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Abstract An uncertainty quantification framework is developed for the DeepC Oil Model based on a
nonintrusive polynomial chaos method. This allows the model’s output to be presented in a probabilistic
framework so that the model’s predictions reflect the uncertainty in the model’s input data. The new capa-
bility is illustrated by simulating the far-field dispersal of oil in a Deepwater Horizon blowout scenario. The
uncertain input consisted of ocean current and oil droplet size data and the main model output analyzed is
the ensuing oil concentration in the Gulf of Mexico. A 1331 member ensemble was used to construct a sur-
rogate for the model which was then mined for statistical information. The mean and standard deviations
in the oil concentration were calculated for up to 30 days, and the total contribution of each input parame-
ter to the model’s uncertainty was quantified at different depths. Also, probability density functions of oil
concentration were constructed by sampling the surrogate and used to elaborate probabilistic hazard maps
of oil impact. The performance of the surrogate was constantly monitored in order to demarcate the space-
time zones where its estimates are reliable.

1. Introduction

Oil spilled in the ocean poses a threat to the environment as its consequences might be catastrophic to the
biota and to the communities of the impacted areas. Oil fate models are important instruments that can
provide the scientific background needed for oil spill risk assessment and for decision-making during an oil
spill incident. In an emergency response, forecasting the pathways and the oil fate is essential for aware-
ness, preparation, and mitigation actions of the probable impacts.

Several oil fate models of increasing skill have been developed over the decades to represent the complex
behavior of the oil in the ocean. They evolved from simple transport models, with limited fate algorithms, to
current state-of-the-art models, which simulate the transport of the oil in three dimensions, including
processes of advection, diffusion, stranding, emulsification, and oil weathering [Cekirge et al., 1995; Chao et al.,
2003; Berry et al., 2012]. In general, oil fate models treat the spill as a collection of Lagrangian particles that are
advected by an Eulerian velocity field. This velocity field, which is set as an input for the oil model, includes
the effect of ocean currents, waves, and winds, and is usually provided by the outputs of numerical models.

Regardless of how sophisticated the oil fate models are, and the amount of processes they can represent,
errors in the input data will inevitably lead the results to diverge from observations [Sebasti~ao and Guedes
Soares, 2007]. Oil fate predictions have to rely on data from oceanic and atmospheric forecasts, which have
limited predictability and inherent uncertainty. In many cases, little is known about the incident itself, and
important information, that is essential for setting up the initial conditions and other input parameters, is
missing. Information like the exact location where the spill occurred, the amount of oil that was spilled, the
flow rate of the oil, in case of a blowout, will likely influence the outcome of an oil fate simulation. With that
in mind, the application of uncertainty quantification (UQ) techniques in oil fate forecasts is essential to pro-
vide meaningful information for the spill response efforts [Galt, 1997a, 1997b].

The goal of UQ is to estimate uncertainty in the model’s output given uncertainties in its inputs. It provides
means of estimating the most likely output, along with confidence levels and error estimates. Although it
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should be the next step for the advancement of operational oil spill forecast [Hodges et al., 2015], applica-
tions of UQ in oil fate models are still scarce in the literature. The current article presents a framework for
quantifying uncertainty in the transport of oil during oil fate simulations based on a polynomial chaos (PC)
approach. The method is based on constructing a computationally cheap surrogate for the model, where
an output is defined as a polynomial expansion of the uncertain input parameters. The surrogate is built
through an ensemble of model realizations, and once constructed, it should be able to approximate the
model’s output for any given value of the input parameters inside a preestablished range. As obtaining out-
puts from the surrogate is computationally cheap, the task of sampling the model hundreds of thousands
of times is feasible. With that, probability density functions (PDF) of the model’s output can be estimated
and used to obtain relevant statistical information, as it would be done in a Monte-Carlo approach. The abil-
ity of estimating PDFs at low computational cost is particularly important for emergency response efforts,
when decisions have to be made fast. The PC approach also provides an easy and fast way to quantify the
contribution of each uncertain input parameter in the output uncertainty (sensitivity analysis). This property
has applications in oil spill risk assessments [Neves et al., 2015].

The capabilities of the PC approach are explored in a simulation of the Deepwater Horizon (DWH) blowout.
In this accident, about 4.9 million barrels of crude oil along with a large amount of gas were released in the
Gulf of Mexico [McNutt et al., 2011] following the explosion of a drilling platform on 20 April 2010. The spill
lasted for 87 days, with oil being continuously released in the ocean at a depth of 1500 m. The fact that the
accident occurred in deep water increases drastically the complexity of the problem of simulating the oil
spill. High pressure along with other ambient variables, such as temperature, salinity, and ocean currents,
affect the upward movement of the plume formed by oil and gas [Johansen, 2003; Yapa et al., 2012]. The
dissolution of gas and oil components along with the entrainment of seawater causes the plume to lose
buoyancy and momentum; eventually, the plume reaches a neutrally buoyant level. At this level, oil droplets
and gas bubbles separate from the plume, that now is composed of dissolved gas and oil mixed with sea-
water, and start moving upward [Socolofsky and Adams, 2002]. The initial plume stage of a deep water blow-
out is referred to as the near field, and is usually simulated through integral models [Socolofsky et al., 2011].
The stage when oil droplets separate from the plume and move upward, while being advected by the
ocean currents, is the far field, which is simulated through Lagrangian transport models mentioned above
[Mariano et al., 2011; North et al., 2011].

Here the newly developed DeepC Oil Model (DCOM) is applied to simulate the far field of the DWH spill.
Two sources of uncertainty are considered. The advecting ocean currents, which are provided by the out-
puts of a general ocean circulation model (OGCM), and the oil droplet size distribution, which affects the
buoyancy of the spilled oil. The forward propagation of uncertainty is carried out in a hindcast simulation of
the first 30 days of the oil spill. We present a framework to estimate the uncertainty in the simulated oil dis-
tribution, to quantify the contribution of each uncertain input parameter considered and to construct prob-
abilistic hazard maps of oil impact. Also, we test the skill of the PC surrogate in representing the model’s
output by comparing it to a set of actual realizations of the model.

The paper is organized as follows. Section 2 describes the models used and the setup of the simulations.
Section 3 discusses the sources of uncertainties and the choice of the input parameters. Section 4 introdu-
ces the PC methodology. Section 5 displays the results, which include the mean and standard deviation of
the oil distribution, sensitivity analysis, and probabilistic hazard maps. Summary and discussion are pre-
sented in section 6.

2. Model Description

2.1. Lagrangian Oil Fate Model
The DeepC Oil model (DCOM) is a 3-D advection-diffusion and weathering code that simulates the transport
and evolution of oil accidentally released from a subsea well, pipeline, or a surface source such as a leaking
ship. The algorithms for transport and transformations are largely derived from the works of Proctor et al.
[1994], Al-Rabeh et al. [2000], Spaulding et al. [2000], Zheng and Yapa [2000], Lehr et al. [2002], Zheng et al.
[2003], Tkalich et al. [2003], Korotenko et al. [2010], and Socolofsky et al. [2011]. The intended functionality of
the model is to predict where, when, and in what state the oil is most likely to be found based on informa-
tion about the ocean currents, winds, waves, oil properties, and other environmental conditions. The model
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is based on a Lagrangian formulation where the oil spill is represented by a large number of particles with
time-varying position, mass, volume, and composition. The model takes as input the release conditions, ini-
tial position, and properties of the oil along with time-varying environmental conditions including winds,
waves, water currents, and water temperature and salinity. The position and composition of the particles
are then updated based on environmental conditions. The present article focuses solely on the evolution of
the oil caused by transport, the effect of other processes have been turned off. We thus focus on describing
in some details the transport processes including the buoyancy calculation.

The positions of the particles (x) are evolved in time (t) according to the following equation

dx
dt

5ua1us1kwb; (1)

Here ua represents the sum of advective processes, namely ocean currents, Stokes drift, and wind drag.
These velocities must be obtained from operational forecasting systems and account for the transport due
to dynamical processes that can be resolved on the forecasting systems computational grids. The unre-
solved processes are represented by us and account for subgrid-scale turbulence; DCOM uses a random
walk model [Griffa, 1996] which adds a random displacement to the particles at each time step. The last
term on the right-hand side of equation (1) is the buoyant velocity of the oil droplets, wb. The buoyancy of
the droplets is a function of their size, and wb is computed following a two equations approach. For droplet
sizes below a critical diameter (dc), so that the Reynolds number is low, wb is given by Stokes law. For diame-
ters greater than dc (higher Reynolds number), wb follows a formulation proposed by Zheng and Yapa
[2000]. In DCOM, equation (1) is solved by a fourth-order Runge-Kutta scheme.

DCOM uses a probabilistic approach to represent the range of droplet sizes found in a deep water oil spill:
each model particle is assigned an oil droplet diameter sampled from a distribution. DCOM uses the Rosin-
Rammler distribution, as that was found to be a good fit based on different laboratory and field experiments
[Yapa and Chen, 2004; Brandvik et al., 2013; Johansen et al., 2013; Aman et al., 2015]. Its cumulative probabil-
ity function, P(d), is

PðdÞ512exp ln
1
2

� �
d

d50

� �a� �
; (2)

where d is the droplet size, d50 is the fiftieth percentile of the distribution, and a is the spreading parameter.

2.2. Hydrodynamic Model
To force DCOM, we used ocean currents, temperature, and salinity data from a Gulf of Mexico simulation
performed with the Hybrid Coordinate Ocean Model (HYCOM, http://hycom.org). HYCOM is a generalized
vertical coordinate model, which is widely used for research and operational tasks [Bleck, 2002; Chassignet
et al., 2003, 2006, 2009]. Typically, the vertical coordinate is isopycnic in the stratified interior, z-level or pres-
sure coordinates in the mixed layer, and terrain following in coastal regions. Here outputs of a data assimila-
tive 2003–2012 hindcast were used [Chassignet and Srinivasan, 2015]. The hindcast is based on the 1/258

GoM-HYCOM system, which is used in near real time by the Naval Research Lab (http://www7320.nrlssc.
navy.mil/hycomGOM/). The model is configured with 20 vertical layers, and its domain extends from
approximately 988W to 76.58W and from 18.98N to 31.58N. It includes a realistic bottom topography, derived
from a recent high-resolution bathymetry available from Florida State University. The hindcast is forced at
the surface with the North American Regional Reanalysis (NARR) atmospheric product [Mesinger et al.,
2006]. Surface fluxes of heat and momentum are calculated through bulk formula using fields of wind
stress, 10 m wind speed, 2 m air temperature, 2 m water vapor mixing ratio, precipitation, and incoming
solar radiation. A correction to the NARR-derived radiation fluxes was derived by comparing model surface
temperature with Advanced Very High Resolution Radiometer (AVHRR) estimates of surface temperature
fields. The NARR wind speed was corrected by regression to QuikSCAT wind speeds. Monthly climatological
Gulf of Mexico river data from USGS database (http://waterdata.usgs.gov/nwis/sw) and the RIVDIS database
(http://www.RivDis.sr.unh.edu) were specified for the freshwater discharge (treated as a virtual salt flux). The
hindcast simulation uses biweekly climatological lateral open boundary conditions derived from a North
Atlantic climatological run.
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The data assimilation is implemented with the Tendral-Statistical Interpolation System [Halliwell et al., 2014].
The primary data set for constraining the model is daily along-track sea level anomalies. The data were
obtained from multiple operational satellite altimeters, available from Collecte Localisation Satellites in a
delayed time quality controlled mode. Daily satellite sea surface temperature, obtained from the National
Oceanic and Atmospheric Administration (NOAA), in situ profiles of temperature and salinity from the World
Ocean Atlas 2009, and data from cruises during the DWH incident were also used. For an evaluation of the
hindcast, the reader is referred to Chassignet and Srinivasan [2015].

2.3. Model Setup
The numerical experiments were set to represent the first 30 days of the DWH oil spill. Despite the fact that
the blowout occurred at 1500 m depth, studies have indicated that the transition between the near field and
far field in the DWH spill occurred around 1200 m [Socolofsky et al., 2011; North et al., 2011]. So, a thousand
particles were released every 30 min from a source located at 88.38W and 28.78N at a depth of 1200 m. The
velocities used to transport the particles (ua in equation (1)) were given by the outputs of the HYCOM hind-
cast, from 20 April 2010 to 19 May 2010, and displacements of the particles were computed with a time step
of 30 min. The oil density was set to 858 kg=m3, while the seawater density was computed using temperature
and salinity from the HYCOM hindcast. In our experiments, only ocean currents were considered.

We define our quantity of interest as the oil concentration at some specific location after a period of time.
Despite the difference in droplet sizes between the particles, it was considered that each particle carried
the same amount of oil. This way, the simulated oil spill had the same flow rate for the different realizations
of the model, as the number of particles released in each realization was the same. The oil concentration
was computed by binning the particles in a grid, where the number of particles at each grid cell was multi-
plied by a constant oil mass, and divided by the volume of the cell. Oil concentrations were obtained for
three different depths: between 0 and 5, 300 and 600, and 900 and 1200 m depth, which will be referred to
as upper layer, middepth layer, and deep layer, respectively. In all of these layers, the particles were binned
in a grid with 0.18 resolution in both zonal and meridional directions.

3. Input Parameters Uncertainty

The choice of the input parameters to be perturbed has to fall on those whose uncertainty is more likely to
have a higher influence on the quantity of interest. On the other hand, the number of parameters to be per-
turbed is limited by the ‘‘curse of dimensionality,’’ i.e., the number of simulations required to build the PC surro-
gate grows exponentially with the number of uncertain parameters considered (or dimensions in the uncertain
space). Here we are interested in the sources of uncertainty that controls the transport of oil in a deep water
blowout. For that matter, we focused solely on the oil droplet size distribution, which controls the droplets rise
velocity, and the advecting currents, which is the main factor responsible for the horizontal spread of the oil
throughout the water column. Other important sources of uncertainty, which would not be considered in this
study, include the subgrid-scale parametrization, wind drag at the surface, Stokes drift, and the oil degradation.

A key aspect of UQ is the choice of the range that an input parameter is to be perturbed. We would like this
range to be wide enough to account for all possible values of the parameter. On the other hand, the response
of the quantity of interest to the perturbations inside the chosen range should be fairly smooth, so that the
PC expansion can approximate the behavior of the model. If the range of the input values is too broad, the
response of the model might be more complicated and would require a longer series to represent accurately.
Also, the parameter space might present different regimes, with each regime being characterized by a local
uncertainty range. If such local ranges are known, they should be accounted for separately.

In the PC approach, it is convenient to describe the input uncertainty by standardized random variables
jnj � 1. Considering the vector of uncertain input parameters h5ðh1; . . . ; hd; . . . ; hDÞ> , where D is the num-
ber of uncertain inputs, each parameter is related to a standardized random variable by:

hd5
hmax

d 1hmin
d

2
1nd

hmax
d 2hmin

d

2
; (3)

where hmin
d � hd � hmax

d is the range of the dth uncertain input. An important and difficult step in UQ is the
definition of the PDFs of the uncertain inputs. Due to the lack of information about the input parameters
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considered, we defined the PDFs of all input
parameters with an uniform distribution. A
description of the input parameters and their
perturbation range is presented in the following
subsections.

3.1. Droplet Size Distribution Uncertainty
In situ measurements of the droplet size distribu-
tion during accidents like the DWH blowout are
usually difficult and highly uncertain. Several con-
ditions influence the size of the droplets, as they
break up/coalesce into smaller/bigger droplets;
these include the ambient state (pressure, tem-
perature, ocean currents, etc.), the intensity of the
flux at the source, the oil viscosity, and oil-water
surface tension [Yapa et al., 2012; Zhao et al.,
2014]. The use of dispersants as a measure to pre-
vent the oil from reaching the surface further
increases the uncertainty of the droplet size distri-
bution, as they reduce the size of the droplets by
decreasing the oil-water interfacial tension.

The Rosin-Rammler distribution, used here to represent the droplet size distribution, is defined by a and d50

(equation (2)), which control its shape and range. Due to the high uncertainty of the droplet size distribution
and its importance in determining the vertical velocity of the oil, both parameters would be good candi-
dates to be perturbed. In a preliminary experiment, not presented here, both parameters were considered
uncertain; d50, however, turned out to have a much bigger impact on the oil fate than a. Henceforth, only
d50 will be perturbed here in order to reduce the dimensionality of the uncertain space, while a is set to 1.8.

To define a range of values for d50, we considered that the oil plume was under the influence of dispersants,
as about 2900000 L. of dispersants were released next to the wellhead during the DWH spill [Kujawinski
et al., 2011]. Our choice for the range of d50 was based on the results from Zhao et al. [2014], where a drop-
let formation model was applied to estimate the droplet size distribution in the DWH blowout considering
different degrees of reduction on the oil-water interfacial tension. For a one thousandfold reduction, their
model produced a distribution with d50 5 260 lm, while for a tenfold reduction, the droplet median diame-
ter was d50 5 890 lm. We defined the range of d50 to be between 200 and 900 lm. Figure 1 shows the
droplet size distributions in the extreme cases, when d50 5 200 lm and d50 5 900 lm.

3.2. Eulerian Velocity Field
There are several sources of uncertainty that are present in the modeled HYCOM Eulerian velocity fields. In
addition to truncation errors associated with the model numerics and grid choices, the solution is quite sen-
sitive to choices in subgrid-scale parameterizations and the specification of initial and boundary conditions.
Quantifying the effects of all sources would require thousands of HYCOM realizations with different combi-
nations of values for each parameter and for each collection of initial and boundary conditions. Unfortu-
nately, that task is impractical due to the overwhelming computational cost. Instead, we would like to be
able to propagate uncertainty in the velocity field using a reduced number of parameters. Moreover, we
would like to perturb the velocity field in every grid cell without running extra realizations of HYCOM, using
only the outputs of a single run, and with the perturbations evolving in time. Our approach to this problem
was to characterize the perturbations as a sum of products of spatial patterns and time series using empiri-
cal orthogonal function (EOF) decomposition. The spatial patterns are given by the multivariate EOFs of the
zonal and meridional components of the velocity field, and the time series are given by the respective prin-
cipal components. A similar approach was applied by Thacker et al. [2012] to propagate uncertainty through
boundary conditions in a HYCOM simulation of the Gulf of Mexico circulation.

The perturbations on the Eulerian velocity field were carried out in the following manner:

Figure 1. Rosin-Rammler distributions considering d50 5 200 lm
(blue) and d50 5 900 lm (red). For both distributions, the spreading
parameter is a 5 1.8.
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ua5u01
XK

k51

nk uk ; (4)

where u0 is the unperturbed horizontal velocity
field, uk is the kth perturbation of the horizon-
tal velocity field, nk is the standardized random
variable that controls the kth perturbation, and
K is the number of modes used. The perturba-
tions are given by:

uk5NT ck rk ; (5)

where ck is the kth EOF, rk is its principal com-
ponent, and NT is a normalization factor, which
here is the number of time steps considered in
the velocity field.

The goal of this approach is to generate a dis-
tribution of velocity fields that capture the
uncertainty in the HYCOM velocity field u0

used in the DeepC Oil model. This task is simi-
lar to that of characterizing an error-covariance
matrix for data assimilation and suffers from
the same limitation of insufficient information
to quantify the error variances of velocity at
each grid point and their mutual covariances.
For our approach to be practical, these uncer-
tainties must be parameterized by just a few
numbers, the coefficients nn used in the expan-
sion, each adjusting the strength of a pattern
characterizing covarying uncertainties.

The issue becomes how to design these patterns. Clearly, their design should reflect the uncertainties likely
to have the greatest impact on the particular outputs of the DeepC Oil model that are of greatest interest.
And even then, there are more ways to design them than can be explored here. We have chosen to base
them on an EOF decomposition of the variability of the HYCOM velocity field during the interval of the sim-
ulation, as that clearly assigns greater uncertainty in regions of higher variability. To insure that the uncer-
tainty is appropriate to the region of the spill, it was restricted to the box bounded by latitudes 238N and
318N and longitudes 828W and 928W. The first two EOFs, which represent 56% of the total variance (41%
the first mode, and 15% the second), were used to propagate uncertainty in the velocity field. Figure 2
presents maps of the percentage of the variance that is explained by both modes together at different
depths. This plot illustrates where the imposed perturbations will mostly impact the velocity field.

The unperturbed surface velocity (u0) and the perturbations (u1 and u2) are presented on Figure 3 for days
10, 20, and 30 of the DWH oil spill (29 April 2010, 9 May 2010, and 19 May 2010, respectively). Both modes
are dominated by variability from meanders of the Loop Current and Loop Current frontal eddies, although
variability related to coastal currents are also present. These perturbations may intensify, weaken, or deform
circulation features. Figure 4 presents three perturbed velocity fields for day 30, when both u1 and u2 are
strong (see Figure 3 and Figure S1 of the supporting information). These velocity fields (ua) were obtained
considering n1 5 1 and n2 5 1 (ua5u01u11u2), n1 5 1 and n2 5 0 (ua5u01u1), and n1 5 0 and n2 5 1
(ua5u01u2). The effect of the perturbations on the dynamics is illustrated in the maps of vertical vorticity
and lateral strain, which are presented in Figures S2 and S3 of the supporting information. The vorticity
maps show the intensification of frontal cyclones and on the Loop Current in the perturbed velocity fields,
most notably for ua5u01u11u2. The strain rate maps show intensification in the Loop Current system and
over the continental shelf break of the northern Gulf of Mexico coast, including the Mississippi delta region.
The circulation in the latter is dominated by wind-driven currents, and by a cyclonic eddy east of the DWH
wellhead. The increased strain rate in the perturbed velocities indicates an enhanced dispersion around the

Figure 2. Percentage of the total variance explained by the first and
second EOFs combined for the (left) zonal (U) and (right) meridional (V)
velocity components, in three selected depths. The black dots depict
the position of the Deepwater Horizon wellhead.
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DWH site. An opposite effect occurs for negative values of n1 and n2, where for the same time, the perturba-
tions induce a weakening in the vorticity and strain rates of the same features (not shown). Figure S4 of the
supporting information shows the maps of lateral divergence of the same fields presented on Figure 5 and
supporting information Figures S2 and S3. Qualitatively, there is no apparent difference between the per-
turbed fields and the unperturbed one.

4. The Polynomial Chaos Approach

The uncertainty quantification is based on a polynomial chaos formulation [M. Iskandarani et al., An overview
of uncertainty quantification techniques for oceanic simulations, submitted to Journal of Geophysical
Research: Oceans, 2015; Knio and Le Mâıtre, 2006; Najm, 2009; Thacker et al., 2015] whereby a surrogate for the
model is constructed to represent the dependence of the model output on the uncertain data. This surrogate
is subsequently used to explore the uncertain parameter space using a large ensemble to tally robust esti-
mates of the output’s statistical distribution. A polynomial chaos surrogate uses a spectral series of the form

Cðx; t; nÞ5
XP

k50

Ĉ kðx; tÞwkðnÞ; (6)

where Cðx; t; nÞ represents the oil concentration, Ĉ kðx; tÞ represents the polynomial chaos coefficients, wkðnÞ
are the multidimensional orthogonal-polynomial basis functions representing the variations of C in the uncer-
tain space, and P represents the truncation of the series to (P 1 1) terms. The notation Cðx; t; nÞ emphasizes
the dependence of the model output not only on space x and time t, but also on the vector of uncertain data

Figure 3. Surface velocity vectors (left) of the unperturbed velocity field (left) and of the perturbations constructed from the (middle) first
and (right) second EOFs. The magenta dots depict the position of the Deepwater Horizon wellhead.
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n. The basis functions are chosen to be orthogonal with respect to an inner product where the PDF of the
uncertain variables n appears as the weight function. The multidimensional basis functions are product of 1-D
basis functions. In a 3-D uncertain space, as we have here (three uncertain parameters), they take the form:

wkðnÞ5Pm1ðn1ÞPm2ðn2ÞPm3ðn3Þ; (7)

where Pmd ðndÞ represents the 1-D basis function of degree md in the variable nd, d 5 1, 2, 3. As the standar-
dized random variables nd are uniformly distributed, Pmd ðndÞ are Legendre polynomials of degree md. The

Figure 4. Surface velocity vectors at 19 May 2010 (top left) for the unperturbed velocity field ua5u0 and for three perturbed fields (top
right) ua5u01u11u2 , (bottom left) ua5u01u1 , and (bottom right) ua5u01u2 . The magenta dots depict the position of the Deepwater
Horizon wellhead.

Figure 5. (left) RMSE of the oil concentration in the upper layer after 30 days. The RMSE was computed through a set of 1024 model real-
izations using randomly chosen sets of the uncertain input parameters and their respective surrogate. The values of oil concentration (in
104 kg/m3) from the model realizations and their surrogates in points (middle) A and (right) B are presented in the scatterplots. The red
lines are the linear regression of the scatterplots, and Corr. and Sl. are the correlation coefficients and slopes, respectively. The magenta
dot indicates the DWH wellhead location.
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polynomial degree in each dimension varies between 0 � md � M, and we have used a total degree trunca-
tion for the multidimensional basis, i.e., m11m21m3 � M. The total number of basis functions is then
P115

ðM13Þ!
M!3! .

In the present article, we use a nonintrusive Galerkin projection to compute the series coefficients and the
associated integrals are approximated with tensorized Gauss quadrature:

Ĉ kðx; tÞ5

XQ

i51

wkðni
QÞCðx; t; nQ

i ÞXQ
i

XQ

i51

wkðni
QÞwkðnQ

i ÞXQ
i

; (8)

where XQ
i and nQ

i are the multidimensional quadrature weights and nodes, respectively. The number of uni-
dimensional quadrature points needed to maintain an exact evaluation of the denominator is q 5 (M 1 1)
and hence the number of 3-D quadrature points needed is Q 5 (M 1 1)3. The determination of the

Figure 6. (left) Mean oil concentration between 0 and 5 m depth (in kg/m3), and (right) mean over standard deviation ratio, on days 10
(29 April 2010), 20 (9 May 2010), and 30 (19 May 2010) of the oil spill. Both mean and standard deviation were extracted from the PC coeffi-
cients. The contours on the plots of 19 May 2010 indicate the position of the oil spill on 17 May 2010 (cyan) and 20 May 2010 (blue) as
observed from a composite of satellite images. The black contours enclose cells for which the surrogate reproduces the model outputs
with a RMSE � 0:1, and the black dot indicates the DWH wellhead location.
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coefficients thus requires
an ensemble with Q mem-
bers and this constitutes
the bulk of the computa-
tional cost. Here the maxi-
mum degree of the
polynomial was set to
M 5 10, which required
Q 5 1331 realizations of
DCOM to compute the coef-
ficients. Once the coeffi-
cients are available, the
series can be used instead of
the model to compute any
required statistical informa-
tion. Some statistical infor-
mation can be obtained
directly from the coefficients,
e.g., the mean concentration
over the uncertain data is
simply given by Ĉ 0ðx; tÞ
while the standard deviation
is
PP

k51 Ĉ
2
k jjwk jj

2.

5. Results

5.1. PC Representation of
Oil Concentration
In order to use the PC
expansion as a surrogate for
the model, it is important to
check its consistency against
actual model outputs. A
metric that approximates
the relative root-mean-
square error (RMSE) of the
PC surrogate was computed
by using differences

between the surrogate and the model at a large number of different combinations of the random inputs [Alex-
anderian et al., 2012a]:

RMSE5

X
n2S

jCðx; t; nÞ2~Cðx; t; nÞj2
 !1=2

X
~n2S

jCðx; t; nÞj2
0
@

1
A

1=2
: (9)

Here S is an ensemble of 1024 independent realizations of the model, where the values of the uncertain
input parameters nðn1; n2; n3Þ are randomly chosen from the assumed three-dimensional uniform distribu-
tion, C represents the oil concentration computed from the model’s outputs, and ~C is the respective PC sur-
rogate. Figure 5 shows the scatterplot of all 1024 samples of ~C and C at two grid cells on 19 May 2010.
Point A illustrates a grid cell where the PC expansion represents satisfactorily the model outputs, with
RMSE 5 0.13. The scatterplot for this grid cell shows little spread around the linear regression line, which
has a slope s 5 0.96, and the concentrations present a correlation coefficient of 0.98. On the other hand,

Figure 7. (left) Mean oil concentration between 300 and 600 m depth (in kg=m3), and (right)
mean over standard deviation ratio, on days 10 (29 April 2010), 20 (9 May 2010), and 30 (19
May 2010) of the oil spill. The black contours enclose cells for which the surrogate reproduces
the model outputs with a RMSE � 0:1, and the black dot indicates the DWH wellhead
location.
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point B illustrates a grid cell
where the PC expansion
poorly approximate the
model outputs, with
RMSE 5 0.59. In this case,
many samples of the surro-
gate produced negative
concentrations. Here PC
expansions with RMSE
� 0:1 will be considered as
suitable to be used as a sur-
rogate for the model.

As presented on section 4,
the mean and standard
deviation of the quantity of
interest can be computed
directly from the coeffi-
cients of the PC expansion.
They are a proxy for the
mean and standard devia-
tion of the distribution of
all possible model runs
inside the range of the
uncertain parameters.
Maps of the mean oil con-
centration in the upper
layer (between 0 and 5 m
depth) are presented in
Figure 6 (left) at days 10,
20, and 30 of the spill (29
April 2010, 9 May 2010, and
19 May 2010). As the values
range within several orders
of magnitude, the maps are
presented in a logarithmic
scale. The plots on the right
show the ratio of the mean

over the standard deviations. Smaller values (in red) indicate relatively higher standard deviation, and there-
fore, higher uncertainty. In most cases, places with higher mean oil concentration presented relatively
smaller uncertainty. On the edges of the oil plume, where concentrations are smaller, the standard devia-
tion reached values which were equal or higher than the mean. Uncertainty is also high in the regions
dominated by the mesoscale variability of the Loop Current system.

Although the scope of the paper is mainly to present the PC approach to simulations of oil transport in the
ocean, a comparison of our results to the observed oil slick from the DWH spill may bring some insight of
what processes were well represented, and what was missed from our simulations. We compared the
results of oil concentration in the surface layer to daily composite products from NOAA’s Satellite Analysis
Branch [Streett, 2011], which is composed by synthetic aperture radar and visible/near infra-red multispec-
tral satellite imagery. Only qualitative comparisons can be made, as the daily composites just provide infor-
mation about the presence of the oil slick, not giving any information that can be related to oil
concentration. The detection of the oil slick through SAR imagery presents some limiting factors that may
affect the quality of the composites. The most important one is that the slick cannot be detected under
strong (greater than 12.8 m/s) or low (less than 2.1 m/s) wind conditions, as these conditions induce false
positive and false negative, respectively. Other important factors that affect the quality and availability of

Figure 8. (left) Mean oil concentration between 900 and 1200 m depth (in kg/m3), and (right)
mean over standard deviation ratio, on days 10 (29 April 2010), 20 (9 May 2010), and 30 (19 May
2010) of the oil spill. The black contours enclose cells for which the surrogate reproduces the
model outputs with a RMSE � 0:1, and the black dot indicates the DWH wellhead location.
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the composites are cloud cover, and limited satellite image coverage, which may not cover the whole spill
area every day [Streett, 2011; Dietrich et al., 2012]. For the period considered (initial 30 days of the oil spill),
only two daily composites are available; from 17 May 2010 and from 19 May 2010, although the quality of
the last one is poor due to the lack of imagery. Thereby, we compared the observed oil slick from days 17
May 2010 and 20 May 2010 with the simulated oil concentration at the surface layer on day 19 May 2010.
The contours of the observed oil slick are superimposed on the plot of the mean oil concentration from 19
May 2010 (Figure 6). During this period, part of the oil slick was advected southward into a frontal cyclone
north of the Loop Current, while another portion was advected westward along the Louisiana coast by
wind-driven currents [Walker et al., 2011]. The first was well captured by the simulations, while the westward
advection of the oil was underestimated. Overall, the observed spread of the oil was mostly inside the
uncertainty range of the simulations. On the other hand, the simulated oil transport to the east, which
resulted in oil arriving in the northwestern coast of Florida by 9 May 2010, and in the Straits of Florida by 14
May 2010, was not observed during the oil spill. In the simulations, the oil was advected eastward/north-
eastward during the first 10 days of the spill (see day 29 April 2010 on Figure 6). Part of the oil that was
advected eastward was then transported to the south, where it reached the Loop Current by 9 May 2010.
The oil, then, got into the Straits of Florida by 14 May 2010. During this period when simulations presented
a strong eastward transport, observations have shown that the oil was not transported east of 878W [Liu
et al., 2011a; Walker et al., 2011]. The discrepancy between simulations and observations could be simply
explained by ocean circulation patterns that were not present in the HYCOM velocity field. On the other
hand, it could also be caused by the neglected effects of wind and waves. Numerical experiments of Le
Henaff et al. [2012] showed that the direct effect of the wind on the DWH oil slick might have constrained
the spread of the oil closer to the Louisiana coast in the initial stages of the oil spill, which kept the oil from
reaching the Loop Current, and thereafter the Straits of Florida. Huntley et al. [2011] tested the direct effect

Figure 9. Global sensitivity index at the upper layer for the first and second EOF modes, and the fiftieth percentile of the droplet size distri-
bution (d50), on days 10 (29 April 2010), 20 (9 May 2010), and 30 (19 May 2010) of the oil spill. The blue contour encloses cells for which
the surrogate reproduces the model outputs with a RMSE � 0:1. The green line on the 19 May 2010 plots indicates the grid cells used to
compute the total amount of oil that reached the northwestern coast of Florida during the first 30 days of the oil spill (Figure 12).
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of the wind in different stages of the DWH spill, and obtained better results with a parameterized wind
effect for the oil transport in coastal areas, although this effect was negligible away from the shelf. The
effect of waves through stokes drift in the transport of the surface oil slick is very similar to the direct effect
of wind, and as Carratelli et al. [2011] described, it is hard to distinguish both conceptually and practically.
Dietrich et al. [2012] used a high-resolution finite element model coupled with a wave model to simulate
the transport of oil from the DWH over the continental shelf, and found better results without adding the
direct effect of the wind.

The mean and standard deviation for the middepth and deep layers are presented in Figures 7 and 8. The
deep layer reached higher concentrations than the middepth layer, as ocean currents are stronger in the
latter, and consequently, dispersion is higher. Another aspect which influenced this behavior was that par-
ticles with smaller droplet sizes got trapped in the deep layer, while all particles that reached the middepth
range kept moving toward the surface. As both of these layers span a depth range of 300 m (300–600 m for
the middepth layer and 900–1200 m for the deep layer), oil concentrations cannot be directly compared to
the concentrations in the upper layer, which span a 5 m depth range, as the Lagrangian particles are binned

Figure 10. Same as Figure 9 but for the middepth layer.

Figure 11. Global sensitivity index for the deep layer for the three input parameters on day 30.
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in a larger volume. Uncertainty was high in
both layers, with values of standard devia-
tion reaching twice the mean concentration
in the edges of the oil plume, where concen-
trations are low.

In the upper layer, most of the oil is inside
the RMSE � 0:1 margin in the first 10–15
days (Figure 6 shows day 10), indicating that
the surrogate is a good representation of the
model during this period. After 15 days, the
oil spreads toward and around the Loop Cur-
rent system where the errors of the surro-
gate increase above 0.1. At all depth ranges
analyzed, the areas with a RMSE> 0.1 pre-
sented high uncertainty, and for the two
deeper layers, most of these areas occurred
where the standard deviation was at least
twice as high as the mean. Also, in the
deeper layers, most of the areas with
RMSE> 0.1 presented an oil concentration
C � 1026kg=m3.

The results in the upper layer show that the
quality of the PC surrogate deteriorates in
areas dominated by mesoscale variability.
This is explained by the fact that the pertur-
bations in the velocity field are larger there.
Another problem occurs in areas with a rela-
tively small oil concentration. In these areas,
the grid cells used to compute the oil con-

centration are reached by a small number of Lagrangian particles. With that, a slight variation in the number
of particles in these grid cells, among different realizations of the model, results in a relatively abrupt
change of oil concentration. In this case, the response of the model to the different values of input parame-
ters is not accurately represented by the 108 PC surrogate. These problems could be attenuated by increas-
ing the order of the PC expansions, although this measure would require a considerably higher number of
model realizations to compute the coefficients. For example, increasing the order from 10 to 11 would
require another 397 model realizations. Another measure to reduce the errors in the surrogate would be to
increase the area of the grid cells in which the Lagrangian particles are binned. In this case, the drawback is
the loss of spatial resolution.

5.2. Sensitivity Analysis
In order to quantify the contribution of each input parameter on the uncertainty of our quantity of interest,
we took advantage of the PC coefficients, as they provide an efficient and computationally cheap way to
perform variance-based sensitivity analysis. A global sensitivity index was computed as the ratio between
the fraction of the variance due to a specific input parameter and the total variance considering all parame-
ters (for more information, the reader is referred to Alexanderian et al. [2012b]). As the index quantifies the
total sensitivity of the model to a specific parameter, it also takes into account the interaction between the
different parameters.

The sensitivity indices for the three input parameters in the upper layer for days 10, 20, and 30 of the oil spill
are presented in Figure 9. The blue contour indicates the RMSE 5 0.10, presented previously. Overall, the
perturbations on the velocity field dominated the variance, with the first EOF mode being dominant on
days 10 and 30, and the second mode being more significant on day 20. This behavior follows the patterns
of the principal components, as on day 20, the absolute value of the second mode is higher than the first
mode (Figure S1 of the supporting information). Comparing Figures 3 and 9 elucidates how each mode

Figure 12. Amount of oil that reached the coast of Florida (green line on
Figure 9) after 30 days considering different input parameters. n1, n2, and
n3 are the standardized random variables used to propagate uncertainty
through the first and second EOFs, and the fiftieth percentile of the drop-
let size distribution, respectively. The red dots are the outputs of simula-
tions considering n1 2 ½21; 1�; n250; n350, the black dots are from
simulations with n2 2 ½21; 1�; n150; n350, and the blue dots are from
simulations with n3 2 ½21; 1�; n150; n250. The big dots are outputs from
actual realizations of the model, while the smaller ones were obtained
from the PC surrogate.
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impacts the oil concentration uncertainty. On day 10, the oil is being transported toward the shelf by wind-
driven currents, which at this moment are affected by the first EOF. On day 20, the oil is reaching the Loop
Current, which is perturbed by the second EOF. On day 30, both modes impact the circulation on the Loop
Current system and closer to the coast. The contribution of the droplet size distribution was more promi-
nent on day 10, but it still reached as much as 60% of the total variance in some areas on days 20 and 30. In
the middepth layer, the velocity perturbations are still dominant, although the contribution of the droplet
size distribution uncertainty is much higher than in the surface layer (Figure 10). In the deep layer, the
uncertainty in the droplet size distribution dominated the variance in the core of the deep plume, while the
first EOF mode contributed to the uncertainty on its edges. Figure 11 shows the sensitivity indices only for

Figure 13. The (left) tenth and (right) ninetieth percentiles of the PDF of oil the concentration (kg/m3) between 0 and 5 m depth for days
15 (4 May 2010), 20 (9 May 2010), and 25 (14 May 2010) of the oil spill, considering 105 samples of the PC proxy. The blue contour encloses
cells for which the surrogate reproduces the model outputs with a RMSE � 0:1, and the black dot indicates the DWH wellhead location.
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day 30, as on the other days the results followed the same pattern. The effect of the second EOF at this
depth range is negligible, which reflects that the second EOF signal around this area is relatively weak.

In the upper layer, in the areas outside the RMSE 5 0.1 contour, where the PC surrogate did not approximate
the output of the model accurately, the variance was largely dominated by the EOF modes. This indicates
that the perturbations of the velocity field induced a complex response in the oil concentration in those
areas that could not be captured by the tenth-order polynomial expansion. This problem could be attenu-
ated if we increased the size of the grid cells in which we binned the Lagrangian particles to compute the
oil concentration. As the Eulerian velocity is what controls the horizontal displacement of the particles, a
coarser grid would reduce the impact of the velocity perturbations in the uncertainty of our quantity of
interest. Similarly, a bigger depth range of the layer used to compute the oil concentrations would reduce
the impact of the droplet size distribution uncertainty. If instead of defining our quantity of interest as oil
concentration in a grid, we define it as the amount of oil that reached some sensitive area, the response of
the model to perturbations in each parameter will be different. Let us consider that our quantity of interest
now is the amount of oil that reaches the shoreline of northwestern Florida (green line on day 19 May 2010
plot of Figure 9) during the first 30 days of oil spill. Figure 12 shows the curves of the total amount of oil
that reaches this area as a function of each uncertain parameter. For each curve, the PC surrogate was
sampled 10,000 times with the values of one specific parameter being randomly chosen from an uniform
distribution, while the other two parameters were kept zero. These results indicate that the uncertainty in
this quantify of interest was largely dominated by the droplet size distribution, with the amount of oil vary-
ing by an order of magnitude between the simulation considering a distribution with d50 5 0.2 mm (related
to n3 5 21), and a simulation considering d50 5 0.9 mm (n3 5 1). The increased impact of d50 in this case is
not surprising, as the area considered to compute the amount of oil that reached the shoreline is 10 times
bigger than the horizontal area of the grid cells used to compute the oil concentrations. On the other hand,
these curves do not show the combined effect of the parameters, as the global sensitivity index does.

5.3. Probabilistic Maps
Probability density functions of oil concentration were constructed at each grid point by sampling the PC
expansion 100,000 times with randomly chosen values of the variables n1, n2, and n3. These PDFs provide valu-
able information for impact assessment and for contingency planning during oil spill events. By extracting the
tenth percentile of each distribution, we can get a measure of ‘‘best case scenario’’ of the oil spread, where
there is a 90% chance of the concentration to reach that value for the uncertain parameters space considered.
On the other hand, the ninetieth percentile provides a measure of ‘‘worst case scenario,’’ where in only 10% of
the uncertain parameters space the oil concentration suppress its value. Figure 13 presents the maps of the
tenth and ninetieth percentiles of the PDFs of oil concentration in the upper layer at days 15, 20, and 25.
These plots highlight the importance of taking into account the uncertainty of the model in the oil fate fore-
cast. For instance, in the worst case scenario, the oil reaches the coast of Florida, near Panama City, on day 15,

Figure 14. Probability of oil concentration (in %) to reach at least 105kg=m3 between 0 and 5 m depth on days 15 (4 May 2010), 20 (9 May
2010), and 25 (14 May 2010) of the oil spill. The blue contour encloses cells for which the surrogate reproduces the model outputs with a
RMSE � 0:1, and the black dot indicates the DWH wellhead location.
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while on the best case scenario, the oil reaches this area after day 20. Also, in the worst case scenario, the oil
slick would reach the Mississippi Delta by day 25, which did not happen in the best case scenario.

Another way to use these PDFs is to build probabilistic hazard maps given a threshold value [Madankan
et al., 2014]. Considering that in our simulations we did not take into account any type of oil degradation, it
is hard to define what concentration would represent some risk to the environment, which could be used
as threshold. Our choice here was arbitrary, as we picked a concentration that was 2 orders of magnitude
smaller than the maximum concentration obtained in the upper layer. Figure 14 shows the probability of
the oil concentration to reach at least 1025kg=m3 in the upper layer on days 15, 20, and 25. According to
these maps, it is more likely that the oil would reach the coast of Florida after 20 days. Also, the maps show
a high probability for the oil slick to reach the Mississippi Delta by day 25.

6. Summary and Discussion

The purpose of this paper was to present a methodology to account for model uncertainty in oil fate simu-
lation during a deep water spill. The ensemble-based PC approach was used to propagate uncertainty in
the Eulerian velocity field and droplet size distribution of a Lagrangian oil fate model. The method aims to
represent a model output as a polynomial series expansion of model input parameters, and this representa-
tion can then be used as a surrogate for the model. In order to test the capabilities of the PC expansion, we
applied the technique on the first 30 days of the DWH oil spill, and checked the quality of the PC represen-
tation of the model during the simulation period. A variance-based sensitivity analysis was carried out
through the PC coefficients, where the total contribution of each source of uncertainty considered was
quantified at different depths. Finally, we used the PC surrogate to construct probability density functions
of oil concentrations, and applied them to produce probabilistic hazard maps.

The biggest challenge we faced was to find a reasonable way to perturb the Eulerian velocity field without
having to run extra realizations of HYCOM, and prescribe the perturbations with a small number of parame-
ters. By using the EOF modes to accomplish that, we assumed that the uncertainty in the velocity field from
HYCOM had patterns of variability that resemble the variability it exhibited during the period analyzed. This
way, higher uncertainty was assigned where the flow was more energetic, like in regions dominated by
mesoscale variability, which is a reasonable assumption. On the other hand, if HYCOM missed completely
some physical process or feature, like a mesoscale eddy, due to misspecification of some parametrization
(or boundary/initial conditions), this source of uncertainty was not accounted for by the EOF modes. Our
approach targets the effect of relatively small deviations from the Eulerian velocity field, but, as in any other
approach to estimate oil transport in the ocean, a reliable representation of the ocean state is paramount.

It is important to point out that, as our focus was to demonstrate the capabilities of the methodology, we
were not concerned about accurately reproducing observations of the oil slick from the DWH spill. Actually,
several important aspects prevented our results from correctly reproducing the observations of the surface
oil slick. First, as discussed on section 5.1, we did not account for the direct impact of wind or Stokes drift in
the transport of oil, which are likely to impact the spread of the surface oil slick closer to the shore. Another
important factor is that the predictability limit of Lagrangian trajectories in the area affected by the oil spill
ranges from about 1.5–6 days [Mariano et al., 2011], which makes the task of forecasting the oil transport
for long periods impractical without updating the location of the oil with observations. Applications of
Lagrangian models to simulate the transport of the oil from the DWH by Liu et al. [2011b], Macfadyen et al.
[2011], Huntley et al. [2011], and Mariano et al. [2011] highlight the importance of applying observations to
correct the location of the oil, in order to accomplish a faithful forecast. Also, we neglected oil weathering
processes, like biodegradation and evaporation, which might decrease the horizontal distribution of oil by
thousands of kilometers [Adcroft et al., 2010; Mariano et al., 2011; North et al., 2015]. Finally, physical proc-
esses which are not resolved by the HYCOM velocity field have been identified as important factors in the
dispersion of the DWH oil spill [Poje et al., 2014].

Nevertheless, the capabilities of the PC approach presented can improve significantly the oil fate forecast,
and support contingency planning during oil spill events. In order to apply the methodology operationally
in a 7 days forecast, the order of the polynomial expansion can be reduced to decrease the computational
cost of calculating the expansion coefficients, and provide a faster response. In previous experiments within
the same scenario, we were able to satisfactorily reproduce our quantity of interest up to 10 days using a
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sixth-order PC expansion. In this case, the computation of the PC coefficients required only 343 realizations
of the oil fate model, against the 1331 used to evaluate the tenth-order PC expansions presented. Further,
other sources of uncertainty should be considered, such as oil weathering, wind drag, and stokes drift. The
last two can be added in the Eulerian velocity field, and be perturbed along with the ocean currents through
EOF decomposition. This way, the number of uncertain input parameters would not change, and no extra real-
izations of the model would be necessary. At last, alternative ways to perturb the velocity field are possible,
and should be the focus of further investigation. Considering a sixth-order PC expansion, and limiting the
number of variables used to perturb the velocity field, we can propagate uncertainty on an ensemble of
HYCOM realizations [Thacker et al., 2012; M. Iskandarani et al., Quantifying initial conditions uncertainty in the
Gulf of Mexico using polynomial chaos expansions, submitted to Journal of Geophysical Research: Oceans,
2016]. If we are able to reduce the number of uncertain parameters to two, as we did in the present study, a
maximum of 49 realizations of HYCOM would be necessary. This number can be further reduced by the appli-
cation of adaptive quadrature techniques to compute the PC coefficients [Constantine et al., 2012; Winokur
et al., 2013; M. Iskandarani et al., An overview of uncertainty quantification techniques for oceanic simulations,
submitted to Journal of Geophysical Research: Oceans, 2015].
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GONÇALVES ET AL. A FRAMEWORK TO UQ IN OIL SPILL MODELS 2075

http://dx.doi.org/10.1029/2010GL044689
http://dx.doi.org/10.1007/s10915-011-9486-2
http://dx.doi.org/10.1007/s10596-012-9286-2
http://dx.doi.org/10.1016/j.ces.2015.01.058
http://dx.doi.org/10.1016/j.marpolbul.2012.07.036
http://dx.doi.org/10.1016/S1463-5003(01)00012-9
http://dx.doi.org/10.1016/j.marpolbul.2013.05.020
http://dx.doi.org/10.1016/j.marpolbul.2013.05.020
http://dx.doi.org/10.1029/2011gm001109
http://dx.doi.org/10.1061/(ASCE)0733-9429(2003)129:7(495)
http://dx.doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2
http://dx.doi.org/10.5670/oceanog.2006.95
http://dx.doi.org/10.1016/j.cma.2012.03.019
http://dx.doi.org/10.1016/j.csr.2012.03.015
http://dx.doi.org/10.1016/S1353-2561(98)00008-5
http://dx.doi.org/10.1016/S1353-2561(98)00027-9
http://dx.doi.org/10.1016/S1353-2561(98)00027-9
http://dx.doi.org/10.1007/978-1-4612-2430-3_5
http://dx.doi.org/10.1175/JTECH-D-13-00011.1
http://dx.doi.org/10.1007/978-3-319-16459-5
https://data.gulfresearchinitiative.org/data/R1.x138.077:0026
https://data.gulfresearchinitiative.org/data/R1.x138.077:0026
https://data.gulfresearchinitiative.org/data/R1.x138.077:0026


Huntley, H. S., B. L. Lipphardt Jr., and A. D. Kirwan Jr. (2011), Surface drift predictions of the Deepwater Horizon spill: The Lagrangian per-
spective, in Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophys. Monogr. Ser., vol. 195, pp.
179–195, AGU, Washington, D. C., doi:10.1029/2011gm001097.

Johansen, O. (2003), Development and verification of deep-water blowout models, Mar. Pollut. Bull., 47(9-12), 360–368, doi:10.1016/S0025-
326X(03)00202-9.

Johansen, O., P. J. Brandvik, and U. Farooq (2013), Droplet breakup in subsea oil releases—Part 2: Predictions of droplet size distributions
with and without injection of chemical dispersants, Mar. Pollut. Bull., 73(1), 327–335, doi:10.1016/j.marpolbul.2013.04.012.
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