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Gravity current propagation up a valley
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The advance of the front of a dense gravity current propagating in a rectangular
channel and V-shaped valley both horizontally and up a shallow slope is examined
through theory, full-depth lock–release laboratory experiments and hydrostatic
numerical simulations. Consistent with theory, experiments and simulations show
that the front speed is relatively faster in the valley than in the channel. The front
speed measured shortly after release from the lock is 5–22 % smaller than theory, with
greater discrepancy found in upsloping V-shaped valleys. By contrast, the simulated
speed is approximately 6 % larger than theory, showing no dependence on slope for
rise angles up to θ = 8◦. Unlike gravity currents in a channel, the current head is
observed in experiments to be more turbulent when propagating in a V-shaped valley.
The turbulence is presumably enhanced due to the lateral flows down the sloping
sides of the valley. As a consequence, lateral momentum transport contributes to the
observed lower initial speeds. A Wentzel–Kramers–Brillouin like theory predicting the
deceleration of the current as it runs upslope agrees remarkably well with simulations
and with most experiments, within errors.
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1. Introduction
A gravity current is a buoyancy-driven flow in which predominantly horizontal

pressure gradient forces cause fluid of one density to flow under or over fluid of
another density. Gravity currents occur in nature as sea breezes, oceanic overflows,
river flows and avalanches, and also appear in many engineering applications (Simpson
1997).

There have been many laboratory studies of lock–release gravity currents propagat-
ing on flat surfaces, including those by Keulegan (1957), Huppert & Simpson (1980),
Simpson (1982), Rottman & Simpson (1983) and Shin, Dalziel & Linden (2004).
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The three phases of gravity current flow for a high-Reynolds-number lock–release
gravity current on a horizontal surface are described by Huppert & Simpson
(1980). In the first phase, shortly after the lock is released, the gravity current
flows steadily during what is called the constant-speed (or slumping) phase. For an
energy-conserving gravity current produced by full-depth lock–release in a rectangular
channel of depth H, Benjamin (1968) predicted the height and speed of the current
to be h = H/2 and U0 = √g′H/2, respectively, in which g′ is the reduced gravity
based on the density difference between the current and ambient fluid. This work
was verified experimentally by Shin et al. (2004), who extended the theory for
energy-conserving gravity currents released from partial-depth locks. In the second
phase, after propagating 6–10 lock lengths the speed of the current front decreases,
the front position changing in time according to X∼ t2/3 (Rottman & Simpson 1983).
This is called the inertial (self-similar) phase. Finally, the current enters the third,
so-called viscous phase, in which the front advances at a still slower rate due to the
effects of viscosity.

Gravity currents flowing down shallow to moderate slopes were examined in
experiments with a constant volume flux at the source (Britter & Linden 1980) and
in lock–release (constant volume source) experiments with corresponding simulations
(Birman et al. 2007). They found broadly similar results, namely that downslope
gravity currents are quasi-steady and that the speed of the current varies moderately
with the slope angle. In particular, for downslope lock–release gravity currents,
Birman et al. (2007) found that the front speed relative to the speed of horizontal
currents is larger by approximately 10 % for downward slopes of s ' tan 10◦ and is
approximately 20 % faster when propagating down a slope of s' tan 40◦, for which
the current speed was found to be fastest.

The evolution of gravity currents flowing up a slope has been examined numerically
by Safrai & Tkachenko (2009). Though focusing upon turbulent entrainment processes,
they did observe that the current decelerated while moving upslope, with greater
deceleration on larger slopes. Similar behaviour was observed by Ottolenghi et al.
(2015), who examined a combination of large-eddy simulations and laboratory
experiments of upslope currents. Marleau, Flynn & Sutherland (2014) performed
laboratory experiments examining the approach towards and propagation upon a
rising slope of full- and partial-depth lock–release gravity currents. Consistent with
the predictions of a Wentzel–Kramers–Brillouin (WKB) like theory, they observed
nearly constant deceleration along the uniform slope, s, with a horizontal component
of acceleration ax = −0.112g′s(D0/H0)(2 − D0/H0), in which D0 is the depth of the
lock fluid and H0 is the ambient fluid depth at the start of the slope. In particular,
for full-depth lock–release experiments (D0 =H0), they found ax =−0.112g′s.

Monaghan, Mériaux & Huppert (2009) used a combination of a theoretical box
model and laboratory experiments to show that lock–release gravity currents in a
horizontal V-shaped valley exhibited very similar behaviour in the constant-speed and
inertial phase to lock–release gravity currents in a rectangular channel. In the inertial
phase, however, they predicted that the front location changed in time according to
X ∼ t4/5.

Marino & Thomas (2009) followed the approach of Benjamin (1968) to formulate a
prediction for the steady speed of a gravity current propagating in a horizontal channel
having cross-sectional width that changed as a power law with height, z, according to
bzα for constants b and α. The result was generalized further by Ungarish (2013) and
Zemach & Ungarish (2013), who predicted the steady speed in horizontal channels of
arbitrarily varying width with height. Using a hydrostatic shallow-water formulation,
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they solved the equations for lock–release gravity currents in various horizontal
channel geometries, including a V-shaped valley. The simulated front position over
time agreed well with the experiments by Monaghan et al. (2009) and Ungarish,
Mériaux & Kurz-Besson (2014) in both the constant-speed and inertial phases. Other
studies of gravity currents in V-shaped valleys have explored the effects of viscosity
(Takagi & Huppert 2007) and rotation (Darelius 2008; Cuthbertson et al. 2014).

There have been relatively few laboratory studies of high-Reynolds-number gravity
currents in more complex geometries, and what little has been done has mainly been
limited to flow over obstacles (Rottman et al. 1985; Lane-Serff, Beal & Hadfield
1995) and to surface currents above a uniform slope (Sutherland, Polet & Campbell
2013).

The novelty of the present study lies in investigating a dense full-depth lock–release
gravity current propagating both upslope and within a V-shaped valley. A combination
of theory, numerical simulations and laboratory experiments is used to understand
the dynamics of this flow. Besides its fundamental interest, this idealized problem
constitutes the first step in understanding the more complex dynamics of a sea breeze
as it moves uphill and through valleys in coastal regions.

Section 2 reviews recent theories for gravity currents in channels of arbitrarily
varying width with height and specifically considers the steady speed of an
energy-conserving gravity current in a horizontal V-shaped valley. Separately, a
theoretical model predicting the deceleration of flow up a slope is reviewed and
extended for upslope V-shaped valleys. Section 3 presents the set-up, analysis
methods and results of laboratory experiments of gravity currents that propagate
horizontally and upslope in rectangular channels and V-shaped valleys. Section 4
describes the hydrostatic model that is used to simulate the experiments using the
same configuration and comparable parameter ranges. The simulated front speed
and deceleration are compared with theory and experiments and the structure of
the simulated current is compared with experiments. Thus we assess the ability of
a hydrostatic code to capture the evolution of a gravity current in this somewhat
complex geometry. Section 5 summarizes the results.

2. Theory
2.1. Steady speed of a current in a horizontal V-shaped valley

We consider a gravity current of maximum height h flowing steadily in an ambient
fluid of maximum depth H propagating in a horizontal V-shaped valley having spread
ϕ and spanwise tilt φ, as illustrated in figure 1. The current is assumed to have
uniform density ρc and the ambient fluid has density ρ0, so that the reduced gravity
is g′ = g(ρc − ρ0)/ρc.

Following the approach of Benjamin (1968), Marino & Thomas (2009) predicted the
steady speed of a gravity current propagating in a lengthwise uniform domain whose
spanwise width increased with height z according to W(z) = bzα. This description
included the special cases of a rectangular channel (α = 0) and a V-shaped valley
(α = 1). From conservation of momentum and mass, they derived an expression for
the steady speed U0 of the gravity current as a function of the relative downstream
height, h/H:
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FIGURE 1. Schematic spanwise cross-section downstream of a gravity current head as it
flows steadily in a horizontal V-shaped valley with spread ϕ and tilt φ. For the purposes
of theory, the interface between the current and ambient fluid downstream of the current
head is assumed to be horizontal with depth h above the deepest part of the channel.

In the case α = 0, this gives the well-known prediction (Benjamin 1968; Klemp,
Rotunno & Skamarock 1994) for the speed of gravity currents in a rectangular
channel.

In the case of a V-shaped valley, for which α= 1, the speed of a gravity current is
predicted to be

U2
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)

g′h. (2.2)

The above expression applies for valleys of arbitrary tilt and spread.
The predicted relative speeds of a gravity current in a rectangular channel and a

V-shaped valley given as a function of the relative current depth are plotted in figure 2.
Explicitly, the speed is cast in terms of a Froude number based upon the maximum
ambient fluid depth,

FrH ≡U0/
√

g′H, (2.3)

and the maximum current depth is given relative to the maximum ambient fluid
depth. Here we have chosen to cast the Froude number in terms of H rather than
the maximum gravity current height, h, because the latter is difficult to measure in
laboratory experiments.

Assuming that, in addition to mass and momentum, energy is conserved, then the
relative height is constrained to be (Marino & Thomas 2009)

h
H
=
(

1
2+ α

)1/(1+α)
, (2.4)

and the steady speed is

U0 =
√

2
(

1+ α
2+ α

)√
g′h. (2.5)

Specifically, in the case of the rectangular channel, we have the Benjamin (1968)
results that

h=H/2 (2.6)
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FIGURE 2. Dependence of Froude number, FrH ≡ U0/
√

g′H, on the relative downstream
height of the gravity current propagating horizontally in a rectangular channel (thin
line) and, from (2.2), in a V-shaped valley (thick line). Solid circles indicate values for
energy-conserving gravity currents and dashed lines denote unrealizable values that require
external energy to maintain the flow. Note that for a current in a V-shaped valley, FrH is
independent of the valley spread and tilt, ϕ and φ, respectively.

and
U0 = (g′H)1/2/2. (2.7)

Hence FrH = 1/2, which is moderately smaller than the maximum value of '0.527
occurring for h/H ' 0.347. The experiments of Shin et al. (2004) confirmed that
full-depth lock–release gravity currents indeed occupy half the depth of the ambient
fluid and propagate in steady state with a Froude number approximately 5 % smaller
than the energy-conserving value of 1/2. The discrepancy is attributed to energy loss
resulting from turbulence between the current head and ambient fluid.

For a V-shaped valley, the height of an energy-conserving gravity current is
predicted to be

h=H/
√

3≈ 0.577H (2.8)

and its speed is

U0 = 2
√

2

3 4
√

3

√
g′H ≈ 0.716

√
g′H. (2.9)

Consistent with observations of gravity currents in horizontal rectangular channels, we
expect that (2.8) and (2.9) should predict the height and speed of an energy-conserving
gravity current resulting from a full-depth lock–release in a horizontal V-shaped valley
with any spread or tilt. Like the rectangular channel case, the energy-conserving value
of FrH for a V-shaped valley is moderately smaller than its maximum value of '0.746,
which occurs for h/H = 0.452.

The fact that the speed of an energy-conserving gravity current in a V-shaped valley
is larger than its counterpart in a rectangular channel can be understood because its
relative height h/H is approximately 15 % larger and so the current is driven by a
larger horizontal pressure gradient. In a valley, the cross-sectional area of the current
goes as the square of the height of the current. Therefore, for a current of the same
cross-sectional area as the rectangular channel, a higher relative height is necessary.
Owing to conservation of energy and momentum, the cross-sectional area of the
current is only one-third of the total cross-sectional area of the V-shaped valley.
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FIGURE 3. Schematic of the initial configuration of the laboratory experiments, showing
(a) a spanwise cross-section across the lock and (b) a lengthwise cross-section along the
deepest part of the valley, with the gate indicated by the thick dashed line. In panel (a)
the position of the camera is shown to be looking down the side of the tank to produce a
top view of the current through the ambient fluid and a side view of the current through
light reflected from the mirror (hashed markings). The bottom lengthwise slope is given
in terms of the rise angle θ by s= tan θ . The along-slope coordinate system is represented
by ` and the projection of this coordinate onto the horizontal is x= ` cos θ .

The overlying ambient return flow takes up more area and is therefore slower. In the
case of a rectangular channel, for which the cross-sectional areas of the current and
ambient fluid are equal, the velocity of the current is equal to the velocity of the
return flow.

2.2. Upslope deceleration
In our study of currents propagating in V-shaped valleys, we consider currents that
propagate horizontally and upslope, as illustrated in figure 3. Although no rigorous
theory exists for currents that propagate upslope in V-shaped valleys, we can extend
the WKB like theory of Marleau et al. (2014), derived for upslope currents in a
rectangular channel, to predict the deceleration of a current flowing up a valley. The
theory assumes a constant Froude number, FrH , so that the speed of the current at a
given location x depended only on the height H(x) of the ambient fluid at the front
of the current through

U = FrH

√
g′H(x). (2.10)

The assumption of constant FrH is equivalent to assuming that the ratio of local
current to ambient fluid depth is constant (see (2.1)).

Setting the front speed U= dx/dt gives a differential equation that can be solved to
find the front position x≡X(t). In particular, for a uniform slope s and an initial front
speed U0=FrH

√
g′H0 at X=X0, where H(X0)=H0, the front position is predicted to

change in time according to

X = X0 +U0t− U2
0s

4H0
t2. (2.11)

Therefore, the along-slope acceleration is predicted to be constant and negative, with
horizontal component

Ax =−1
2

U2
0

H0
s=−1

2
Fr2

Hg′s. (2.12)

In full-depth lock–release experiments in a lengthwise sloping tank, the current is
expected to accelerate rapidly from rest to a speed U0 over a short distance from the
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gate after it is extracted. If the slope of the tank is sufficiently small, this speed should
be comparable to the energy-conserving speeds of gravity currents in a horizontal
channel. Thus in a rectangular channel, for which U0 is given by (2.7), the consequent
gradual deceleration of the current as it runs upslope is predicted by

Ax =−g′s/8=−0.125g′s. (2.13)

This prediction is close to the deceleration measured for gravity currents in a
rectangular channel incident upon a slope (Marleau et al. 2014).

Because the information about the cross-channel geometry in (2.12) is captured by
the Froude number, we anticipate that the deceleration of a gravity current in an
upsloping V-shaped valley should be given by (2.12) in which U0 is given by (2.9).
Explicitly,

Ax =− 4

9
√

3
g′s'−0.257g′s. (2.14)

These predictions are compared with the results of laboratory experiments and
numerical simulations in the next two sections.

3. Laboratory experiments
3.1. Laboratory set-up

The experimental set-up is illustrated in figure 3. The rectangular tank had length
148 cm, width 19.8 cm and height 28.7 cm. The sides of the tank were at right angles
to each other, meaning that the valley spread was ϕ = 90◦ in all experiments.

Blocks under the end of the table and a rail along the edge of the tank allowed the
slope angle θ = tan−1(s), in which s is the slope, and tilt φ to be varied independently
with θ = 0◦, 1◦, 2◦, . . . , 7◦, 8◦ and φ = 0◦, 15◦, 30◦, 45◦. Here we compare upslope
flows in a V-shaped valley (θ > 0◦, φ > 0◦) to horizontal flows in a V-shaped valley
(θ = 0◦, φ > 0◦) and to upslope flows in a rectangular channel (θ > 0◦, φ = 0◦).

A gate of thickness 1 cm was positioned 36.7 cm from the left-hand end of the
tank with a silicone seal to prevent water in the lock to the left of the gate from
leaking into the ambient fluid to the right of the gate until the gate was extracted. A
rail of height 0.5 cm held the gate perpendicular to the sides of the tank. Because
the lock length was one-quarter of the total length of the tank, the current released
from the lock in horizontal tank experiments (θ = 0◦) was expected to propagate at
constant speed to the end of the tank before entering the self-similar regime (Rottman
& Simpson 1983).

Salt was added to the water in the lock to increase its density, and after thorough
mixing it was dyed with food colouring in order to visualize the advance of the
gravity current after release from the lock. The density of the fluid on each side of
the lock was then measured with an accuracy of 5 × 10−5 g cm−3 using an Anton
Paar DMA 58 densitometer. In all the experiments, the resulting reduced gravity g′
was approximately 6 cm s−2.

The tank was filled with water to a depth that varied depending upon the tilt angle
φ in order to ensure that the fluid in the tank was bounded laterally only by the two
outward sloping sidewalls of the tank (figure 3a). The greatest depth of fluid at the
gate, H0, was 15.5 cm for a rectangular channel (φ = 0◦), 5 cm for φ = 15◦, 9.9 cm
for φ = 30◦ and 10 cm for φ = 45◦. These lock depths caused the end of the tank to
be dry in some of the valley experiments where the rise angle was moderately large
(θ > 3◦).
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FIGURE 4. Snapshot taken from an experiment of a gravity current propagating along
a horizontal rectangular channel in an ambient fluid of depth H0 = 15.5 cm and with
reduced gravity g′= 6.57 cm s−2. The upper part of the image shows a top view looking
through the surface of the (clear) ambient fluid to the dyed current whose front is situated
approximately 50 cm to the right of the gate. The bottom part of the image shows the
side view of the current visualized by a mirror tilted at 45◦ from the horizontal along the
length of the tank. The three white lines indicate where along-tank slices were taken to
construct time-series images of the rightward-advancing current front.

For flow in a rectangular channel, the typical Reynolds number was Re=H0U0/ν≈
8000 based on the ambient fluid height and the anticipated energy-conserving speed
given by (2.7). In the V-shaped valley experiments, for which U0 is estimated by (2.9),
the value of H0 was smaller, resulting in lower-Reynolds-number flows. Explicitly,
Re ∼ 5000 for φ = 45◦ and φ = 30◦, and Re ∼ 2500 for φ = 15◦. In all cases, the
Reynolds number is sufficiently large that viscosity should play a negligible role in the
evolution of the current close to the gate and during the initial stage of deceleration
in upsloping experiments. However, viscosity is expected to play a role at the sides of
the valley where the fluid is shallow and at late times in experiments with moderately
large rise angles, as the current slows to a halt where the surface touches the tank
bottom.

A movable Hitachi KPF 100 camera was positioned above the tank, angled so that
it looked along the tank wall, as illustrated in figure 3(a). In rectangular channel
experiments, a mirror was placed at 45◦ to the horizontal so that the camera would
simultaneously record a side view of the current, as shown in figure 4. In V-shaped
valley experiments, the mirror was placed flat on the table supporting the tank, as
illustrated in figure 3(a). In this case the view from the mirror compared with the
view through the open end of the tank enabled us to evaluate the symmetry of the
gravity current.

When the gate was extracted, the dyed lock fluid flowed along the bottom of the
tank as a gravity current. A grid on the bottom of the tank was used to locate the
position of the head of the current as it propagated along the tank. The lines of the
grid were spaced every 5 cm in the spanwise (y) direction and every 10 cm in the
along-slope (`) direction.

Movies were recorded at a rate of 10 fps, and recording continued until the current
front reached the end of the tank or until the front became stationary in upsloping
cases where the free surface intersected the tank bottom.

3.2. Analysis
Time series of the front position were constructed from movies of the experiments.
Explicitly, slices from each frame of a movie were extracted along lines approximately
parallel to the long side of the tank. In rectangular channel experiments, three slices
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FIGURE 5. Time series taken from an experiment of a gravity current propagating upslope
in a rectangular channel with H0= 15.5 cm, g′= 6.49 cm s−2 and θ = 6.2◦ (s' 0.11). The
closely spaced overlapping white stars indicate points selected to determine the along-slope
front position, `, versus time, t.

were taken along lines spaced by 5 cm across the tank, as illustrated by the white
lines in figure 4. In V-shaped valley experiments, the slices were taken a few pixels
apart against the near tank wall.

A threshold in brightness intensity was used to define which fluid belonged to the
current. The position of the front was then determined from the location of the contour
with this intensity in each time-series image, as illustrated in figure 5.

When the gate was removed, the fluid adjusted for a few seconds before the gravity
current formed. For this reason, data from the first two seconds of each experiment
were discarded. Data taken within 10 cm of the right-hand side of the tank were also
discarded because surface waves reflecting off the end of the tank tended to cause
oscillations of the front in this region, particularly for currents propagating upslope.
In V-shaped valley experiments, the images of the current were obstructed by clamps
that tilted the tank at an angle. Data points in these locations were also discarded.

Anticipating that the upslope-propagating front should decelerate according to
(2.11), we found the best-fitting quadratic to the measured along-slope front position
in the form `= `0 + u`t+ (a`t2)/2. The coefficients were used to find the horizontal
component of the initial along-slope front speed u0 = u` cos θ and the horizontal
component of the front acceleration ax = a` cos θ . These results were compared with
the predicted speed U0 given by (2.7) and (2.9) and the acceleration Ax given by
(2.12).

This procedure was followed for each of the time series constructed from multiple
slices along the tank. The mean and standard deviation of the measured values of
u0 and ax were then computed. In experiments where turbulence and mixing were
observed, there was more spread in the values of u0 and ax, but the spread (and
therefore the error) was also influenced by the camera angle. In the V-shaped valley
experiments, the results underestimated the true velocity and acceleration if the lines
used to construct the time series were not exactly parallel to the tank wall. This may
be the cause of some of the spread in the results.
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FIGURE 6. Initial relative front speed, u0/
√

g′H0, versus the rise angle, θ . The front
speed is determined from (solid symbols) laboratory experiments (E) and (open symbols)
numerical simulations (N) of gravity currents in (a) a rectangular channel and (b) a
V-shaped valley. The horizontal grey line in each panel indicates the predicted Froude
number, FrH = U0/

√
g′H0, for horizontal channels and V-shaped valleys. In panel (b)

different symbols are drawn depending upon the tilt, φ, of the V-shaped valley, as
indicated in the legend. Errors in the measurements taken from laboratory experiments
are no larger than the size of the symbols themselves.

3.3. Results
The measured horizontal component of the along-slope initial speed u0 non-
dimensionalized by

√
g′H0 (i.e. the Froude number) is plotted against rise angle θ as

solid symbols in figure 6. In the case of a horizontal rectangular channel (θ = 0◦),
the observed Froude number is nearly 10 % lower than the predicted value of
FrH = U0/

√
g′H0 = 1/2, but the measured values are consistent with those reported

by Shin et al. (2004). As in their work, we attribute the difference to energy loss
resulting from viscous dissipation and mixing.

Consistent with (2.9), the measured Froude number was larger for flow in a
horizontal V-shaped valley than for flow in a horizontal rectangular channel. However,
only the symmetric case with tilt φ = 45◦ gave FrH ≈ 0.714, close to the theoretical
value of 2

√
2/(3 4
√

3)' 0.716. For φ = 15◦, FrH was 22.4 % smaller, and for φ = 30◦,
FrH was 17.1 % smaller, than the theoretical prediction. The greater discrepancy in
the case φ = 15◦ is probably because the lock depth and hence the Reynolds number
is smaller, so that viscous dissipation plays a more significant role.

In rectangular channel experiments (solid squares in figure 6a), there is little
change in Froude number as the rise angle, θ , increases from 0◦ to 8◦. All measured
values are smaller than the energy-conserving prediction by between 4 and 15 %.
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FIGURE 7. Schematic spanwise cross-section of the tilted tank showing the gravity current
in grey and ambient flow in white (a) near the gate and (b) further downstream when
propagating without a slope and (c) when flowing upslope.

This observation is consistent with the expectation that the slope should not influence
the initial speed if the slope is sufficiently small. Likewise, in V-shaped valley
experiments, we did not observe any significant change in the Froude number with
rise angle θ = 6◦ in the case with the valley having tilt φ = 30◦ (solid right-pointing
triangles in figure 6b). However, in experiments with tilt angle φ = 45◦ (solid
circles in figure 6b), we found that the Froude number did decrease moderately as
θ increased from 0◦ to 8◦, there being a 22 % difference between the measured
and energy-conserving values when θ = 8◦. The small number of experiments at
asymmetric tilt angles makes it hard to draw any firm conclusions about the effect
of slope on front speed in asymmetric valleys.

This Froude-number dependence upon θ with φ = 45◦ can be understood by
considering the spanwise motion of fluid. After propagating some distance down the
tank, the speed of the current front is highest in the middle of the valley where the
along-tank pressure gradient is largest and where viscosity has the least influence
over the depth of the current. The relatively faster flow leads to a depression in the
interface between the current and ambient about y= 0, as illustrated in figure 7. Thus
a spanwise flow develops in which dense fluid flows down the sides of the valley. A
momentum deficit in the along-slope direction is transported from the edges of the
dense current into the middle of the valley by the spanwise flow. This momentum
deficit increases with increasing θ and is largest for tilt angle φ = 45◦. Turbulence
near the gravity current head should act to transport opposing momentum from the
valley sides to the interior, slowing the front-propagation speed.

In figure 8 the measured horizontal component of the along-slope acceleration, ax,
normalized by Fr2

Hg′s, is plotted versus the rise angle, θ . Here we set FrH to be
the Froude number for energy-conserving gravity currents: from (2.7), FrH = 1/2
for currents in a rectangular channel; from (2.9), FrH = 2

√
2/(3 4
√

3) ≈ 0.716 for
currents in a V-shaped valley. According to the rightmost expression in (2.12), the
predicted horizontal component of (negative) acceleration, Ax, when normalized by
Fr2

Hg′s should be −1/2 for currents in rectangular channels and V-shaped valleys.
For small rise angles, gravity currents in a rectangular channel were found to

decelerate faster than the theoretical prediction, but the error in these measurements
was also significant, compounded by the fact that the normalized values are computed
by taking the ratio of a small measured deceleration to a small slope s. For rise angles
θ > 5◦ and for all the V-shaped valley experiments with θ > 2◦, we found that the
measured deceleration of the current head was not as large as predicted, with typical
values between 60 and 80 % of the predicted value.
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FIGURE 8. Horizontal component of the (negative) relative acceleration, ax/(Fr2
Hg′s),

versus the rise angle, θ . Here FrH is the Froude number predicted for energy-conserving
currents. Values are plotted for (solid symbols) laboratory experiments (E) and (open
symbols) numerical simulations (N), with currents in a rectangular channel indicated by
squares and currents in a V-shaped valley with tilt, φ, as indicated in the legend. The
horizontal grey line is the (negative) relative acceleration predicted by theory. Errors in
the measurements taken from laboratory experiments are indicated by vertical error bars.
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FIGURE 9. As in figure 8, but plotting the (negative) acceleration of the current
normalized by u0

2s/H0, in which u0 is the horizontal component of the front speed
measured shortly after the current was released from the lock, as shown in figure 6.

In figure 6 we showed that the measured relative speed differed from the predicted
energy-conserving speed. With this consideration, in figure 9 we replot the measured
acceleration data but normalize them using the middle expression of (2.12) in which
we use the measured speed u0 rather than the predicted energy-conserving speed U0.
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Again, theory predicts that the normalized acceleration, ax/(u0
2s/H0), should be −1/2.

With this semi-empirical normalization, we find better agreement between experiments
and theory, except in a small number of the experiments in the rectangular channel.
These experiments have θ < 5◦, and the change in value is small compared with the
size of the error bars. Particularly for the V-shaped valley experiments, the measured
normalized deceleration differs by less than 23 % from the predicted deceleration for
all rise angles above 2◦. Considering the approximations used to derive (2.12), this
agreement suggests that the model captures the main physical processes at play.

4. Numerical simulations
4.1. Model set-up

Shallow-water theory, which assumes hydrostatic balance, has often been used to
examine the evolution of gravity currents (Ungarish 2009, 2013). Here we examine
the efficacy of a hydrostatic code in capturing the observed dynamics of upslope
gravity currents in channels and valleys. Specifically, we used the hybrid coordinate
ocean model (HYCOM) (Bleck 2002; Chassignet et al. 2003; Halliwell 2004), a
hydrostatic model commonly used to study ocean processes.

The code was set up in isopycnal coordinates to model the evolution of a hydrostatic
two-layer fluid with no mixing allowed between the current and ambient fluid. The
results are analogous to shallow-water theory. The domain was set to have the same
size and shape as the tank used for the laboratory experiments. The horizontal
resolution was 0.5 cm, except in the experiments with asymmetric valleys (φ 6= 45◦),
in which case the horizontal resolution was set to 0.25 cm to accommodate for the
smaller flow scales. Refinement of the grid had no effect on the recorded speed
or acceleration of the gravity current. Because the code is hydrostatic, it does not
resolve the short scales of the flow correctly, but the high resolution allows for a
smaller viscosity, as described below, and for the topography to be well resolved.

The reduced gravity, g′, for all simulations was 4.79 cm s−2. While this differs
from the experiments by around 20 %, all of the results presented below are non-
dimensionalized by g′, and so the actual value of g′ is irrelevant since the current
is Boussinesq. It was verified that the non-dimensional speed and acceleration did
not change if g′ was varied by approximately 20 %. The depth of fluid at the lock
gate, H0, varied with the tilt φ, as it did in the laboratory experiments. For numerical
stability, but also to mimic unresolved turbulent processes, the viscosity was set to be
4–10 times larger than that of water. The corresponding Reynolds number, calculated
using the predicted speed of the current and the ambient fluid depth at the gate, was
Re= 800. This value is still sufficiently high that viscous effects are not expected to
influence the speed and deceleration of the current at early times, although changes
in viscosity do affect the shape of the current head.

The front was defined as the furthest downstream location at which the interface
was more than 0.1 cm above the bottom of the model tank. Its position was computed
every 0.2 s. As in the laboratory experiments, the best-fitting quadratic of the
front position versus time was computed. From this, we measured the horizontal
components of the initial speed, u0, and (negative) acceleration, ax.

4.2. Qualitative results
In figure 10 the interface between the current and ambient fluid computed from the
hydrostatic code is compared with the structure observed in laboratory experiments.
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(a)

(b)

FIGURE 10. Side-view snapshots of gravity currents propagating horizontally in (a) a
rectangular channel and (b) a V-shaped valley with tilt φ = 45◦. The solid white line
superimposed on both images shows the current height midway along the span of the tank
taken from the numerical simulations at times when the computed front position is at the
same location as the observed front position relative to the gate. The numerical simulations
shown have g′ = 4.79 cm s−2, but changing the value of g′ to its experimental value has
very little effect on the shape of the head. The vertical dotted white line indicates the
position of the gate.

Consistent with shallow-water theory (Ungarish 2009), the simulated current front is
nearly vertical. For a horizontally propagating gravity current in a rectangular channel,
the interface is nearly horizontal behind the front. However, the structure is more
complex for a horizontally propagating gravity current in a V-shaped valley. Shortly
behind the front, the simulated current height rapidly decreases and then gradually
increases in height far in the lee of the current head. Being hydrostatic, the model is
not expected to capture the structure of the front. The sharp front shown is typical of
shallow-water theory for a gravity current. Indeed, in laboratory experiments the front
of the gravity current is not vertical but slopes away from the bottom. Well behind
the front, however, the hydrostatic code captures the near-horizontal interface between
current and ambient fluid in a rectangular channel, and the gradually increasing current
height with distance from the front for gravity currents in a V-shaped valley.

Figure 11 shows vertical cross-sections and contours of current height at three
successive times for simulations of a horizontally propagating gravity current in a
V-shaped valley with tilt φ = 45◦. At each time, the head appears as a localized
elevated region of along-tank length approximately 5 cm. The trailing tail gradually
increases in depth with distance from the front, and superimposed on this sloping
interface are wave-like structures that are found to travel backwards away from
the front. The waves move in this direction because the front is supercritical,
moving faster than the long-wave speed. There was no evidence of these waves
in the laboratory experiments. We surmise that their manifestation was obstructed by
turbulence, which is parametrized in the numerical simulations.

4.3. Quantitative results
As well as showing the experimental measurements and theoretical predictions for the
horizontal component of the initial speed u0, figure 6 plots the computed initial speed
as open symbols. Unlike the laboratory experiments, the Froude number found in all
simulations is moderately larger than the predicted Froude number for horizontally
propagating energy-conserving currents. Explicitly, we found u0/

√
g′H0 = 0.53± 0.01

for the rectangular channel and u0/
√

g′H0 = 0.745 ± 0.005 for the V-shaped valley
with φ=45◦. These values are consistent with the maximum Froude number occurring
for dissipative currents with smaller relative downstream depth h/H0 (see figure 2).
In the rectangular channel, there is a maximum in the height of the gravity current
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FIGURE 11. Structure of a horizontally propagating gravity current in a V-shaped valley
with tilt φ = 45◦ as determined from simulations at times (a) t = 4 s, (b) t = 8 s and
(c) t= 12 s after release from the lock. In each pair, the upper panel shows the current
height along a vertical cross-section at y=0 (the deepest part of the domain) and the lower
panel shows contours of current thickness as a function of along-tank (x) and across-tank
(y) coordinates. The grey scale (top right) determining the depth is the same for each
lower panel.

immediately behind the front. At this maximum, h/H ≈ 0.35, consistent with the
theoretical h/H = 0.347 for maximum front velocity. In the simulations of the
V-shaped valley, the height of the nose of the current is higher than the theory
predicts, but the first maximum behind the nose has h/H ≈ 0.43, again consistent
with a lower head height causing a faster speed (the theoretical head height for
maximum speed is h/H = 0.452). Another difference from laboratory experiments is
that in the simulations the initial speed had no significant dependence upon the rise
angle even in the case of a V-shaped valley with tilt φ = 45◦.

The horizontal component of acceleration, ax, determined from the simulations
is plotted as open symbols in figures 8 and 9. As in the laboratory experiments,
normalizing according to the middle expression in (2.12) and using the measured
initial speed (i.e. u2

0s/H0) leads to better agreement with the theoretical prediction
than normalizing by the Froude number predicted for energy-conserving currents.
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Whether for simulations in a rectangular channel or a V-shaped valley, all values lie
within 20 % of the predicted relative acceleration of −1/2 for rise angles between 1
and 8◦. This suggests that non-hydrostatic processes do not play a significant role in
determining the deceleration.

There is a small trend in the deceleration of the current in the V-shaped valley case:
for high θ , the acceleration is less negative than theory predicts. The amount of fluid
at the front is small, and so the speed of fluid further behind the front where H is
larger may be more relevant in determining the front speed.

5. Conclusions
Using a combination of theory, laboratory experiments and a hydrostatic numerical

model, we have investigated the evolution of Boussinesq, full-depth lock–release
gravity currents that propagate either horizontally or upslope in a rectangular channel
or in a V-shaped valley.

In a horizontal V-shaped valley of arbitrary spread ϕ and tilt φ, the Froude number
of a steady energy-conserving gravity current was predicted to be FrH= 2

√
2/(3 4
√

3)≈
0.716. Consistent with experiments of gravity currents in a rectangular channel, we
found that experimental measurements of FrH were up to 15 % smaller than this
prediction. The simulated evolution of gravity currents using a hydrostatic code
predicted moderately larger initial speeds. The shape of the simulated gravity current
head also differed, exhibiting a sudden descent of the interface immediately behind
the head near the middle of the cross-section.

In experiments of gravity currents running upslope, we found that the initial gravity
current speed in a rectangular channel was not significantly affected by the rise angle
of the tank. However, the initial gravity current speed in a V-shaped valley with tilt
φ = 45◦ was found to decrease with increasing rise angle. In contrast, simulations of
upslope gravity currents showed that the initial speed was independent of rise angle
in all cases.

We attribute the discrepancies to turbulence, which appears to be enhanced in
V-shaped valley experiments as a consequence of spanwise motions induced by
lateral slumping of dense fluid down the sides of the valley. The turbulence slows the
current due to enhanced dissipation and also due to enhanced transport of retrograde
momentum across the span of the valley.

The WKB like theory of Marleau et al. (2014), which predicts the deceleration of
upslope-propagating gravity currents in a rectangular channel, was adapted to the case
of V-shaped valleys. In comparison with experiments and simulations, best agreement
was found when the measured deceleration was normalized by the measured initial
front speed, u0, rather than predicted speed, U0. Explicitly, for rectangular channels
and V-shaped valleys, we found that the (negative) upslope acceleration was well
represented by

ax '−1
2

u0
2s

H0
, (5.1)

for slopes at least as large as s= tan 8◦ ' 0.14.
This work provides an important step towards understanding the more complex

problem of a sea breeze propagating up valleys near coastal regions. In a coastal
sea breeze, H is not well defined, so partial-depth lock–release experiments may be
instructive in exploring this phenomenon further. Future work might examine the
effect of ambient stratification, meandering and rough topography and more realistic
source conditions.



Gravity current propagation up a valley 433

Acknowledgements

The authors gratefully acknowledge the National Science Foundation (grant OCE-
0824636) and the Office of Naval Research (grant N00014-09-1-0844) for their
support of the 2013 WHOI Geophysical Fluid Dynamics Summer School, where
much of the research presented in this paper was performed. We would also like to
thank F. Gouillon and A. Bozec for their help in setting up and running HYCOM,
and A. Jensen, who was very helpful in setting up the laboratory experiments.

REFERENCES

BENJAMIN, T. B. 1968 Gravity currents and related phenomena. J. Fluid Mech. 31, 209–248.
BIRMAN, V. K., BATTANDIER, B. A., MEIBURG, E. & LINDEN, P. F. 2007 Lock-exchange flows

in sloping channels. J. Fluid Mech. 577, 53–77.
BLECK, R. 2002 An oceanic general circulation model framed in hybrid isopycnic-Cartesian

coordinates. Ocean Model. 4, 55–88.
BRITTER, R. E. & LINDEN, P. F. 1980 The motion of the front of a gravity current travelling down

an incline. J. Fluid Mech. 99, 531–543.
CHASSIGNET, E. P., SMITH, L. T., HALLIWELL, G. R. & BLECK, R. 2003 North Atlantic simulations

with the hybrid coordinate ocean model (HYCOM): impact of the vertical coordinate choice,
reference pressure, and thermobaricity. J. Phys. Oceanogr. 33, 2504–2526.

CUTHBERTSON, A. J. S., LUNDBERG, P., DAVIES, P. A. & LAANEARU, J. 2014 Gravity currents
in rotating, wedge-shaped, adverse channels. Environ. Fluid Mech. 14, 1251–1273.

DARELIUS, E. 2008 Topographic steering of dense overflows: laboratory experiments with V-shaped
ridges and canyons. Deep-Sea Res. 44, 1021–1034.

HALLIWELL, G. R. 2004 Evaluation of vertical coordinate and vertical mixing algorithms in the
hybrid-coordinate ocean model (HYCOM). Ocean Model. 7, 285–322.

HUPPERT, H. E. & SIMPSON, J. E. 1980 The slumping of gravity currents. J. Fluid Mech. 99,
785–799.

KEULEGAN, G. H. 1957 An experimental study of the motion of saline water from locks into fresh
water channels. Tech. Rep. 5168. National Bureau of Standards.

KLEMP, J. B., ROTUNNO, R. & SKAMAROCK, W. C. 1994 On the dynamics of gravity currents in
a channel. J. Fluid Mech. 269, 169–198.

LANE-SERFF, G. F., BEAL, L. M. & HADFIELD, T. D. 1995 Gravity current flow over obstacles.
J. Fluid Mech. 292, 39–53.

MARINO, B. M. & THOMAS, L. P. 2009 Front condition for gravity currents in channels of
nonrectangular symmetric cross-section shapes. Trans. ASME: J. Fluids Engng 131, 051201.

MARLEAU, L. J., FLYNN, M. R. & SUTHERLAND, B. R. 2014 Gravity currents propagating up a
slope. Phys. Fluids 26, 046605.

MONAGHAN, J., MÉRIAUX, C. & HUPPERT, H. 2009 High Reynolds number gravity currents along
V-shaped valleys. Eur. J. Mech. (B/Fluids) 28, 651–659.

OTTOLENGHI, L., ADDUCE, C., INGHILESI, R., ROMAN, F. & ARMENIO, V. 2015 Mixing in gravity
currents propagating up a slope: large eddy simulations and laboratory experiments. J. Fluid
Mech. (submitted).

ROTTMAN, J. W. & SIMPSON, J. E. 1983 Gravity currents produced by instantaneous releases of a
heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95–110.

ROTTMAN, J. W., SIMPSON, J. E., HUNT, J. C. R. & BRITTER, R. E. 1985 Unsteady gravity
current flows over obstacles: some observations and analysis related to the phase II trials.
J. Hazard. Mater. 11, 325–340.

SAFRAI, A. & TKACHENKO, I. 2009 Numerical modeling of gravity currents in inclined channels.
Fluid Dyn. 44, 22–30.

SHIN, J., DALZIEL, S. & LINDEN, P. 2004 Gravity currents produced by lock exchange. J. Fluid
Mech. 521, 1–34.



434 C. S. Jones and others

SIMPSON, J. E. 1982 Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid
Mech. 14, 213–234.

SIMPSON, J. E. 1997 Gravity Currents, 2nd edn. Cambridge University Press.
SUTHERLAND, B. R., POLET, D. & CAMPBELL, M. 2013 Gravity currents shoaling on a slope.

Phys. Fluids 25, 086604.
TAKAGI, D. & HUPPERT, H. 2007 The effect of confining boundaries on viscous gravity currents.

J. Fluid Mech. 577, 495–505.
UNGARISH, M. 2009 An Introduction to Gravity Currents and Intrusions. Chapman and Hall/CRC

Press.
UNGARISH, M. 2013 Two-layer shallow-water dam-break solutions for gravity currents in

non-rectangular cross-area channels. J. Fluid Mech. 732, 232–249.
UNGARISH, M., MÉRIAUX, C. A. & KURZ-BESSON, C. B. 2014 The propagation of gravity currents

in a V-shaped triangular cross-section channel: experiments and theory. J. Fluid Mech. 754,
537–570.

ZEMACH, T. & UNGARISH, M. 2013 Gravity currents in non-rectangular cross-section channels:
analytical and numerical solutions of the one-layer shallow-water model for high-Reynolds-
number propagation. Phys. Fluids 25, 026601.


	Gravity current propagation up a valley
	Introduction
	Theory
	Steady speed of a current in a horizontal V-shaped valley
	Upslope deceleration

	Laboratory experiments
	Laboratory set-up
	Analysis
	Results

	Numerical simulations
	Model set-up
	Qualitative results
	Quantitative results

	Conclusions
	Acknowledgements
	References


	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 
	41: 

	ikona: 
	417: 
	418: 
	419: 
	420: 
	421: 
	422: 
	423: 
	424: 
	425: 
	426: 
	427: 
	428: 
	429: 
	430: 
	431: 
	432: 

	TooltipField: 


