three-dimensional (3D) high-resolution

nonhydrostatic simulations of a generic overflow by Özgökmen et al. (2004a) as our ground

truth. This model resolves the largest turbulent eddies, and, being nonhydrostatic, is phys-

ically quite complete. Results from this high-resolution, nonydrostatic simulations are com-

pared to those from a hydrostatic, layered OGCM such that the validity of the parameteri-

zation schemes can be examined. Our approach is as follows: by comparing the results from

nonhydrostatic model to those from OGCM, we quantify the differences and limitations of

the two examined Richardson number-dependent parameterizations, understand why and

how these parameterizations can be modified to produce consistent results. Finally, we

discuss remaining problems with both schemes.

The paper is organized as follows. Relevant background information is given in section 2.

In section 3, the details of the mixing parameterizations KPP and TP are introduced. The

nonhydrostatic model and the hydrostatic OGCM are introduced in section 4 along with the

experimental setup, and the model parameters are discussed. The results are presented in

section 5. Finally, the principal findingss are discussed, and future directions are summarized

in section 6.

2. Background

A few additional remarks on the physics of overflows and their past analyses as well as on

the models employed herein facilitate the understanding of this paper. The seminal inves-

tigations by Price et al. (1993, 1994) reveal that the mixing of overflows with the ambient

fluid takes place over very small spatial and time scales. Results from observational programs

in the Mediterranean Sea overflow (Baringer and Price, 1997a,b), Denmark Strait overflow

(Girton et al., 2001; 2003), Red Sea overflow (Peters et al., 2004a,b), Faroe Bank Chan-

nel (Price, 2004) and Antarctic Ocean (Gordon et al., 2004) demonstrate the importance

of small-scale mixing processes in the dynamics of overflows, and frequently show a high

variability of overflow properties in time and space. Detailed, quantitative field observations

of the turbulent mixing in overflows are still few (Johnson et al., 1994a,b; Peters and Johns,
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2004).

Hence, much of our present understanding of such mixing is derived from laboratory tank

experiments (Ellison and Turner, 1959; Simpson, 1969; Britter and Linden, 1980; Simpson,

1982; Turner, 1986; Simpson, 1987; Hallworth et al., 1996; Monaghan et al., 1999; Baines,

2001; Cenedese and Whitehead, 2004). However, when configured for the small slopes of

observed overflows [< 2o], the dense source fluid cannot accelerate enough within the bounds

of typical laboratory tanks [O(1 m)] to produce turbulent behavior. For turbulence to occur,

laboratory experiments are configured with slopes greater than 10o. It is further difficult

to maintain a complex ambient stratification in these tanks. Ellison and Turner (1959)

and Turner (1986) parameterized the entrainment rates observed in their tank experiments

as functions of bulk Richardson numbers of the flow. Their approach formed the basis

for Hallberg’s (2000) TP parameterization. The original Turner parameterization has been

employed in so-called stream tube models, which have proven to be useful in examining the

path and bulk properties of the Denmark Strait overflow (e.g., Smith, 1975), Weddell Sea

overflow (Killworth, 1977), the Mediterranean overflow (Baringer and Price, 1997b) and Red

Sea and Persian Gulf overflows (Bower et al., 2000).

With the recent advances in numerical techniques and computer power, numerical mod-

eling provides an alternative avenue to investigate these processes. Nonhydrostatic, high-

resolution, two-dimensional simulations of bottom gravity currents conducted by Özgökmen

and Chassignet (2002) capture explicitly the major features of these currents seen in labora-

tory experiments, such as the presence of a head in the leading edge and Kelvin-Helmholtz

vortices in the trailing fluid. Subsequently, this model was used to simulate the part of

the Red Sea outflow in a submarine canyon, which naturally restricts motion in the lateral

direction such that the use of a two-dimensional (2D) model provides a reasonable approxi-

mation to the dynamics. It was shown (Özgökmen et al., 2003) that this model adequately

captures the general characteristics of mixing in the Red Sea overflow within the limitations

of a 2D model. These limitations include lack of edge effects or intrusions from channel

walls associated with the span wise structure. Recently, a parallel high-order spectral el-

ement Navier-Stokes solver, Nek5000, developed by Fischer (1997), was used to conduct

nonhydrostatic 3D simulations of bottom gravity currents (Özgökmen et al., 2004a,b).
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In this study, our objective is to explore how mixing parameterizations perform in an

idealized setting that represents the very basics of shear-induced mixing in bottom grav-

ity currents, e.g. flow of a dense water mass released at the top of a sloping wedge. To

this end, we conduct experiments with a layered hydrostatic OGCM, HYCOM (HYbrid Co-

ordinate Ocean Model), employing KPP and TP, and compare the results to those from

high-resolution 3D nonhydrostatic simulations by Özgökmen et al. (2004a). We start out

from the questions (a) how the results from KPP and TP compare to each other and to those

from the 3D nonhydrostatic simulations, and (b) how the results change and/or converge

as a function of the grid spacing. Discussing our results, we examine what the principal

limitations of the KPP and TP parameterizations are and how can they be developed into

a consistent formulation for use in layered ocean models.

3. Mixing parameterizations

3.1. KPP

The K-Profile Parameterization (Large et al., 1994, 1999; KPP) provides a prescription

for mixing from surface to bottom, smoothly matching large values of the eddy diffusivity

(K) in the surface boundary layer to small values in the interior of the ocean. KPP has been

popular because it includes prescriptions for a fairly wide range of physical processes, shear-

driven mixing in low-Ri regions, constant background internal-waves induced mixing allowing

counter-gradient fluxes. Herein, only the shear-induced mixing is important, a component of

KPP that was not specifically tailored to gravity currents. Shear-driven mixing is expressed

in terms of the gradient Richardson number Ri calculated at layer interfaces:

Ri = N 2

[

(
∂ū

∂z
)2 + (

∂v̄

∂z
)2

]

−1

, (1)

where the numerator is the buoyancy frequency, N 2 = − g
ρ0

∂ρ
∂z

, written here for an incom-

pressible fluid for simplicity, and where g = 9.81 m2s−1 is the gravitational acceleration. The

denominator in (1) is the vertical shear. The vertical diffusivity is then related to Ri as

Kshear = Kmax ×
[

1 − min(1 , (
Ri

Ric
))2

]3

(2)

so that vertical diffusivity is zero when Ri ≥ Ric corresponding to the case in which stratifi-

cation overcomes the effect of vertical shear and prohibits vertical mixing (Fig. 1a). In this
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case, mixing can only take place in the horizontal plane, or as so-called “pancake” mixing

demonstrated in laboratory experiments of stratified flow (e.g., Fernando, 2000). Ric is set

to Ric = 0.7.

With decreasing Ri < Ric, the vertical diffusivity coefficient gradually increases to ac-

count for mixing induced by high vertical shear and/or weaker stratification. At the limit

of Ri = 0, mixing takes place as in homogeneous (unstratified) fluid. The concept behind

this component of KPP is taken from Pacanowski and Philander (1981), but the shape of

the mixing curve in KPP was adjusted to show better agreement with observational results

from equatorial mixing by Gregg et al. (1985) and Peters et al. (1988) for the regime of

0.3 ≤ Ri ≤ 0.7. The diffusivity value at Ri = 0 was determined from large eddy simulation

(LES) studies of the upper tropical ocean as Kmax = 50 cm2 s−1 (e.g., Large, 1998).

The boundary shear stress component of KPP can be invoked to account for the bottom

stress in the bottom boundary layer (BBL):

Kshear = hb wS GS . (3)

Here, hb is the bottom boundary layer thickness, estimated as the total thickness of layers,

counted from the bottom, in which the Richardson number remains lower than the critical

value. The velocity scale wS is a linear function of the friction velocity which is proportional

to the square root of the bottom stress ρcd|ub|ub, where cd = 3× 10−3 and ub is the bottom

velocity. GS is a third-order smooth shape function to match with the interior profiles. The

reader is referred to Large et al. (1994) for further detail on KPP, and to Halliwell (2004)

on the numerical implementation of KPP in HYCOM.

3.2. TP

Based on the results and parameterization by Turner (1986) and Ellison and Turner

(1959), Hallberg (2000) developed a mixing parameterization, in which the net entrainment

velocity into layers in gravity currents wE is expressed as

wE =











CA∆U(0.08 − 0.1Ri)/(1 + 5Ri) if Ri < 0.8

0 if Ri ≥ 0.8 ,
(4)

where ∆U is the mean velocity difference across layers, CA = 1 is a proportionality constant,
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and the cut-off Richardson number is Ric = 0.8. The reader is referred to Hallberg (2000)

for further detail of the numerical implementation.

Because both TP and KPP employ functions of Ri, there is similarity between the pre-

scriptions of shear-driven mixing in TP (4) and KPP (2). Fig. 1a,b depicts the different

shapes of the mixing curves and the different values of the critical Ri. An important differ-

ence lies in the hard limit K ≤ Kmax in KPP and the absence of any such limit in TP.

4. The numerical models and experimental configuration

4.1. Nonhydrostatic 3D model Nek5000:

Results from the high-order parallel spectral element Navier Stokes solver, Nek5000, are

used as a reference. This model is documented in detail by Fischer (1997), Fischer et al.

(2000), Tufo and Fischer (1999), and Fischer and Mullen (2001). A short description of the

model in the context of bottom gravity current experiments can also be found in Özgökmen

et al. (2004a).

Nek5000 is a state-of-the-art general computational fluid dynamics code (see http://www-

unix.mcs.anl.gov/∼fischer/ for applications) that is based on the spectral element method

(SEM), and offers several fundamental advantages with respect to the more common numer-

ical discretization techniques (finite-difference, finite-element, finite-volume and spectral);

(a) SEM combines the geometrical flexibility of finite element method with the numerical

accuracy of spectral expansion (e.g., the geometrical flexibility of SEM has been exploited to

explore the behavior of bottom gravity currents over complex topography in Özgökmen et

al. 2004b); (b) SEM has minimal dissipation and dispersion errors, which are important in

problems involving propagation of high gradients and mixing, such as in the present prob-

lem; (c) SEM provides dual path to convergence, either via elemental grid refinement or by

increasing the polynomial degree; (d) SEM offers computational advantages for scalability

on parallel computers (Tufo and Fischer, 1999).

In the present setup, Nek5000 is configured to solve the Boussinesq equations:

Du

Dt
= −∇p + ∇2

ru − RaS ẑ , (5)

∇ · u = 0 , (6)

DS

Dt
= Pr−1 ∇2

rS , (7)
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where the material (total) derivative is D
Dt

:= ∂
∂t

+ u · ∇, and the anisotropic diffusivity is

∇2
r :=

∂2

∂x2
+

∂2

∂y2
+ r

∂2

∂z2
. (8)

The variables are the velocity vector field u = (u, v, w) and the pressure p, and the nondimen-

sional parameters are Ra = (g β ∆S H3)/ν2
h the Rayleigh number, the ratio of the strengths

of buoyancy and viscous forces, where H is the domain depth and ∆S is the salinity range

in the system, β = 7 × 10−4 psu−1 is the salinity contraction coefficient (a linear equation

of state is used); Pr = νh/Kh the Prandtl number, the ratio of viscous and saline diffusion;

and r = νv/νh = Kv/Kh, the ratio of vertical and horizontal diffusivities.

4.2. Hydrostatic ocean model HYCOM:

The development of Hybrid Coordinate Ocean Model (HYCOM) was motivated by the

fact that no single vertical coordinate - depth, density, or terrain-following - can be by it-

self optimal everywhere in the ocean. The default configuration in HYCOM is one that is

isopycnal in the open stratified ocean but smoothly reverts to a terrain-following coordinate

in shallow coastal regions and to fixed pressure-level coordinates in the surface mixed layer

and unstratified seas. In doing so, the model ideally combines the advantages of the different

types of coordinates in simulating coastal and open ocean circulation features. The basic

principles of this generalized vertical coordinate model are described in Bleck (2002), Chas-

signet et al. (2003), and Halliwell (2004), and detailed documentation is readily available

from http://hycom.rsmas.miami.edu.

4.3. Experimental configuration:

In Nek5000, the model domain has a horizontal (stream wise) length of Lx = 10 km

and a span wise width of Ly = 2 km. The depth of the water column ranges from 400

m at x = 0 to H = 1000 m at x = 10 km, hence the background slope angle is θ =

3.5◦ (Fig. 2a). The boundary conditions at the bottom are no-slip and no-normal flow

for the velocity components, and no-normal flux, ∂S/∂n = 0, with n being the normal

direction to the boundary, for salinity. Rigid-lid and free-slip boundary conditions are used

at the top boundary. The model is driven by the velocity and salinity forcing profiles at

the inlet boundary at x = 0. The model is initialized by using a salinity distribution of the
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(dimensional) form

S(x, y, z, t = 0) =
∆S

2
exp





−






x

Lx

(

1 + 0.1 sin(π y
H

)
)







20






[

1 − cos
(

π
H − z

0.4H

)]

.

The sinusoidal perturbation in the spanwise direction facilitates the transition to 3D flow.

A section of the initial salinity profile across the middle of the domain (Fig. 2b) shows that

the initial thickness of the dense water mass is h0 = 200 m. The velocity distribution at the

inlet matches no-slip at the bottom and free-slip at the top in such a way that the depth-

integrated mass flux across this boundary is zero. The amplitude of the inflow velocity

profile scales with the propagation speed of the gravity current, which is zero at t = 0 and

reaches a constant value UF shortly after its release such that the bulk Froude number is

near critical, Fr ≡ UF /
√

gβ∆S h0 ≈ 0.9, which is characteristic for overflows emanating

from narrow straits (e.g., Price et al., 1994; Murray and Johns, 1997). As the interior

is initialized with homogeneous, light (S = 0) water, the density front propagation is the

fastest signal in the system. Density currents reach the exit boundary after about 10,000 s,

at which point the integrations are terminated such that potential complications involving

the outflow boundary are avoided, albeit with the limitation of focusing only on the start-up

phase of plumes rather than those in a statistically steady state. Finally, periodic boundary

conditions are applied at the lateral boundary. The domain is discretized using 4000 elements

with 10th-order polynomials in each spatial direction within the elements, hence a total of

4 × 106 grid points are employed. The remaining model parameters are listed in Table 1

and the reader is referred to Özgökmen et al. (2004a) for more detailed discussion. The

calculations were carried out on a Linux cluster running on 32 Athlon 1.7 GHz processors,

and it takes approximately 9 days to complete (simulated to real-time ratio of ≈ 1/60).

In HYCOM experiments, the model parameters and the physical conditions of the model

are set as closely as possible to those in Nek5000 for the comparison. Two major changes

are made in the domain configuration of HYCOM experiments. First, the sloping portion

of the domain is extended from 10 km to 20 km (while keeping θ = 3.5◦) in order to obtain

more reliable estimates of the entrainment parameters (Fig. 3a). Second, an inlet system

is designed using a reservoir of 10 km length, initially filled with dense water (Fig. 3b).

Shortly after the dam break (at t = 15 mins, Fig. 3c), the system becomes nearly equivalent
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to the initial conditions used in Nek5000 (Fig. 1b) without the use of velocity boundary

conditions, and in a fashion consistent with changes in grid spacing. The reservoir contains

an adequate amount of dense water for the sloping portion of the domain. Free surface

boundary conditions are used at the top boundary, and a quadratic drag law with a drag

coefficient of cd = 3 × 10−3 is applied at the bottom. Free-slip boundary conditions are

applied at the lateral boundaries.

One of the objectives of the present study is to explore the behavior of gravity current

simulations in HYCOM as a function of grid spacing. Five different horizontal resolutions are

used: ∆x = ∆y = 1000, 500, 100, 50, and 20 m. The gradual strengthening of nonhydrostatic

effects limited the minimum grid spacing to ∆x = 20 m. The horizontal viscosity changes in

HYCOM in proportion to grid spacing as ν = max

{

ud ∆x,
[

(

∂u
∂x

− ∂v
∂y

)2
+

(

∂v
∂x

+ ∂u
∂y

)2
]1/2

∆x2

}

,

where ud = 2 cm s−1. Finally, experiments were conducted for both 5 and 11 layers, but since

there was no significant difference, we only present results from the 5-layer runs in the fol-

lowing. The main parameters for HYCOM experiments are summarized in Table 2.

One important factor in the dynamics of oceanic overflows is rotation. The scale at

which the Coriolis force becomes comparable to the buoyancy force is a complex function

of the slope angle, stratification, and friction (e.g., Griffiths, 1986). A simple spatial scale

for rotational effects to become important is given by the radius of deformation
√

g′h/f ,

which, with the stated experimental parameters, is approximately 17 km at midlatitude, as

compared to domain lengths of 10 or 20 km. The rotation time scale is f−1 ≈ 15000 s, while,

as shown below, the gravity currents cross the domain in ≈ 10000 or 20000 s. Hence, the

results presented here apply to the phase before the impact of rotation starts influencing the

flow patterns.

Given that in some overflows the bulk of the entrainment takes place over a very small

distance (e.g., over a distance of approximately 40–50 km in the Mediterranean Sea over-

flow according to Figure 7a of Baringer and Price, 1997b), in the high-resolution studies of

Özgökmen and Chassignet (2002), Özgökmen et al. (2003) and Özgökmen et al. (2004a,b) it

was considered important that the detail of such entrainment be captured. In this sense this

study complements other process studies focusing on the larger-scale behavior (e.g., Ezer

and Mellor, 2004).
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5. Results

5.1. Description:

The evolution of the salinity distribution in the Nek5000-experiments is shown in Fig. 4.

The system is initialized as described in section 4.3. The initial development of the system

is that of the so-called lock-exchange flow (e.g., Keulegan, 1958; Simpson, 1987), in which

the lighter fluid remains on top and the denser overflow propagates downslope. The dense

gravity current quickly develops a characteristic “head” at the leading edge of the current

(Fig. 4b). The head is half of a dipolar vortex, which is a generic flow pattern that tends

to form in two-dimensional systems by self-organization of the flow (e.g., Flierl et al., 1981;

Nielsen and Rasmussen, 1996), and which corresponds to the most probable equilibrium state

maximizing entropy (Smith, 1991). The head grows and is diluted as the gravity current

travels further down the slope, the result of entrainment of fresh ambient fluid. The flow along

the leading edge of the current is composed of a complex pattern of so-called lobes and clefts

that are highly unsteady (Fig. 4c,d) and well-known features from laboratory experiments

tracing back to the work of Simpson (1972). It was conjectured, e.g.,by Simpson (1987)

that a gravitational rise of the thin layer of light fluid which the gravity current overruns is

responsible for the breakdown of the flow at the leading edge. Recently, Härtel et al. (2000)

put forth that instability associated with the unstable stratification prevailing at the leading

edge between the nose and stagnation point of the front could also account for this behavior.

In the trailing fluid, the initial instabilities appear to be 2D Kelvin-Helmholtz rolls that

span the entire width of the domain (Fig. 4c). These rolls gradually exhibit transition

to 3D (Fig. 4d). The development of spanwise instabilities in Kelvin-Helmholtz rolls was

investigated by Klaassen and Peltier (1991), who classified them into two categories. The first

are dynamical secondary instabilities that tend to initiate in the vortex core and the interface

between strongly rotational and weakly rotational fluid and that develop independently at

different growth rates. The second category are convective secondary instabilities in the

statically unstable regions, which develop as the interface between the two streams overturns.

Because of these instabilities, Kelvin-Helmholtz billows cannot preserve their coherence in

the lateral y-direction, and break down. In contrast, Kelvin-Helmholtz billows in 2D can

grow by pairing (e.g., Corcos and Sherman, 1984). Therefore, Kelvin-Helmholtz billows in
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3D result in smaller coherent overturning structures than those in 2D, and consequently, the

entrainment parameter in 3D simulations was found to be smaller than that in 2D (Özgökmen

et al., 2004a). Finally, a span-wise averaged salinity distribution is depicted in Fig. 5 for a

visual comparison to results from HYCOM experiments.

In HYCOM experiments, mixing of the bottom gravity current with the ambient fluid

entirely depends on the mixing parameterizations, in the absence of which, none would occur

by design. Results using KPP and TP at coarse resolution of ∆x = 1000 m are illustrated in

Fig. 6. At t = 4950 s (Fig. 6a, corresponding approximately to Fig. 4c; note that in HYCOM

the sloping part of the domain is twice as long as that in Nek5000), there is formation of a

characteristic head using KPP. The head grows in time and breaks into two parts before the

gravity current reaches the end of the domain at t = 13050 s (Fig. 6b,c). In contrast, the

growth of the head is nearly absent in the experiment with TP (Fig. 6d,e,f). Clearly, there

is significantly more entrainment and dilution of the gravity current resulting in a much

slower propagation speed of the gravity current in the experiment with TP than that with

KPP. There is no significant variation in y-direction in either experiment so that they are

effectively 2D, as are the geometry, forcing and initial conditions.

Results from KPP and TP at fine resolution of ∆x = 20 m are shown in Fig. 7. At

this resolution, KPP results in a great deal of fine-scale structure in the tail of the gravity

current. As shown by Gallacher and Piacsek (2004), this fine-scale behavior occurs because

of the hydrostatic approximation, which is shown to lead to unphysical noise related to the

overestimation of the vertical velocity at high horizontal resolution. (This noise is more

significant in KPP than in TP, but both cases are unstable for ∆x ≤ 10 m.) TP at this

resolution yields a head at the leading edge, which is smaller than that in KPP. The main

result remains the same in general; there appears to be a significant difference in entrainment

resulting from these two schemes in that TP results into substantially more entrainment than

KPP.

It is also well-known that bottom gravity currents propagate with a constant speed pro-

vided that the input flux is constant. In this flow the gravitational force is balanced by

a combination of bottom friction and entrainment (e.g., Britter and Linden, 1980). Fig. 8

shows the position of the density front as a function of time, XF (t), in experiments with KPP
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and TP. In all experiments, the speed of propagation, UF = dXF (t)/dt, is approximately

constant. When scaled with the speed of long internal waves,
√

g′h0 = 1.18 ms−1, where

g′ = g β ∆S ≈ 7 × 10−3 ms−2 and h0 = 200 m, UF /
√

g′h0 = 0.92 in the case of TP, and

UF /
√

g′h0 = 1.23 in the case of KPP in coarse resolution (∆x = 1000 m) experiments. This

difference in propagation speed further emphasizes the difference in total entrainment from

TP and KPP schemes.

5.2. Entrainment:

Turner (1986) defined an entrainment parameter in bottom gravity currents as the change

of the dense flow thickness h along the streamwise direction X,

E ≡ dh

dX
, (9)

a 2D expression, which can be mapped to 3D flows as (Özgökmen et al., 2004a),

E(t) ≡ h(t) − h0(t)

`(t)
, (10)

where `(t) = L−1
y

∫ Ly

0 XF (y′, t) dy′ − x0 is the spanwise-averaged length of the dense overflow

measured between the reference station x0 and the leading edge XF (y, t), h(t) is the total

(with entrainment) mean thickness estimated from

h(t) ≡ 1

`(t) Ly

∫ Ly

0

∫ XF (y′,t)

x0

h(x′, y′, t) dx′ dy′ , (11)

between a reference station of x0 and the leading edge of the density current XF . The

overflow thickness h is calculated from

h(x, y, t) ≡
∫ zb

0
δ(x, y, z′, t) dz′ where δ(x, y, z, t) =











0, when S(x, y, z, t) < ε

1, when S(x, y, z, t) ≥ ε
. (12)

The salinity interface threshold value is taken as ε = 0.2 (psu), since in the case of Nek5000, it

is the lowest salinity value remaining as a coherent part of the gravity current (fluid particles

with lower salinity tend to detach from the current and be advected with the overlying counter

flow). Finally, h0(t) is the original (without any entrainment) mean thickness estimated from

h0(t) ≡
1

`(t) Ly

∫ t

0

∫ Ly

0

∫ zb

zb+h
u(x0, y

′, z′, t′) dz′ dy′ dt′ . (13)
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As E(t) accounts for the mixing process of the gravity current with the ambient flows, the

comparison of E(t) between the results from HYCOM and Nek5000 can diagnose the appro-

priateness of the vertical mixing parameters in the hydrostatic ocean models. In Özgökmen

et al. (2004a), it was found that the entrainment parameter converges to E ≈ 4 × 10−3 in

3D experiments, whereas E ≈ 9× 10−3 in 2D, because of the differences between 2D and 3D

turbulence discussed above. These results are plotted in Fig. 9 in comparison to HYCOM

experiments with KPP and TP carried out using five different horizontal grid resolutions.

Fig. 9a illustrates that the entrainment parameter of KPP converges to a mean value of

E ≈ 1 × 10−3, which is a significantly less than the value obtained from Nek5000. This

result is reasonably independent of the horizontal grid scale; while some oscillatory behavior

is evident with ∆x = 1000 m, and some underestimate is obtained with ∆x = 500 m, the

entrainment profiles are very similar with the resolutions of 100, 50, and 20 m.

In contrast, E(t) obtained from HYCOM with TP converges to E ≈ 8.5×10−3 (Fig. 9b),

which is in very good agreement with the estimate given by Turner as E = (5+θ)×10−3 for

θ = 3.5◦. While this entrainment parameter is in approximate agreement with the 2D results

from Nek5000, it is larger by a factor of 2 than the value from the 3D simulations. Similar

behavior to KPP with regard to the grid scale applies to TP as well; oscillatory convergence

is displayed with ∆x = 1000 m, slight underestimation of E results from ∆x = 500 m,

and nearly-identical results are obtained with ∆x = 100, ∆x = 50, and ∆x = 20 m. By

conducting experiments both with ∆t = 9 s and with ∆t = 1 s, it is found that the oscillatory

convergence of E(t) at ∆x = 1000 m is entirely related to spatial discretization.

5.3. Calibration of KPP and TP using Nek5000:

The computations discussed in section 5.2 clearly illustrate that, with their original pa-

rameters, KPP and TP lead to significantly different results. Further evidence why these

parameters should be considered tunable and why there is merit in considering a calibration

of the parameters of both KPP and TP relative to results from Nek5000 runs is provided in

the summary section further below.

Both KPP and TP have two parameters, the critical gradient Richardson number, above

which turbulent mixing terminates, and an amplitude parameter. We have not found signifi-

cant deviations from the results shown in Fig. 9a,b when Ric is changed by ±50%. However,

14



varying the respective amplitude parameters in TP and KPP causes large variations in model

outputs. Fig. 10 shows the results obtained by adjusting the coefficients Kmax and CA in

KPP and TP, respectively, such that E(t) approximately matches that obtained from 3D

Nek5000 experiments. Specifically, the rms deviation between E(t) in HYCOM with reso-

lutions of ∆x = 100m, 50m, 20m is minimized for 7000 s < t < 10000 s. This calibration

results in the optimized coefficient values of Kmax = 2500 cm2s−1 for KPP and CA = 0.15

for TP. Using these parameters, snapshots of the gravity current at the different times, and

from different horizontal resolutions, show good agreement between the results obtained with

KPP and TP (Figs. 11,12 and also Fig. 11b, 11e, 12b, 12e vs Fig. 5).

Fig. 13 shows the distribution of shear Richardson numbers along the flow direction

averaged over the spanwise direction for both the KPP and TP experiments at selected

horizontal resolution of ∆x = 100 m and at instant t = 13050 s. The comparison is performed

for layers 3 and 4 (out of 5) because Ri is not defined at the top and the bottom layers in

TP. Furthermore, the entrainment into layer 2 is weak. In KPP, Ri is defined at the layer

interfaces, whereas it is defined at the middle of the layers in TP. In order to remove this

difference, a linear interpolation was used to estimate Ri in the middle of the layers in KPP.

As shown in Fig. 13, Ri is mostly in the range of 0.1 to 0.2, which is quite small compared

to Ric. This finding explains why the overall results are insensitive to the value of Ric.

5.4. Further examinations:

In order to explore the sensitivity of our results to mixing induced by the bottom shear

stress, we explored the impact of the BBL formulation given in eq. (3) by running all

KPP experiments (5 different resolutions and 2 different Kmax) with and without BBL. No

difference has been found. Mixing takes place from above the gravity current, in agreement

with the picture put forth by Peters et al. (2004a) based on observations of the Red Sea

overflow in a narrow channel, in which the bottom properties are largely preserved, and

mixing is mostly confined to the shear layer above a thick and homogeneous bottom layer.

The BBL formulation thus does not play a role in the present set of numerical experiments,

but it might become more important in overflows subject to lateral spreading.

We have noted above that the laboratory experiments of Ellison and Turner (1959) had

rather large slope angles, much larger than in nature. This raised the question how well the

15



TP scheme handles different slope angles. In order to examine this issue, several additional

experiments have been conducted with slope angles of θ = 2◦ and θ = 1◦ using modified

KPP and TP formulations at a selected horizontal resolution of ∆x = 100 m. The results

indicate that entrainment curves E(t) from KPP remain virtually unchanged in response to

changes in the slope angle (Fig. 14a), while those from TP exhibit stronger variations. In

response to a 3.5-fold decrease of the slope angle, the equilibrium entrainment parameter

decreases by about 20% in TP (Fig. 14b).

6. Summary and discussion

Our understanding of the dynamics of overflows is based on the results of dedicated

observational programs in the Mediterranean Sea overflow (Baringer and Price, 1997a,b),

Denmark Strait overflow (Girton et al., 2001; 2003), Red Sea overflow (Peters et al., 2004a,b),

Faroe Bank Channel (Price, 2004) and Antarctic Ocean (Gordon et al., 2004), and also of

laboratory tank experiments (e.g., Ellison and Turner, 1959; Simpson, 1987; Hallworth et

al., 1996; Monaghan et al., 1999; Baines, 2001; Cenedese and Whitehead, 2004), and process

modeling studies (e.g., Özgökmen and Chassignet, 2002; Özgökmen et al., 2003; Özgökmen

et al., 2004a,b). It is important that this knowledge is incorporated in OGCMs in the form

of appropriate mixing parameterizations.

In this study, experiments are conducted using an OGCM, HYCOM, in an idealized

setting that represents the basics of shear-induced mixing in bottom gravity currents, that

is, the flow of a dense water mass released at the top of a wedge, which is 20 km long, 2

km wide, and has a slope of θ = 3.5◦ with respect to the horizontal. Similar experiments

have been carried out by Özgökmen et al. (2004a) using a high-order nonhydrostatic spectral

element model, Nek5000, a general Navier-Stokes solver developed by Fischer (1997). Our

HYCOM experiments are configured as similar as possible to the Nek500 setting, and are

conducted with 5 different horizontal resolutions of 1000m, 500m, 100m, 50m, and 20m. In

HYCOM, two mixing parameterizations are used, (i) KPP (Large et al., 1994, 1999), a class

of multi-purpose mixing algorithms which includes a shear-induced mixing scheme based on

results from Pacanowski and Philander (1981), and (ii) TP, which has been developed for

overflows by Hallberg (2000) based on laboratory results from Ellison and Turner (1959) and
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Turner (1986). Both schemes are based on the local gradient Richardson number, but they

differ in that a vertical diffusivity is used in KPP while the entrainment velocity is specified

in TP. We explore how results from HYCOM with KPP and TP compare to each other and

to those from Nek5000, and whether results change significantly as a function of the model

resolution.

It is found that KPP results in significantly less gravity current entrainment than that

in the reference experiment with Nek5000, while TP leads to significantly more entrainment

than both. Specifically, the entrainment parameter (defined in section 5.2) converges to

E ≈ 1 × 10−3 in experiments with KPP, E ≈ 8 × 10−3 in experiments with TP, whereas

E ≈ 4× 10−3 in the 3D experiment with Nek5000. The results are fairly independent of the

horizontal grid resolution. KPP and TP are then tuned using results from Nek5000, and it

is found that this requires an increase of Kmax from 50 cm2s−1 to 2500 cm2s−1 for KPP, and

a decrease of CA from 1 to 0.15 for TP.

Given that the parameters of KPP and TP needed to be changed significantly in order

for them to match the results from high-resolution nonhydrostatic 3D model runs, further

discussion of the structure of these parameterization schemes is needed. With respect to

the original experiments analyzed by Ellison and Turner (1959) and Turner (1986), which

underlie TP, one could raise questions concerning viscous effects of bottom and side bound-

aries in a very small tank 2 m long and 10 cm wide, and a flow only 10 cm deep. Other

questions concern the large slopes in the tank experiments, 12◦ ≤ θ ≤ 90◦, compared to

small angles, θ < 5◦ in nature. However, the fundamental reason why the parameter values

of Hallberg’s (2000) TP scheme have to be considered adjustable is that they were taken un-

changed from an algorithm employing the bulk Richardson number of a single-layer bottom

gravity flow and and applied in a new algorithm employing gradient Richardson numbers in

a multi-layered shear flow. The differences between these two physical settings are vast.

Numerical experiments by Papadakis et al. (2003) provide further incentive to tune TP.

They conducted simulations of the Mediterranean Sea outflow using HYCOM with TP with

encouraging results. However, in order to obtain a realistic path of the overflow and to

achieve the generation of subsurface eddies (Meddies), in a somewhat ad-hoc approach they

resorted to applying the TP scheme only every 144-th time step rather than at every step.

17



Further, when TP is used as a general shear-induced mixing parameterization in North

Atlantic simulations of HYCOM, it leads to unrealistically high mixing rates in the equatorial

regions.

Problems with KPP have also become obvious. The KPP-modeled Mediterranean out-

flow sinks far deeper than observations in recent high-resolution (1/12◦) simulations using

HYCOM, indicating that mixing induced by KPP is insufficient when directly applied to

overflows. We have already noted that KPP cannot be universally valid because of its sim-

plistic structure, a dimensional constant times a function of a nondimensional parameter, Ri.

Specifically, Kmax was determined from LES modeling of the diurnal cycle of surface mixed

layer at the equator subject to a specific forcing. Physical intutition leads to the expectation

that Kmax should vary with the strength of the forcing and that it should not be expected

that this particular value of Kmax to hold in bottom gravity current mixing.

Noting that the original development of KPP (Large and Gent, 1999) in addition to LES

simulations also contemplated the oceanic turbulence observations of Peters et al. (1988), we

reviewed their measurements in the light of our current study. Within the high-shear, low-Ri

setting of the Pacific Equatorial Undercurrent at 140oW, the 1984 Tropic Heat 1 Experiment

found much stronger mixing at night, when the ocean loses heat and the surface mixed layer

undergoes convection, than during daytime, when the solar heat input stabilizes the upper

ocean. Hence, in this environment the forcing of the turbulence has a nighttime maximum.

Fig. 15 depicts hourly averages of the eddy diffusivity of heat, Kh, as function of the local

Ri separately for daytime and nighttime. While the overall shape of the average curve

Kh = Kh(Ri) does not change significantly between day and night, nighttime adds large Kh

to the high-Kh end of the curve. This is like varying Kmax in KPP. Therefore, turbulence

parameterizations should include both a dependence on the forcing and a dependence on the

flow Richardson number. This requirement holds for TP but not for KPP.

The preceding requirement is consistent with common and accepted turbulence parame-

terizations more complex than KPP and TP. Two-equation turbulence closures of all varieties

(e.g., Mellor and Yamada, 1982; Baumert and Peters, 2004) represent the Ri-dependence as

“stability functions,” while the dependence on the forcing is handled by the pair of predic-

tive differential equations for the turbulent kinetic energy and another variable related to
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the turbulent length scale. Sub-grid scale schemes commonly employed in LES models are

similar, if simpler. Following, e.g., Smagorinsky (1963), Deardorff (1973), Schumann (1991),

and Stevens (2000), one can write

K = c l2 |S| f(Ri) , (14)

where S2 = ∂ui

∂xj
Dij (i, j = 1, 2, 3) is the resolved strain rate. Further, Dij = ∂ui/∂xj +

∂uj/∂xi denotes the resolved scale deformation using a grid spacing proportional to l (typ-

ically, l = (∆x∆y∆z)1/3), and c is an empirical constant. The effect of stratification is

incorporated by specifying a monotonously decreasing function that satisfies

f(Ri) =











1 for Ri = 0

0 for Ri ≥ Ric
. (15)

The detailed shape of this curve would require additional information about the mixing

process (e.g. as in the Peters et al. (1988) observations), but even a linear relationship could

suffice as a first-order approximation.

The key point is that the dynamical factor determining the amplitude of the mixing

coefficient at low Ri, which is a function of the resolved strain rate, l2 |S|, is replaced by a

peak diffusivity of K|Ri=0 = Kmax = 50 cm2s−1 in KPP, based on results from a physical

regime quite different than oceanic overflows. In contrast, by relating wE to ∆U , TP does

avoid a hard limit for peak effective diffusivity, and the implied diffusivity includes both

a dependence on the flow Richardson number and on the forcing via the resolved model

local velocity structure ∆U . This explains why the extrainment parameter in TP changes in

response to variations in the slope angle whereas KPP does not seem to show any response.

In future studies, it will be explored how KPP, a popular mixing model for many OGCMs,

can be modified to incorporate the dependence of mixing coefficients on the forcing for

overflow scenarios. Also, it needs to be further investigated how accurately TP captures the

dependence of the entrainment on the slope angle.

Finally, the environment used in this study – as well as in the experiments of Ellison and

Turner (1959) – is homogeneous, whereas ambient stratification can have a significant effect

on the nature of the mixing process and entrainment (e.g., Baines, 2001), and therefore the

dynamics of overflows. In order for mixing parameterizations to be applicable to the ocean,
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the effect of ambient stratification needs to be taken into account. This issue will also be

explored in the near future.
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Table 1: Parameters of the Nek5000 nonhydrostatic model simulation.

Domain Size (Lx, Lz = H,Ly) (104 m , 103 m , 2 × 103 m)

Slope angle θ = 3.5◦

Rayleigh number Ra = 5 × 106

Prandtl number Pr = 1

Diffusivity ratio r = 2 × 10−2

Salinity range ∆S = 1.0 psu

Number of elements (x, z, y) 50 , 8 , 10

Polynomial degree N = 10

Number of grid points 4 × 106

Time step ∆t = 0.85 s

Table 2: Parameters of the HYCOM simulations.

KPP TP

Domain Size (Lx, Lz = H,Ly) (3 × 104 m , 1.6 × 103 m , 2 × 103 m) same

Slope angle θ = 3.5◦ same

Mixing parameters Kmax = 50, 2500 cm2s−1 CA = 1, 0.15

Salinity range ∆S = 1.0 psu same

Horizontal resolution ∆x = ∆y = 20 , 50 , 100 , 500 , 1000 m same

Vertical resolution 5, 11 layers same

Time step ∆t = 1 , 9 s same



Figure 1: Mixing curves of KPP and TP. (a) Kshear (cm2 s−1) as a function of Ri in KPP,

and (b) wE/∆U as a function of Ri in TP.
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Figure 2: Configuration of experiments in Nek5000. (a) Schematic depiction of the domain

geometry and boundary conditions (length scale is in km). (b) Velocity profile at the forcing

boundary and the initial distribution of salinity. Distribution of elements is depicted in the

background.



Figure 3: Computational domain and initial conditions in HYCOM experiments. (a) Domain

geometry in 3D, (b) the initial salinity distribution (x−z plane), and (c) salinity distribution

at t = 15 min.
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Figure 4: Distribution of salinity surface 0.3 ≤ S ≤ 0.6 in Nek5000 at (a) t = 0, (b)

t = 2125 s (≈ 0.6 h), (c) t = 4675 s (≈ 1.3 h), (d) t = 9350 s (≈ 2.6 h).



Figure 5: Distribution of span-wise averaged salinity in Nek5000 at t = 9350 s.



KPP: TP:

Figure 6: Evolution of the distribution of salinity perturbation (S ′ = S − S0) in time in

HYCOM experiments (a) t = 4960 s, (b) t = 9450 s, and (c) t = 13050 s using KPP with

∆x = 1000 m, and (d), (e), (f) using TP.



KPP: TP:

Figure 7 : Evolution of salinity distribution in time in HYCOM experiments (a) spanwise-

average at t = 4960 s, (b) spanwise-average at t = 9450 s, and (c) spanwise-average at

t = 13050 s using KPP with ∆x = 20 m, and (d), (e), (f) using TP.



Figure 8: Position of the salinity front, XF (in m), as a function of time in HYCOM exper-

iments with (a) ∆x = 1000 m. Blue line: KPP with Kmax = 50 cm2s−1, green: KPP with

Kmax = 2500 cm2s−1, red: TP with CA = 1.0, and black: TP with CA = 0.15.



(a) E(t) in HYCOM-KPP vs Nek5000

(b) E(t) in HYCOM-TP vs Nek5000

Figure 9: Time evolution of entrainment parameters, E(t), in HYCOM experiments with

(a) KPP and (b) TP at different horizontal grid spacings; crosses: ∆x = 1000m, triangles:

∆x = 500m, circles: ∆x = 100m, diamonds: ∆x = 50m, squares: ∆x = 20m. Entrainment

parameters from 2D and 3D nonhydrostatic experiments with Nek5000 are shown in the

background, dotted: 2D, dashed: 3D.



(a) E(t) in modified HYCOM-KPP vs Nek5000

(b) E(t) in modified HYCOM-TP vs Nek5000

Figure 10: E(t) in HYCOM experiments with (a) modified KPP (Kmax = 2500 cm2s−1) and

(b) modified TP (CA = 0.15) at different horizontal grid spacings; crosses: ∆x = 1000m,

triangles: ∆x = 500m, circles: ∆x = 100m, diamonds: ∆x = 50m, squares: ∆x = 20m.

Entrainment parameters from 2D and 3D nonhydrostatic experiments with Nek5000 are

shown in the background, dotted: 2D, dashed: 3D.



KPP: TP:

Figure 11: Evolution of salinity distribution in time in HYCOM experiments with modified

parameterizations, (a) t = 4960 s, (b) t = 9450 s, and (c) t = 13050 s using modified KPP

(Kmax = 2500 cm2s−1) with ∆x = 1000 m, and (d), (e), (f) using modified TP (CA = 0.15).



KPP: TP:

Figure 12: Evolution of salinity distribution in time in HYCOM experiments with modified

parameterizations, (a) spanwise-average at t = 4960 s, (b) spanwise-average at t = 9450 s,

and (c) spanwise-average at t = 13050 s using modified KPP (Kmax = 2500 cm2s−1) with

∆x = 20 m, and (d), (e), (f) using modified TP (CA = 0.15).



Figure 13: The distribution of Ri along the flow direction averaged over the spanwise direc-

tion in the case of KPP in layers (a) 3 and (c) 4, and in the case of TP in layers (b) 3 and

(d) 4, at the selected horizontal resolution of ∆x = 100 m and at t = 13050 s.



(a) E(t) in modified HYCOM-KPP for θ = 1◦, 2◦, 3.5◦

(b) E(t) in modified HYCOM-TP for θ = 1◦, 2◦, 3.5◦

Figure 14: E(t) in HYCOM experiments with (a) modified KPP (Kmax = 2500 cm2s−1)

and (b) modified TP (CA = 0.15) at ∆x = 100m for different slope angles θ = 1◦ (black

lines), θ = 2◦ (blue lines), θ = 3.5◦ (red lines). Entrainment parameters from 2D and 3D

nonhydrostatic experiments with Nek5000 are shown in the background, dotted: 2D, dashed:

3D.
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Figure 15: Hourly averages from the 1984 Tropic Heat 1 Experiment in the Pacific Equa-

torial Undercurrent at 0o, 140oW, eddy diffusivity of heat versus arc tangent of the local

gradient Richardson number, (a) daytime data subject to oceanic heat gain and upper ocean

stabilization, (b) nighttime data subject to oceanic heat loss and mixed layer convection.

The data span the upper ∼150 m depth with the core of the Undercurrent and a minimum

in shear near 110 m. Note that the shape of the data scatter changes little between daytime

and nighttime, while more large Kh appear at the high-Kh end of the curve at night. The

vertical lines in (a) and (b) indicate Ri = 1/4.


