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ABSTRACT

The one-layer, reduced-gravity, also called equivalent-barotropic, model has been widely used in countless
applications. Although its validity is based on the assumption that a second, lower layer is sufficiently deep to
be dynamically inactive, the question of how deep that second layer ought to be has not yet received thorough
examination. When one considers the importance of the two processes excluded from the reduced-gravity
model, namely barotropic motion and baroclinic instability, the conventional choice of a second layer much
deeper than the first might be too simplistic.

A scaling analysis aimed at covering all two-layer regimes, geostrophic as well as ageostrophic, leads to a
double criterion, requiring that the total depth of fluid be much larger than either of two values. These values,
resulting from f~plane and $-plane dynamics, apply to the shorter and longer scales, respectively. A number of
numerical experiments on the propagation of eddies on the g-plane with various eddy radii and lower-layer
depths verify the applicability of the criterion. A final set of experiments with dipoles on the f~plane and 8-plane
also clearly illustrates the two sides of the criterion.

The rule for the validity of the reduced-gravity model can be summarized as follows. For characteristic
horizontal length scales of motion (e.g., eddy radius, wavelength, . . .) up to the deformation radius, it is sufficient
that the lower layer be much deeper (e.g., by a factor ten or so) than the upper layer. For length scales increasing
beyond the deformation radius, on both the /- and S8-planes, the reduced-gravity model rapidly loses its validity.
The model recovers its validity toward larger scales on the S-plane.
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1. Introduction

Rings, i.e., oceanic eddies with a scale of a few
hundred kilometers that detach from intense western
boundary currents, represent one of the most energetic
components of the world ocean mesoscale eddy field
(Olson et al. 1985; Olson and Evans 1986). The role
that these energetic features play in the general circu-
lation is thought to be significant. In particular, by vir-
tue of their formation process, eddies represent an ef-
ficient mechanism by which heat, salt and potential
vorticity are transferred across frontal zones, which
otherwise act as barriers to mixing between different
water masses. In order to understand fully their im-
portance on the world ocean circulation, however, it
is helpful first to examine their behavior in isolation.
In this study, rings are isolated in the sense that they
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are studied in the absence of boundaries and external
shear, but are allowed to interact with the surrounding
fluid. In most previous numerical works, the temporal
evolution of isolated rings has been described in the
framework of a particular approximation such as quasi-
geostrophic (QG), reduced-gravity (1Y» layer) or gen-
eralized geostrophic dynamics (Flierl 1977; Mc-
Williams and Flierl 1979; Nof 1981, 1983a; Smith and
Reid 1982; Davey and Killworth 1984; Cushman-
Roisin and Tang 1990). For a review of works on iso-
lated eddies on a B-plane, the reader is referred to Flierl
(1987) and McWilliams (1991).

The problem associated with QG dynamics is well
described by Flierl (1984 ) who states that “one of the
serious flaws in the standard quasi-geostrophic equa-
tions, commonly used for understanding the evolution
of mesoscale eddies, is the requirement that the change
of thickness between density surfaces must be small
compared to the mean thickness. In the case of warm-
core rings, the thickness of the thermostads may vary
from 500 m at the center to zero at the edge.” The
departure from QG dynamics in the ring behavior has
been explored in some detail by McWilliams et al.
(1986) using a balance-equation model (Norton et al.
1986). The standard was the more general and more
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complex primitive equations. The second approxi-
mation widely used to study the evolution of isolated
vortices is the reduced-gravity model (one active layer
over an infinite one) (Nof 1981, 1983a; Smith and
Reid 1982; Davey and Killworth 1984).

In this paper, we seek to investigate the validity of
the latter approximation and concentrate our attention
on the following question: How deep does the lower
layer of a two-layer system have to be to have a neg-
ligible influence on the dynamics of upper layer rings?
To our knowledge, this question has not yet been an-
swered, except in the very particular case of quasi-geo-
strophic dynamics (weak interface displacements) and
uniform potential vorticity in the lower layer (Polvani
et al. 1989). Yet, the answer to this question is im-
portant, for it would shed light on-the applicability of
the reduced-gravity model to the study of various
oceanic phenomena dominated by geostrophic dy-
namics such as eddies, jet meanders and other meso-
scale features.

Idealized isolated vortices overlying an infinitely
deep lower layer on a 8-plane translate toward the west
due to the B-induced drift (e.g., Flierl 1977; Nof 1981,
1983a; Cushman-Roisin et al. 1990). However, a finite
lower layer may significantly alter the rings’ migration
by introducing a form drag which, as frictional drag,
opposes the drift (Flierl 1984). Furthermore, they may
be vulnerable to baroclinic instability. Consequently,
it is expected that in the actual ocean the lower-layer
depth will play a rather important role in the ring’s
behavior. Specifically, it is expected that the form drag
will slow down the westward migration rate and will
introduce a significant meridional drift, or that the ring
will become unstable.

In order to study the transition regime between a
finite-depth system and the reduced-gravity approxi-
mation (infinitely deep second layer), a series of ex-
periments are performed with a primitive-equation,
isopycnic-coordinate two-layer numerical model whose
upper-to-lower layer depth ratio is varied from 1/5 to
1/1000. By varying the depth over such a wide range,
we shall be able to discern a lower-layer depth beyond
which the reduced-gravity approximation is valid. The
choice of the primitive equations has already been jus-
tified. ‘

The advantages of the isopycnic coordinate system
used here are first, that vertical resolution is concen-
trated in regions of strong horizontal density gradients
such as fronts and second, lateral diffusion is along
isopycnal surfaces, which are in general the preferred
mixing surfaces of the ocean (Iselin 1939; Montgomery
1940). The model is therefore free of any artificial de-
terioration due to cross-isopycnal numerical diffusion.
Finally, in this type of model, the specification of de-
sired initial conditions through the positioning of the
isopycnal surfaces is allowed and, in particular, the ini-
tial conditions of lenslike eddies; i.e. eddies where iso-
pycnals surface, can be reproduced. The model used
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in this study was originally developed by Bleck and
Boudra (1986). .

The layout of the paper is as follows. In section 2,
the model characteristics are reviewed, and a series of
experiments with varying depth ratio for lenses, cy-
clones and anticyclones is presented. Section 3 then
performs a scaling analysis of the two-layer system and
determines the conditions needed for the lower layer
to have a negligible influence on the dynamics of the
upper layer. In section 4, a comparison between the
numerical findings and the theoretical criterion is pre-
sented. Finally, the results are summarized in the con-
cluding section.

2. Impact of a finite layer on the ring’s behavior: Nu-
merical results

In this section, the ring’s behavior in a two-layer
system is investigated by using the isopycnic coordinate
numerical model of Bleck and Boudra (1986) confi-
gured in a two-layer, square domain on a 8-plane. The
eddy evolution is studied in detail as the layer depth
ratio & = H,/H is varied from 1/5 (realistic oceanic
ratio) to 1/1000 (“infinitely” deep lower layer), where
H, is the mean upper layer thickness and H, the total
depth. The model characteristics are first described in
section 2a. In section 2b, analytical expressions for the
westward drift of isolated eddies over an infinitely deep
lower layer are briefly reviewed for comparisons with
the numerical experiments of section 2¢ where the im-
pact of the variation of the ratio 6 on the ring’s behavior
is studied in detail. The initial conditions are kept
identical for all experiments, except for the varying
lower-layer thickness. Finally, section 2d investigates
the effect on the results of section 2c¢ of the lateral eddy
viscosity A, used in the numerical model.

a. The numerical model

The primitive equation, pure-isopycnic model of
Bleck and Boudra (1986) may be viewed as a stack of
shallow water models, each consisting of a momentum
and a continuity equation:

3
6—:+v-V,,v+£k><v

3
= -V, M+a é + Aph™V, BV, (1)

oh

™ +V,-(hv) =0,
where £ = { + fis the absolute vorticity ({ = vy — 1©,);
M = gz + pa is the Montgomery potential; £ is the
thickness of a layer of constant density; the specific
volume o = p~!; 7 is the wind stress and A,, is the
lateral viscosity. The subscript p indicates derivatives
on surfaces of constant density. The layers commu-

(2)



JuLy 1991

nicate vertically through hydrostatically transmitted
pressure forces. For more detail on the numerical
model, the reader is referred to Bleck and Boudra
(1986).

The model is configured in a two-layer 2000 km
X 2000 km square domain on a $-plane with a grid
spacing of either 20 or 10 km. Lateral boundary con-
ditions are free-slip everywhere. A rigid lid and a flat
bottom are chosen as upper and lower boundaries. The
model is initialized with a Gaussian distribution of the
upper layer thickness, h = H, + h,e™"/*L* where r is
the radius from the center, L, the radius of maximum
velocity and /,, the interface displacement at the eddy
center. This is not necessarily the most realistic param-
eterization of an oceanic eddy (Olson 1980), but it
does permit comparison with other studies (Mc-
Williams and Flierl 1979; Mied and Lindeman 1979;
Smith and Reid, 1982; McWilliams et al. 1986). The
velocities are initially in geostrophic balance in the up-
per layer and at rest below. This implies that, shortly
after initialization, there will be a readjustment of the
flow toward a gradient wind balance on the B-plane.
This slight imbalance in the initial conditions does not
affect the long-term evolution of the ring. The baro-
clinic motion of the two layers is coupled by the motion
of the interface, which produces vortex-tube compres-
sion in one layer and stretching in the other (Pedlosky
1987). The reduced gravity g’ is fixed and equal to
0.0196 m s~2. The values for f, and 8, are 9.3 X 1073
s7'and 2 X 107" m™' s™!, respectively. All numerical
simulations are 200 days long. The values for L and
h, are chosen to be 60 km and 500 m, respectively.
The lateral eddy viscosity A;, is maintained constant
at 330 m? s™!, except in section 2d. In the rest of the
paper, cyclones and anticyclones are defined as eddies
whose undisturbed depth does not vanish along their
rim while lenses are defined as anticyclonic eddies
whose isopycnals surface.

b. The westward drift of eddies over an infinitely deep
lower layer

Several expressions for the westward drift of eddies
over an infinitely deep lower layer have been derived
by different authors and they are briefly reviewed here
for comparisons with the numerical experiments of the
following section. The case of anticyclonic lenses was
first studied by Nof (1981) and Killworth (1983). It
was found that the essence of the drift is due to the
balance of an equatorward G-induced force by the
poleward Coriolis force associated with the drift. Cy-
clones and anticyclones were first discussed analytically
by Flierl (1977) and Nof (1983a). The latter showed
that, in addition to the two forces mentioned above, a
third force results from the upper-layer fluid circulating
around the eddy. Recently, using a scaling analysis
similar to that presented later in section 3, but for a
single layer, reduced-gravity model, Cushman-Roisin
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et al. (1990) derived another expression for the west-
ward propagation. The latter becomes identical to
Nof’s formula when the geostrophic approximation is
made and is obtained with fewer restrictions, namely
the eddy does not have to keep a constant shape and
to move westward at a constant speed. On the other
hand, the centrifugal force was not retained. There is
therefore a trade-off between the different theories. For
more details, the reader is referred to Nof (1983a) and
Cushman-Roisin et al. (1990).

Using the Cushman-Roisin et al. (1990) formula,
the westward drift can be simply expressed as B.R?
with R,? defined as g¢/H/f,> and H = H, + } X
JJ n*1 [ n, where 5 is the variation of the upper layer
thickness defined as # = H; + 5. Hence, it is possible
to state that an isolated eddy will translate at the speed
of a long Rossby wave defined from the undisturbed
depth corrected by half the average interfacial dis-
placement over the eddy. Cyclones will therefore move
slower (7 < 0) than the long Rossby wave speed 8,R,?
(calculated from the undisturbed depth) while anti-
cyclones (n > 0) will move faster, a result first pointed
out by Nof (1983a). In the particular case of lenses
(H, = 0), an outside long Rossby wave speed cannot
be defined and the lens will then travel at the speed
B.RA with H=4[[*/[[ n.

c. Variation of the layer depth ratio: Numerical exper-
iments

1) LENSES

In this case, the upper-layer thickness H, is set equal
to zero. The westward propagation speed of the lens
center (defined as the maximum interface displace-
ment) does not vary as the ratio 6 (defined as 4,/ H;)
changes. In all experiments, the lens is observed to
move slowly westward with no appreciable meridional
motion, except perhaps during an initial adjustment
period. If 6 is greater than 1/50, the lens becomes un-
stable. At the ratio 1/25, a perturbation with wave-
number 2 develops on the edge of the lens while with
aratio 1/10, the lens breaks into two pieces. Therefore,
as 6 increases, the coupling between the two layers in-
tensifies and generates baroclinic instabilities. For this
set of parameters, the ratio 1/50 appears to be small
enough for the lower layer to have a negligible impact
on the lens dynamics. For a review on the stability of
ocean vortices, the reader is referred to Ripa (1989).

Expressions for the westward drift speed of a lens
(see section 2b) were derived for the center of mass of
the eddy (C)), which is traditionally though to be a
good representation of the eddy, center. How good is
this approximation since the éddy center is generally
defined as being the extremum of either the.interface
displacement (7) or potential vorticity (g) distribution?
In order to compare the propagation rates of these three
centers (Cyr, C, and C,) in the lens case, their locations
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FIG. 1. Lens with § = 1/1000. Westward and meridional displace-
ment (a) and propagation speeds (b) of the center of mass Cy, (dot-
ted), interface displacement extremum C, (dashed) and potential
vorticity extremum C, (stars). Also represented are estimates of the
center of mass westward drift from Nof (1981) (solid dot) (using an
equivalent linear velocity profile) and Cushman-Roisin et al. (1990)
(solid line) (computed from the eddy structure).

versus time for the ratio 1/1000 are presented in Fig.
1a. The center of mass is located behind the eddy cen-
ter, defined from the interface displacement; C, is ob-
served to follow closely the center of mass. There is no
significant meridional motion for either of them, except
a slight poleward motion of C,. The zonal and merid-
ional velocities of the center of mass and eddy center
versus time are presented in Fig. 1b and are compared
to estimates of the center of mass westward drift (Nof
1981; Cushman-Roisin et al. 1990). The estimates
represent accurately the westward drift of the numerical
simulations ( center of mass or eddy center since both
move at approximately the same speed in this lens
case). That is to say, when the lower layer has negligible
effect (ratio & between 1/1000 and 1/50), the numer-
ical results are in agreement with the analytical pre-
dictions.

In the lens case, only the form drag of the lower
layer can induce a meridional drift because interactions
with an upper-layer wake are excluded by virtue of the
outcropping interface (Flierl 1984). Like a frictional
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drag, the form drag is directed in the opposite sense to
the migration, and there is no force to balance it until
the direction of migration is altered in such a manner
that a component of the $-induced force can oppose
it (Nof 1983b; Flierl 1984). This can be achieved in
the lens case only by the introduction of an equator-
ward drift. No appreciable meridional displacement is
observed in our numerical simulations. This result does
not agree with the analytical work of Flierl (1984)
which predicts a meridional velocity of 0.15 cm s ™! for
the Gaussian eddy and § = 1/50. This is not surprising
since the Flierl (1984) theory requires A = A, f,/ HB,L
< 1, a criterion not verified by the above numerical
experiment (A = 5).

2) ANTICYLCLONES AND CYCLONES

The upper layer thickness H, is now set equal to
1000 m, and the perturbation thickness 4, is chosen
either positive or negative. The propagation speeds for
both anticyclones and cyclones are presented in Fig, 2
as 6 varies. As & decreases, the westward translation
speed increases while the meridional drift decreases.
Both reach an asymptotic value for 6 < 1/50. A similar
result is obtained for the trajectories (Fig. 3) and for
the kinetic and available potential energies versus time
(Fig. 4). Anticyclones are observed to move faster than
the cyclones as discussed in section 2b.

To illustrate the difference of behavior in the pres-
ence of an “infinite” lower layer, the time evolution
of two anticyclones (Al and A2) and cyclones (C1 and
C2) with 6 = 1/5 and 6 = 1/1000, respectively, are
presented in Figs. 5a,b and 6a,b. They are consistent
with the previous results of McWilliams and Flierl

T Anticyclones'
zona! speed

Long wave speed

Cyclones'
r_ zonal speed

06

No
g_ Anticyclones'
~N meridional speed
o
! 02 -
or -
-024 -
Cyclones’
meridional speed /
-06 L 1

171000 17100 1710 |

S=H,/H

FIG. 2. Propagation speeds of both anticyclones and cyclones as
a function of the ratio § = H,/H. The Rossby radius of deformation
is defined by R; = Vg'H,/f,. Adapted-from Chassignet and Nof
(1989).



JuLy 1991

500 T T T T L L T T

Cyclones

8=1/10

- 4=
E 0_,__°Ty_s___a=mooo____._
ES

8:1/50

8=1/25
Anticyclones
-500 1 | 1 1 1 | 1 1 1
o 200 400 600 800 1000
x(km)

FIG. 3. Trajectories of the center (defined from the interface dis-
placement) for both anticyclones and cyclones as a function of the
ratios 6 = H,/H of Fig. 2.

(1979), Mied and Lindemann (1979), Smith and Reid
(1982), Matsuura and Yamagata (1982), Davey and
Killworth (1984) and McWilliams et al. (1986). The
major differences between Al and A2, on one hand,
and C1 and C2, on the other, are, as mentioned earlier,
a more rapid westward propagation speed and a smaller
meridional displacement. As the thickness of the lower
layer increases, the meridional displacement of the ring
decreases due to a smaller form drag of the lower layer
on the upper-layer eddy. In A2 and C2, the only factor
remaining important for the meridional displacement
is the interaction with the Rossby wave wake. If this
effect is suppressed, the ring should move purely west-
ward, which is precisely the case with a lens over an
“infinite” lower layer as shown previously. A major
difference between cyclones and anticyclones is that in
the experiment with the larger § value, the cyclones
have the tendency to succumb to baroclinic instability,
and to break in several pieces. This is the case for C1
(6 = 1/5) around day 100 as confirmed by a sustained
rise in lower layer kinetic energy (Fig. 4b) and a rapid
decrease in available potential energy (Fig. 4d). As the
ratio 6 decreases, the cyclones are more stable because
the coupling between the two layers becomes weaker
and baroclinic instability less effective. On the contrary,
anticyclones appear to be stable for all values of §. A
discussion on why anticyclonic eddies are, in general,
more robust than their cyclonic counterparts can be
found in Cushman-Roisin and Tang (1990).

In comparing the locations and propagation speeds
of the three centers (Cyy, C, and C,) for one simulation
with the ratio 1/1000 (anticyclone A2), the center of
mass is always found to be located ahead of the eddy
center, be it defined from the interface displacement
or potential vorticity. It also reveals almost no merid-
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ional displacement, while the eddy center (defined from
either C, or C,) exhibits a significant equatorward dis-
placement (Fig. 7a). The meridional drift of the center
of mass is almost zero, while the meridional drift of
the eddy center is significant. The meridional drift of
the center of mass therefore does not mimic accurately
that of the eddy center. In summary, the theoretical
propagation speed of the center of mass (see section
2b) is quite a good approximation for the westward
component of the drift, but is not for its meridional
component. The propagation of the energy centers
(weighted by either potential or kinetic energy) is dis-
cussed by Smith and Reid (1982). As in the lens case,
Nof (1983a) and Cushman-Roisin et al. (1990) esti-
mates of the westward drift for an infinitely deep lower
layer are in agreement with the numerical simulations
when the lower layer has negligible effect (ratio ¢ be-
tween 1/1000 and 1/100) (Fig. 7b).

Energy considerations can further illustrate the me-
ridional drift of isolated eddies. Since the Rossby-wave
radiation in the upper and lower layer and associated
form drag cause the eddies to loose energy, they tend
to approach their so-called “latitude of rest” (Larichev
1983 ) where, due to changes in the planetary vorticity,
their relative vorticity and, hence, kinetic energy van-
ish. If the center of the vortex is defined as the extre-
mum of potential vorticity, then the particle located
at the center should remain at the center in order to
conserve its potential vorticity. Expressing the potential
vorticity g of the particle at the center as

— .fl‘) + Boycenter + g‘center

Gcenter =

(3)

hcenter

where {is the vorticity of the particle, with geener CON-
stant, we can state that, at a certain time At later, the
change in Yeene: is given by

qcen T 1
AVeenter = = Ahgenter — 7 Afcenter- (4)
0 8,

B
This simple definition of Ayeene illustrates the poleward
and equatorward drift of the cyclones and anticyclones,
respectively. Indeed, radiation of energy implies a de-
crease in both the interface displacement and the mag-
nitude of the vorticity within the eddy. In the Northern
Hemisphere, for an anticyclone A# is negative and A¢{
positive (since { is negative), which therefore implies
from (4) a southward motion. On the contrary, for a
cyclone, Ak will be positive and A¢{ negative, therefore
implying a northward motion. Other mechanisms also
induce meridional motion (Chassignet 1989).
Cyclone Cl1 is a close approximation, except for the
value of the lateral viscosity, to the eddy in experiment
10 of Mied and Lindemann (1979). They did not find
any persistent structure for any length of time in the
lower layer. Their interpretation was that, in the limit
of H,/H, < 1, the lower ocean is decoupled from the
upper ocean. As shown above, when 6 < 1/50, the
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FI1G. 4. Kinetic and available potential energy for anticyclones and cyclones for the various thickness ratio & of Fig.
2. (a) and (b) Kinetic energy versus time. The upper and lower curves correspond to the upper and lower layer,
respectively. (¢) and (d) Available potential energy versus time.

influence of the lower layer on the upper layer vortex
seems to become negligible, but it can be seen in Figs.
5b and 6b that a compensating flow is always present
in the lower layer. This counter circulation is located
in the lower layer behind the upper layer ring. Mc-
Williams et al. (1986) found a similar result and at-
tributed this circulation as part of the radiation field.

d. Variation of the lateral eddy viscosity A,

In the previous section, the behavior of lenses, cy-
clones and anticyclones was discussed as the ratio &
was varied. In the above experiments, the viscosity was
fixed to 330 m? s™'. This value was chosen initially to
permit comparisons with general circulation models
results (Chassignet et al. 1990), where high viscosity
1s required for numerical stability. In order to illustrate

the impact of 4,, on the ring’s behavior, the trajectories
of A1 (6 = 1/5) and A2 (6 = 1/1000) are displayed
in Fig. 8 as 4, is varied from 330 to 0 m? s™!. When
the ratio 6 = 1/5, varying A,, induces substantial
changes in the anticyclone’s propagation (Fig. 8). On
the contrary, when é = 1/1000, the changes are small.
In the latter case, the coupling between the two layers
is very weak and dissipation occurs mostly in the upper
layer. For a discussion on the nonfrictional decay of
mesoscale eddies in a reduced-gravity model, the reader
is referred to Smith and Reid (1982). With § = 1/5,
dissipation occurs in both layers. With low values of
the lateral eddy viscosity A,, (small dissipation), a
strong circulation is present in the lower layer which,
because of the significant coupling between the two
layers, modifies significantly the anticyclone behavior.
The results obtained in the previous section are there-
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fore somewhat dependent on the choice of the lateral
eddy viscosity A,s, at least for high 6. On the other
hand, in the cases with very low values of 4,,, energy
is found to accumulate in the small scales as shown in
Fig. 9, even if the model is numerically stable. In the
numerical model used in this study, the latter process
becomes negligible for A, greater than 50 m?s~!. In
the context of a general circulation model with forcing,
such an accumulation of energy in the small scales will
lead to numerical instability if 4, is smaller than 100
m? s~! (Chassignet et al. 1990).

3. Scaling analysis

In order to illustrate the results of the previous sec-
tion, we now perform in this section a scaling analysis
of the two-layer system with emphasis on the geo-
strophic regimes which dominate oceanic features such
as rings (McWilliams 1991). Estimates of the Rossby
number (¢), compiled from 30 observed oceanic rings
(Chassignet et al. 1990), vary between 0.1 and 0.2 for
warm-core rings and 0.1 and 0.4 for cold-core rings
and, at a first approximation, it is therefore reasonable
to consider that most eddies have a small Rossby num-
ber. Mesoscale eddies in the ocean can be categorized
as being either quasi-geostrophic in the open ocean (L
~ Ry, h, < H,; Kamenkovich et al. 1986) or frontal-
geostrophic in the vicinity of western boundary currents
(L > 3Ry, h, ~ H,; Olson et al. 1985; Chassignet et
al. 1990) where H, is the upper layer thickness; #4,, the
interface displacement at the center of the eddy; L, the
eddy length scale and R, = (g’'H,)'/?/ f,, the internal
Rossby radius of deformation. Within certain restric-
tions, the dynamics in the single layer of a reduced-
gravity system are dominated by a geostrophic balance
(Williams and Yamagata 1984; Cushman-Roisin 1986;
Cushman-Roisin and Tang 1990) and inertial-gravity
waves can be filtered out yielding a generalized geo-
strophic equation. One can anticipate that, under sim-
ilar conditions, a two-layer system would also possess
a variety of geostrophic regimes. Naturally, motions in
a second layer allow for the presence of baroclinic in-
stability, an important process excluded from the sim-
pler, reduced-gravity system. One expects that, as the
lower-layer thickness of a two-layer system is increased,
the dynamics should revert to those of the one active
layer.

We make the following assumptions: flat bottom, 8-
plane, rigid lid and a lower layer at least as deep as the
upper layer. The last assumption is in keeping with
actual oceanic stratification. Although it does eliminate
certain dynamical regimes, namely those involving a
shallow bottom layer under a deeper upper layer, the
latter regimes are mirrored by analogs with the verti-
cally reverse layering configuration. The notation is as
follows: H, + 7 is the upper layer thickness and, H,
the total depth. The subscripts 1 and 2 refer to the
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upper and lower layers, respectively with p;, density,
u; and v;, eastward and northward velocity compo-
nents, p;, dynamical pressure and #;, layer thickness.

With the Coriolis parameter noted as f = f, + 8,),
the equations of motion, with understood subscripts,
are

U + uu, + vuy, — fo = —p, (5)
v, + uv, + v, + fu = —p, (6)
h + uhy + vhy, + h(uc +v,) =0 (7)

where, for each layer, the dynamical pressure and
thickness are obtained from

n=n+gn, pp=m= (8)
hh=H +% h=H-H —n 9

Here, = is the lower-layer pressure and g’ is the reduced
gravity [g' = g(p2 — p1)/ p2]. With the present notation,
the choice of variables for the barotropic and baroclinic
modes are the lower-layer dynamical pressure, 7, and
the interface displacement, 7, respectively. The influ-
ence of the lower layer will be deemed negligible when
and only when the terms involving = in the equation
governing the evolution of 5 are small and negligible.

With initial conditions characterized by an interface
deformation field of length scale L (not necessarily R,)
and amplitude /4, (not necessarily H,), the variables
can be scaled as follows:

xand yby L, nbyh,, pbygh, (from(8)),
U and U by Ul
= g'h,/ f,L (geostrophy), p,and = by P,

u; and v, by U,
= P/ f,L (geostrophy) and time by T.

The scales for the barotropic pressure field, P, and
the time, 7', are considered to be determined by the
dynamics. The reasoning is as follows: following an
initial baroclinic perturbation (interface displacement),
the system will evolve at its own time scale and will
generate barotropic motions of its own choosing.! Next,
a series of dimensionless numbers are defined

o External parameters: fixed by geometry
Depth ratio: 6 = H/H
e Primary parameters: related to amplitude and length
scales of flow field
Rossby number: ¢ = U,/ f,L = g'h,/f,>L*
Burger number: s = g'H,/f,2L?

! One could imagine initial and / or boundary conditions including
a barotropic flow of strength other than otherwise developed by the
system, and cases of time-varying boundary forcing introducing an
external time scale. But, in order to emphasize the properties of the
two-layer system, such independent scales are excluded from the
present formalism.
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FIG. 5. (Continued) (b) anticyclone A2, h, = 500 m, H; = 1000 m, H, = 999 000 m (deep lower layer). The

DAY 140

(b) ANTICYCLONE A2

DAY 20

ERIC P. CHASSIGNET AND BENOIT CUSHMAN-ROISIN

INTERFACE DISPLACEMENT
ANOMALY

CONTOUR INTERVAL=20m

STREAM FUNCTION
LAYER |

5 Sv

STREAM FUNCTION
LAYER 2

5Sv

~—

*
N

/
-

B ey
—
~— e o

DAY 80

r‘\w' e T .f_\‘“».\
2 A0 =0 ),
D) &)

i/ =/

and divergent components.

streamfunctions are computed from the rotational part of the mass transport after decomposition into its rotational

947



VOLUME 21

STREAM FUNCTION
LAYER 2
5 Sv

’ " Eo P . e,
G S TSN
-\ // E s 4 . DNy ~ O e ~

L 4

pu——ctN

5 Sv

STREAM FUNCTION
LAYER |

&

JOURNAL OF PHYSICAL OCEANOGRAPHY

ANOMALY
CONTOUR INTERVAL = 20m

INTERFACE DISPLACEMENT

(a) CYCLONE C1

948

’ \
J
02 Avad 08 AvQ ol Ava 002 AvVQ

4000 m (shallow lower layer) and for

1000 m, H,

FIG. 6. As in Fig. 5 for (a) cyclone Ct, A, = 500 m, H,



ERIC P. CHASSIGNET AND BENOIT CUSHMAN-ROISIN 949

JuLy 1991

(b) CYCLONE C2

STREAM FUNCTION STREAM FUNCTION

INTERFACE DISPLACEMENT

LAYER 2

LAYER |

ANOMALY

CONTOUR INTERVAL

5 Sv

5 Sv

20m

/

0¢ Avad

08 Avd

Oobl AVd

002 Ava

1000 m, H, = 999 000 m (deep lower layer).

HG. 6. (Continued) (b) cyclone C2, h, = 500 m, H,



950

........ | AR ST

(a) 4
MERIDIONAL |

-20
-40

km

-80
-100 t L

~200

-400 el .

km

-600 |
-800 - e,

-1000 1 1 L )

JOURNAL OF PHYSICAL OCEANOGRAPHY

(b) I P T . R
1.0 \

o5 H N 4

cm/s

7

]

v

7

\

il
7

—os L- I 1 1 I

cm/s
.}
N
AY
\
|

100
DAYS

150 200

FiG. 7. Anticyclone A2. Westward and meridional displacement
(a) and propagation speeds (b) of the center of mass C,, (dotted),
interface displacement extremum C, (dashed) and potential vorticity
extremum C, (stars). Also represented are estimates of the center of
mass westward drift from Nof (1981) (solid dot) (using an equivalent
linear velocity profile ) and Cushman-Roisin et al. (1990) (solid line)
(computed from the eddy structure).

Beta number: 8 = 8,L/f,
e Secondary parameters: related to barotropic flow
field and time scale
Pressure ratio: vy = P/g'h,
Dimensionless frequency: w = 1/f,T

These numbers are subject to several inequalities.
First, by definition, § must be less than unity, but,
moreover, since the lower layer is at least as deep as
the upper layer, it follows that 6 < 1/2,1/2<1 -9
< 1 and thus 1 — 6 will always be on the order of unity.
If h, were to exceed H,, H, could be redefined as 4,;
hence s, < H; and € < s. The validity of the §-plane
approximation requires that the changes in f to be
much less than f,, i.e. 3 <€ 1, while the choice of seeking
geostrophic regimes demands ¢ <€ 1 and & < 1. Finally,
since the barotropic pressure field is viewed here as a
reaction to an existing baroclinic flow field, one antic-
ipates that P will be less than or at the most of the
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order of g'h,, i.e. v < 1. To recapitulate, the inequalitics
are

o<1, 1-6=0(1),
B<kl, e<l, w<l. (10)

Since the time scale and amplitude of the barotropic
pressure field are to be determined by the dynamics,
their respective inequalities (v < 1 and v < 1) will
have to be verified a posteriori.

The scaling analysis of Eqns. (5-9) is presented in
appendix A and yields the following expressions of w
and «. For all length scales,

o= max (e, e, 58) _ (11)
max(s, 1)
For length scales shorter than or equal to the defor-
mation radius (s = 1)

Y=0 (12)
while for longer length scales (s < 1),
v =5 max(e, 3) (13)

max(se, ye, 8)

At this point, a number of possible inequalities must
be investigated one by one, and this task is not repeated
here. The complete solution is presented graphically
in Fig. 10, and the reader may verify that this is indeed
the solution of the problem. One notes that the values
of w and v are bounded by w < max(e, B)and 6§ < vy
< 6'?. Since e < 1, B < 1 and & < 1, it is verified a
posteriori that w € 1 and y < 1.

With w and v determined, one is now in a position
to discern the regimes for which the presence of motion

1000
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| I 1 1 | 1
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FIG. 8. Trajectories for anticyclones for varying lateral eddy vis-
cosity, 4a, (330, 100, 50, 25, 10 and 0 m? s™') with depth ratio &
= 1/5 and 1/1000, respectively.
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FIG. 9. Vorticity field of anticyclone A1 with lateral eddy viscosity 4y = 5 m?s™".

in the lower layer does not affect the dynamics in the
upper layer. The following equation (appendix A)

a
w 8_t (sV2n + syVer — ) — yeJ(m, 1)
+ seJ(n + ym, Ve + yV2x) + 2J(n, 7V
1
+ 35 V- V) + sB(nye + ymx) + Beqnx = 0. (14)

results from the upper-layer momentum and continuity
equations and, hence, governs the upper-layer dynam-

ics. There will be no influence from the lower-layer
flow field as long as all terms in 7 are negligible. As a
result, the criterion specifying how deep the lower layer
has to be to justify using the one-layer, reduced-gravity
model is

max (wsy, ve, sve, s8Y) € max(sw, w, Se, $8).

(15)

Then, one notes that if § = O(1) (i.e., both layers
have about equal depths), v = O(1) (see Fig. 10), sw
< wmax(1l, 5) = max(e, s¢, s8), and the above in-
equality leads to
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FIG. 10. Values of the secondary parameters w and v as functions
of the primary parameters s, € and 3.

max (e, Se, s8) < max(e, se, s8),

which obviously can never be met. Hence and not too
surprisingly, a prerequisite is < 1, namely a very deep
lower layer. The question is now how deep.

For length scales shorter than or equal to the defor-
mation radius (s = 1), o = max(e, 8), v = 6 and
inequality (15) becomes

max (sde, s86) < max(se, s8),

and & < 1 is sufficient. For longer length scales (s
< 1), inequality (15) is best solved graphically. In each
region of Fig. 11, the corresponding values of w and v
are substituted in (15), and hatched areas correspond
to regions where inequality (15) is impossible.

Unhatched areas of Fig. 11 are regions where in-
equality (15) is met, and thus where the one-layer,
reduced-gravity model applies. Examination of the re-
sults leads to the condition 8 < s> when ¢/8 > 1/sand
6 < min(1, sB/e¢) when ¢/ < 1/s.
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One inequality that recapitulates all possible cases
is
6<min[1,max(s2,£)], (16)
€
which is the desired criterion formulated in terms of

the dimensionless numbers of the problem. Returning
to the original scales, this criterion becomes

. L* Lg '
H> max|H,, min|H, =, k||, (17)
R, L

where R; and L; are the radius of deformation and
planetary scale defined as Vg'H,/ f, and £,/ 8,, respec-
tively. On the f~plane, expression (17) reduces to

L4
H> max(H,,Hl——“). (18)

R,

Hence, at horizontal scales up to the deformation ra-
dius, a lower layer much deeper than the upper layer
is sufficient. For increasing length scales beyond the
deformation radius, on both the f~ and S-planes, the
reduced-gravity model rapidly loses its validity. The
model recovers its validity toward larger scales on the
B-plane.

Because it is derived in the context of geostrophic
dynamics (small Rossby number, ¢€), the question arises
as to whether criterion (17) is applicable to ageo-
strophic motions when the length scale, L, is on the
order of the deformation radius, R;, and simulta-
neously, the amplitude scale, #4,, is on the order of the
upper-layer depth, H,. However, the case of fully
ageostrophic motion is quite elementary, and its anal-
ysis is presented in appendix B. It is then shown that
criterion (17), derived for geostrophic motions, also
applies to ageostrophic motions.

In the limit of the reduced-gravity model, two pro-
cesses are excluded, namely barotropic motion and
baroclinic instability. The importance of the latter as
the lower layer depth is varied and its analogy to cri-

l €/B
t _‘_s—l
8%«s
B<<|
Ly
Be<«<sB
1 ' 1 -5
T T
3 8% 3%
1 s%
Sexsg 8% 8<<I
8 «<|

FIG. 11. Application of inequality ( 15). Hatched areas are regions
where (15) cannot be met. The one-layer, reduced gravity model is
applicable in the remaining regions away from their boundaries.
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experiments.

terion (17) is illustrated by a simple analysis of Phillips’
model as performed by Pedlosky (1987). In the absence
of B, the two-layer model will be baroclinically stable
if

L < nf,”\[g'(HH,)"*]'/?

where L is the characteristic length scale of the distur-
bance (Pedlosky 1987). This implies as criterion (18)
that

Lt L?
H2>W2H1Ed-4 or H»HlR_d“.
On the other hand, in the presence of 8 and with the
flow mostly confined in the upper layer, the model will
be baroclinically stable only if the vertical shear be-
tween the two layers is less than the critical value 8g’'H,/
f» (Pedlosky 1987). If one consider a relatively thick
lower-layer with small velocities, then this condition
is equivalent to

&ﬁg <Bg'H2
gL [

“which is the contribution from the B-effect to criterion
(17). Hence, it can be stated that the reduced-gravity

Ly
H>h"L
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model loses its validity when baroclinic instability pro-
cesses must be retained.

In a study of waves and instabilities along fronts in
a two-layer system, Killworth et al. (1984) (single-
front) and Paldor and Killworth (1987) (double-front)
examined how the presence of the second moving layer
destabilizes the frontal waves. In the former study, all
waves become stable when the lower-layer depth ap-
proaches infinity, while in the latter at least one wave
does not. However, in either case, the asymptotic be-
havior is none other than that of the corresponding
reduced-gravity model, whether stable or not. With the
shortest length scale in the model being the frontal
width (about the deformation radius), and with no (-
effect, the criterion of the present theory reduces to H
> H, in agreement with the results of the above studies.

4, Comparison with the analytical criterion

We are now in position to compare the analytical
criterion ( 17) with the numerical simulations of section
2. For the parameter range of the described cyclones
and anticyclones (H; = 1000 m, #, = 500 m, L = 60
km), we have e ~ 0.1, s ~ 0.2 and 8 = 1.2 X 1072,
which satisfy the initial requirements of the scaling
analysis. In this case, criterion (17) then states that the
lower layer will be dynamically negligible if the total
depth H satisfies

H> 3 km.

This is consistent with the findings of section 2¢, which
show that it is only when H is greater than 50 km that
we observe a negligible influence of the lower layer
thickness on the dynamics of the upper layer ring (Fig.
2). With this set of parameters, in order for the reduced-
gravity model to be valid, the lower layer must then
be significantly deep and in any case much deeper than
the real ocean depth. In other words, barotropic effects
and baroclinic instability must be retained when con-
sidering eddies with the above scales.

The previous result was derived for only one set of
parameters. Hence, in order to check the validity of
analytical criterion (17), one has to perform a few more
experiments. By keeping the Rossby deformation ra-
dius (R,) and the initial interface displacement (4,)
constant, criterion ( 17) can be expressed as a function
of the ring length scale over the internal Rossby radius
of deformation, L/R:

H . (L* R,

H1>max[1,mm(Rd4,KL)] (19)
where K is a constant equal to 4,f,/B8,R,. This expres-
sion is represented in Fig. 12 and, as presented in sec-
tion 3, for L > Ry, is a combination of two curves
resulting from f~-plane dynamics (barotropic motions
and baroclinic instabilities) and a contribution from
the B-effect, respectively. The impact of the lower layer
on the dynamics of the upper is the strongest when the
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two curves intersect. In order to test expression (19),
a series of experiments were performed with anticy-
clones of length scales, L, equal to 0.5R,, 1.3R4, 2Ry
and 5 R, respectively. '

At this point, one has to define a criterion to deter-
mine from the numerical experiments the minimum
depth, H*, for which the lower layer has a minimal
influence on the upper-layer eddy. First, the experiment
with ratio 6 = 1/1000 is considered to be equivalent
to one with an infinitely deep lower layer. Then, H*
is defined as the minimum depth for which the west-
ward drift of the upper-layer ring does not differ by
more than 5% from the drift of the reference experi-
ment (6 = 1/1000). One could define a different H*
based on other assumptions, but the westward drift is
felt to be a good characteristic of the eddy evolution.

The values of H* for the above length scales, L, are
represented by crosses in Fig. 12. Their distribution
appears to follow the curves with allowance made for
the strong inequality in (17), except that the maximum
is not located where expected. We may recall that the
criterion has been derived with a scaling analysis and,
therefore, gives only an order of magnitude for both
horizontal and vertical scales.

To further check the validity of the criterion, one
can investigate the particular case of an f-plane. Since
(17) reduces to (18) when 8, = 0, the lower-layer will
always have a significant impact on the upper-layer
dynamics if the length scale, L, is several Rossby de-
formation radii, R, (Fig. 12). This point is clearly il-
lustrated by a series of experiments initialized with a
dipole on both the f- and B-planes. The dipole has been
chosen in order to have a structure that evolves sig-
nificantly through self-advection on an f-plane (which
is not the case for an isolated eddy). The dipole is
defined as

h=H, + h, L e'2e~r2Ls
L,
where s, = 250 m and L, = 250 km. The values of
H,, g', f,and B, are unchanged. This yields, according
to Cushman-Roisin and Tang (1990), a length scale
L= (\6/2)La ~ 4 R, and criterion (17) becomes, on
the §-plane

H> 7 km
while, on the f-plane
H >» 228 km

which gives a clear ratio of 30 to 1 (Fig. 12). We should
then observe a significant difference of behavior be-
tween the two experiments (/- or 8-plane). This is in-
deed the case since, on the 8-plane, the above dipole
is found to have an H* ~ 25 km while on an f-plane,
H* ~ 250 km (Fig. 12). Moreover, on the 3-plane
the westward drift of the dipole varies by only 0.6%
between the ratios 6 = 1/50 and 6 = 1/1000, while on
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the fplane the variation is 26%. Also of interest is the
fact that, on the 8-plane the dipole slows down as the
lower-layer thickness decreases while the tendency is
opposite on the f-plane.

Both series of experiments (eddies and dipoles) pro-
vided a wide range of parameters over which criterion
(17) was tested. The theoretical predictions are in
agreement with the numerical findings, and it can be
concluded that the theory has led to a practical crite-
rion.

5. Summary and conclusions

The validity of the reduced-gravity model (one active
layer over another infinite and at rest), an approxi-
mation widely used to study the evolution of isolated
vortices, has been investigated in detail with a primi-
tive-equation, isopycnic-coordinate, two-layer numer-
ical model whose upper-to-lower layer depth ratio was
varied from 1/5 to 1/1000. The numerical findings
were then compared to a scaling analysis of a two-layer
system, which determined the conditions needed for
the lower layer to have a negligible influence on the
dynamics of the upper layer.

The scaling was performed with an emphasis on the
geostrophic regimes (small Rossby number) which
dominate oceanic features such as rings, but is also
applicable to fully ageostrophic regimes. The deri-
vation yielded the following criterion:

) L* L
H> rnax[Hl, mln(Hl R——d4 s h,,fﬁ)]
where H, H,, h,, L, R;and L; are the total depth, the
upper-layer depth, the interfacial displacement, the
eddy length scale, the Rossby radius of deformation
and the planetary scale, respectively.

The present numerical simulations confirm, as ear-
lier models have shown, that nonlinear eddies in a finite
depth ocean propagate at a nearly uniform rate while
gradually decaying through the radiation of Rossby
waves. Both a form drag exerted by the lower layer and
interactions with the Rossby wave wake affect the mi-
gration and induce a meridional drift. This is consistent
with the idea that, due to the energy loss by Rossby-
wave radiation, eddies will tend to approach their so-
called ““latitude of rest”. In the case of lenses (eddies
whose isopycnals surface), the westward propagation
speed does not vary as the ratio é = A,/ H is varied and
no appreciable meridional motion is observed, as long
as the lens is stable (small 8). As § = H|/H decreases,
cyclones and anticyclones (eddies whose undisturbed
depth does not vanish along their rim) have the ten-
dency to move westward faster and less meridionally.
As the thickness of the lower layer increases, the me-
ridional displacement decreases due to a smaller form
drag of the lower layer. The only factor for the merid-
ional displacement that remains in the case of a small
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6 is the interactions with the Rossby wave wake. If this
effect is suppressed, the ring should move purely west-
ward, which is effectively the case with a lens. As the
ratio § increases, the coupling between the two layers
intensifies and, for both lenses and cyclones, generate
baroclinic instabilities.

Series of experiments over a wide range of param-
eters were performed to test the above criterion, and a
minimum depth was defined from the numerical ex-
periments for which the lower layer has a minimal in-
fluence on the upper-layer eddy. It was found that the
theoretical predictions are in agreement with the nu-
merical findings. A final set of experiments with dipoles
on both the £ and B-planes clearly illustrated the two
sides of the criterion and it was concluded that the
theory performs as expected. In order for the reduced-
gravity model to be valid, the total depth of fluid must
be much larger than either of two values. These two
values, resulting from f~ and B-planes dynamics, apply
to shorter and larger scales, respectively. At horizontal
scales up to the deformation radius, a lower layer much
deeper (by a factor of ten or so) than the upper layer
is sufficient. For increasing length scales beyond the
deformation radius, on both the /- and B-planes, the
reduced-gravity model rapidly loses its validity. The
model recovers its validity toward larger scales on the
B-plane.

For mesoscale features such as rings, the lower layer
must be significantly deep and in any case much deeper
than the real ocean depth. In other words, processes
such as barotropic motion and baroclinic instability
must be retained. One can also expect that, in the pres-
ence of topography and/or ambient shear, the criterion
will include additional terms which may enlarge or
further restrict the validity of the reduced-gravity
model.
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APPENDIX A
Determination of the Coefficients w and vy
Nondimensionalization of Egs. (8) yields

n=n+yw, p=m, (20)

while nondimensionalization of the momentum equa-
tions (5-6) provides for each layer:
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wy + (i, + viu,) — vy — Byvr = —pi (21)
wvi + uix + v10y) + g + By = —pyy, (22)
wity, + ye(Uatiax + Vallyy) — V2 — ByV2 = —P2x (23)
WUy + Ye(UpVax + Vo02)) + U + Byur = —pay,  (24)

With w, ¢, ye and 8 all much less than unity, the leading-
order balances of the above equations correspond to f-
plane geostrophic equilibrium, i.e., ¥4; = —pjy, U; = Dix.
Replacing the velocities by these first-order expressions
in the small terms yields to the next order of approx-
imation:

Uy = —Piy — WP — &J (D1, Dix) + BYDyy (25)
V) = +pix — wpiy — (D1, Py) — Bypix (26)
Uy = —Pay = WP2xa ~ Y&J (D2, P2x) + Byp2y  (27)
V2 = P2 — Doy — YeJ (D2, P2y) — Bypax.  (28)

After nondimensionalization, the continuity equa-
tion (7) for the upper layer can be written as

wn, + e(uyn, + vlny) + (s + en)(u + vly) =0, (29)

which, after replacement of u; and v, by (25)-(26),
replacement of p, by (20), and neglect of terms of
higher order, becomes

ad
©o (sVn + syVir — n) — veJ(m, 1)
+ seJ(n + ym, Vi + yV27) + 2J (9, 7V
1
+5Vn-Vn) + s8(nc + ymi) + Benn, = 0. (30)

The last equation can be interpreted as a sum of
prognostic and diagnostic terms (those with and with-
out a time derivative, respectively). The prognostic
terms provide the rate at which variables will evolve
from any imbalance among the diagnostic terms.
Hence, it is reasonable to state that the system chooses
its own time scale (dimensionless number w) such that
the leading prognostic term in (30) is of the same order
as the leading diagnostic term.

Mathematically, this statement implies

max (Sw, SYw, w)

— 2 2
- maX(‘Yé, S€, SYE, SY7E, €7, S:B, sﬁ‘Ys ﬂf),
or,sincey < land e <,

_ max (e, Se, s8)
max(s, 1)

(31)

The dominant terms in the lower-layer continuity
equation are identical (but with opposite signs) to the
dominant terms of the upper-layer continuity equation.
Hence, to obtain an independent equation at the lead-
ing order, one must formulate the sum of these equa-
tions, namely the continuity equation for the entire
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system. Adding Eq. (7) for each layer and replacing 4,
and A, by (9), one obtains

[(uy = w)nx + (01 — v2)my)] + (Hy + ) [(wy — 1)
+ (v — )] + H(upe + v3,) =0, (32)
which after nondimensionalization becomes
[(u1 — yu)nx + (01 — yv2)my]
+ (s + en)[(w — vi2)x + (v — Y12),]

+ “%’ (s + 03,) = 0. (33)

Replacement of the velocity components by their
expressions (25-28) and then of the pressures by
expressions (20) yields
Syw

5 V2, + swVn, + eV - (qV7y,)

+ seJ(n, Vn) + E2J(n, 190 + 3 V- V)

+ syel J(m, V2q) + J(n, V2m)] + ve’[nJ (7, V?9)
+ 9J(n, V) + J(=, V) Vq

2
+ J(n, V)Vl + % J(x, V)

+ s0nx + Benn, + s—il 7 =0. (34)

Since the above equation corresponds to a property
integrated over the entire depth of the system, namely
continuity of volume, it is logical to interpret it as an
equation governing the barotropic component of the
flow field. Hence, Eq. (34) will be used to establish the
order of magnitude of =, which after scaling amounts
to the determination of the dimensionless number vy
measuring the relative amplitude of the barotropic flow.
As for the determination of w, we equate the largest
term containing +y to the largest term not containing
v, or

) 6 79

= max (sw, ew, s¢, €2, 5B, Be).

2
syYw s S
max(—‘y , SYE, e, RAL __B'y)

Again, since y¥ < 1 and ¢ < s, this can be simplified to

max(w, ¢, §)
max(w, b¢, e, 8)

(35)

Equations (31) and (35) are the two coupled equa-
tions that provide the secondary dimensionless num-
bers w and 4. One now proceeds with the solution of
these equations. First, one notes that the term d¢ in the
denominator of (35) can be dropped. Indeed, if this
term were the largest, i.c., if ¢ > max(w, ye, (), the
v = dmax(w, € B)/d0e or ye = max(w, ¢, (), from
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which follows de > max(w, max(w, ¢, 8), ) = max(w,
¢, B) = e. Hence, this hypothesis leads to de > € or §
> 1, which is contrary to our starting assumption.
Hence de < max(w, ve, 3), and (35) can be simplified
to

max(w, ¢, )

v=29 max(w, ve, B) (36)

At this stage, it becomes convenient to distinguish

between two cases, that of length scales shorter than

or equal to the deformation radius (s = 1) and that of

longer length scales (s < 1). For s = 1, (31) yields w

= max(vye/s, ¢, ) = max(¢, B)since ¥y < 1 and 1/s

< 1. Substitution of this solution for w into (36) pro-

vides ¥ = 4, i.e., the pressure ratio is identical to the
depth ratio.

For longer length scales, s < 1, (31) yields w

= max(«ye, S¢, s6) and substitution into (36) provides

max(e, 3)
max (se, ve, 8)

APPENDIX B
The Ageostrophic Case

When the Rossby number is unity (e = 1), the baro-
tropic equation (33) yields, without approximation,
terms on the order of 1, v, s, sy and sy /6, where the
v-terms represent the contributions of the lower-layer
velocity components. The balance of this equation re-
quires

0

Now, since 6 < 1 and 1 = € < s [ from inequalities
(10) which still hold in the ageostrophic context], the
above equality reduces to

s
max('y, Y, -l) = max(1, ).

Y =4,

which means that the pressures are again in the same
ratio as the layer depths.

The presence of the lower layer is felt in the upper-
layer primitive equations, (21)-(22)-(29), only via the
pressure p,, which is given by the hydrostatic balance
(20): p; = n + y=. Hence, the lower-layer has a neg-
ligible influence on the upper-layer dynamics if the
contribution of 7 can be neglected in p,, i.e., ify < 1.
This immediately leads to the criterion 6 < 1. As it
turns out, criterion (16) applied under the present
conditions, namely 8 < 1 = € < s, yields the same
expression. Therefore, criterion (16) and its dimen-
sional form (17), derived for geostrophic motions, also
apply to ageostrophic motions.

Ageostrophic motions are naturally characterized by
an inertial time scale (w = 1, in the present notation).
Other, low-frequency motions, such as Rossby waves,
that may occur concomitantly, are in near-geostrophic
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balance and are thus governed by the previous analysis.
For these, the full criterion (17) remains in force.
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