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Abstract

We examine the sea level variability over the Northwest European Shelf (NWES) across
different timescales and its underlying drivers. Using a basin-scale Atlantic Ocean model that
accurately reproduces the NWES sea level variability compared with observations, we separate
the sea level change into interannual, seasonal, intraseasonal, and high-frequency (less than 10
days) components. The seasonal, intraseasonal, and high-frequency variabilities exhibit
comparable magnitudes, whereas interannual variability contributes a smaller fraction of the total
sea level variation. We further decompose the shelf sea level change into contributions from
mass and steric (density) changes. Our analysis shows that the steric change only contributes to
the seasonal cycle of the NWES sea level variability, primarily driven by surface heat transport
rather than lateral one. In contrast, lateral mass transport induced by winds onto the shelf
accounts for most of the variability on seasonal, intraseasonal, and high-frequency timescales.
The mass transport contribution is strongly correlated with regional wind stresses across all
timescales, which is explained by the Ekman transport mechanism. These correlations, however,

exhibit distinct spatial patterns depending on the timescale considered.

Key points:
- The Northwest European Shelf sea level shows pronounced variability over a range of
timescales, especially sub-annual ones.
- The steric sea level component contributes mainly to the seasonal cycle, controlled by
surface heat fluxes.
- The mass component accounts for most of the variability and is correlated with regional

winds, though the correlation pattern varies across timescales.
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Plain Language Summary

Sea level along the Northwest European Shelf (NWES) changes on many timescales — from
days to years — and is influenced by different physical processes. Using a high-resolution ocean
model that closely matches satellite observations, we examined how and why sea level varies in
this region. We found that short-term variations, from a few days to a few months, are much
stronger than the slower, year-to-year changes. Most of these sea level fluctuations are caused by
the movement of water driven by winds pushing water onto or away from the shelf. Changes in
seawater density (caused by heating or cooling) also affect the sea level, but mainly explain the
seasonal fluctuation of the sea level and are mostly due to ocean surface heat transport. Overall,
our study shows that winds and the resulting water movements are the main drivers of sea level

variability over the NWES at most timescales.

1. Introduction

Global sea level has been rising since the late 19th century, primarily due to ocean
thermal expansion and melting of land ice. Recent estimates indicate that by 2020, global mean
sea level was 200-230 mm higher than in 1900 (Church and White, 2011; Frederikse et al.,
2020). The rate of rise has not been constant and has accelerated in recent decades. Since the
advent of satellite altimetry in 1993, the global mean sea level rise has reached ~4.5 mm/yr,
more than twice the 20th-century average (Church and White, 2011; Beckley et al., 2017;
Frederikse et al., 2020; Hamlington et al., 2024). Superimposed on this long-term trend, the sea
level exhibits variability from intraseasonal to decadal timescales, driven by large-scale ocean—
atmosphere interactions and climate modes, and these variations are spatially heterogeneous.
Continental shelves, in particular, display distinct sea level variability characteristics compared

to the open ocean (Steinberg et al., 2024).

The Northwest European Shelf (NWES; Figure 1) is a key coastal region influenced by
the easternmost branch of the North Atlantic Current, the European Slope Current, which flows
through the Rockall Trough along the shelf’s western margin (Souza et al., 2000; Hansen and
Osterhus, 2000; Xu et al., 2015; Fraser et al., 2022). This slope current modifies along-shelf
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density and pressure gradients through exchanges between the open ocean and the shelf, linking
the NWES sea level to broader North Atlantic circulation (Huthnance et al., 2022; Diabaté et al.,
2025). The NWES is also relatively shallow, and its hydrographic response to global warming
differs from that of the open subpolar North Atlantic (Wakelin et al., 2009; Holt et al., 2010;
Tinker et al., 2024).

The NWES sea level varies across multiple timescales. The long-term trend indicates a
rise of 3.1 mm/yr since 1993 (Melet et al., 2024), projected to accelerate under future climate
scenarios due to changes in ocean density and local mass convergence or divergence (steric and
manometric effects, respectively; Gregory et al., 2019; Weeks et al., 2023). Superimposed on
this trend, the NWES sea level exhibits decadal to intraseasonal variability, primarily driven by
manometric changes associated with ocean currents and winds. The decadal variability is
strongly linked to large-scale atmospheric patterns such as the North Atlantic Oscillation, the
East Atlantic Pattern, and Scandinavian teleconnection patterns (Tsimplis & Shaw, 2008; Calafat
et al., 2012; Chafik et al., 2017). On interannual and shorter timescales, regional wind stress
dominates NWES sea level variability by transporting mass onto or off the shelf (Dangendorf,
2014; Hermans et al., 2020; Wise et al., 2024; Diabat¢ et al., 2025). The questions then arise as
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to whether wind remains the dominant driver across all timescales and how the magnitude of sea

level variability compares in space and time.
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Figure 1. Bathymetry of the eastern subpolar North Atlantic Ocean. The black solid contour line
denotes the 200 m isobath. The Northwest European Shelf (NWES) region is defined as the
ocean shallower than 200 m, bounded by two transects (blue lines) connecting the coast at 45°N
and at 8°E, similar to Wise et al. (2024). Note that the full model domain covers the Equatorial
and North Atlantic (Xu et al. 2013, 2018).

In this study, we use a high-resolution numerical ocean model to comprehensively
examine the NWES sea level variability from interannual to intraseasonal timescales. We
quantify the contribution of wind in driving the manometric change and assess the relative
importance of the steric change which has often been considered secondary in previous studies.
Our approach is novel in that it simultaneously compares the manometric and steric contributions
across all timescales. We find that: (1) the seasonal and shorter-timescale variability is roughly
three times larger than interannual and longer-term variability; (2) the steric component is
primarily associated with the seasonal cycle, driven by surface heat fluxes; and (3) the
manometric component dominates variability across all timescales and is correlated with wind

stress, though spatial patterns of the correlations differ, with short-term variability linked to
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regional winds and longer-term variability influenced by more remote winds over the subpolar

North Atlantic.

The paper is organized as follows. Section 2 describes the ocean model, datasets, and the
kinematic equation of sea level evolution. Section 3 presents the results: Section 3.1 compares
model sea surface height and circulation with observations; Section 3.2 evaluates sea level
variability across timescales; Sections 3.3 and 3.4 examine steric and manometric contributions,
respectively; and Section 3.5 discusses the role of the mass transport across lateral boundaries.

Section 4 summarizes the conclusions and implications of our findings.
2 Numerical simulation, data, and methods

In this section, we briefly describe the numerical simulation, observational datasets, and
methods used to analyze NWES sea-level variability. Figure 1 shows the bathymetry of NWES,
defined as regions shallower than 200 m and bounded at ~8°E in the east and 45°N in the south,
consistent with Wise et al. (2024).

2.1 Atlantic simulation using HYCOM

The study uses a basin-scale Atlantic Ocean simulation based on the HYbrid Coordinate
Ocean Model (HYCOM; Bleck, 2002; Chassignet et al., 2003; Halliwell, 2004). Detailed model
configurations are described in Xu et al. (2013, 2018); here we summarize its key aspects. The
model domain spans 28°S—80°N, covering the North and Equatorial Atlantic. It has a 1/12°
horizontal resolution and a 32-layer hybrid vertical grid: isopycnal in the deep ocean, z-level in

the upper ocean, and sigma-coordinate in shallow coastal regions.

The atmospheric forcing is provided by ERA-40 reanalysis (Uppala et al., 2005) for
1978-2001 and by the NCEP Climate Forecast System Reanalysis (CFSR; Saha et al., 2010) for
2002-2022. For this study, we use daily model outputs from 2013-2022 to analyze NWES sea
surface height (SSH) variability and its drivers. Monthly SSH fields from 1993-2022 are used to
assess model performance on annual and interannual timescales. Hereafter, SSH and sea level

are used interchangeably.

The model SSH is evaluated against absolute dynamic topography (ADT) derived from
satellite altimetry. We use the gridded Level-4 (L4) ADT dataset from the Copernicus Marine
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Service (CMEMS, 2024a) at 0.125° resolution. To focus on dynamical processes (Wise et al.,
2024), the ADT dataset removes the inverse barometer effect due to low-frequency (>20 days)
atmospheric pressure, which can be a significant source of variability on the European Shelf
(Hermans et al., 2020). Since the model also excludes this effect, direct comparison between
modeled SSH and ADT is appropriate. We further use the CNES-CLS-2022 mean dynamic
topography (MDT), representing the 1993-2012 mean sea surface height above the geoid
(Jousset et al., 2022; CMEMS, 2024Db).

2.2 Evolution of the sea surface height

The SSH change, denoted as 7, is traditionally decomposed into contributions from
changes in ocean mass and density (Gill and Niler, 1973; Piecuch et al., 2022; Wise et al.,
2024).:

1 1

0
= p, —— —py) dz, 1
n 7 Db o f_H(p Po) €Y

where g is the gravity, p, is reference density, p;, is bottom pressure, H is ocean depth, and p is
ocean density. The first term on the right-hand side is the SSH change component due to mass
(manometric) change while the second is due to density (steric) change. To investigate the
processes contributing to these two components, the corresponding kinematic evolution equation

for SSH can be derived (see Griffies and Greatbatch, 2012, for details):

on_ V.Ul K (H+map*

at  p? ' @

pZ pZ

where U?P = f_OH pu dz is the vertically integrated horizontal mass flux ([kg m™! s71]), u is

horizontal velocity, p? = %( f_OH p dz) is the vertically averaged density, and F; is the surface

mass flux into the ocean ([kg m s'']). The first term on the right-hand side represents the
contribution of lateral mass transport to regional sea level change. The second term accounts for
processes such as evaporation and precipitation, river runoff, and ice melt or formation. The third
term corresponds to steric change, which is related to buoyancy (temperature and salinity) fluxes
across lateral and surface boundaries. In essence, the equation indicates that sea level rises when
mass increases or when the column-averaged density decreases, and vice versa. Note that in

HYCOM, the surface mass flux F; is treated as a virtual salt flux, producing a steric SSH change
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rather than a direct mass change. As a result, the surface mass flux contributions to SSH are

incorporated within the steric term. The kinematic sea level equation for HY COM then becomes:

o __ VU (HEmast
at_ ﬁz p—z ()

This formulation will be used in this study, with the manometric and steric components of SSH

change defined as follows

uP 5z
V; dt, ng=—{ %dt, respectively. (4)

Nm = —

A common next step is to decompose the steric SSH change, 7, into contributions from
temperature (thermosteric) and salinity (halosteric) changes (e.g., Gill and Niiler 1973; Tsimplis
and Rixen 2002; Landerer et al. 2007; Yin et al. 2010; Lu et al. 2025). This requires separating
the relative effects of temperature and salinity on density change using the seawater equation of
state (EOS), p = p(T, S, py), where T is potential temperature, S is salinity, and p, is reference
pressure. Applying the chain rule, the time rate of change of the vertically averaged density in 7,

can then be expressed as (Piecuch et al., 2019):

9p7 1 (° ;0pdT pas
p (p P )dz. (5)
H

oc ~H+n)_,\aT ac " 3sac
For simplicity, we adopt a linear EOS, incorporating the thermal expansion coefficient & =
dp/(pAT), and the haline contraction coefficient § = dp/(pdS). Values of a and f are
computed at each grid point and time step using model potential temperature and salinity based
on the Thermodynamic Equation of Seawater 2010 (TEOS-10) as implemented in the MATLAB
“Gibbs Seawater” package (McDougall & Barker, 2011). Using this linear approximation, the

time rate of change of the vertically averaged density can then be expressed as:

0p? 1 f(’( E)T+ BS)d .
ot~ H+n) ,\“ar Ph 5 ) 4z- (6)

Inserting (6) into the definition of n; gives

_flfo aTd 1f0 an it ;
ns = ﬁZ_Hpaatz ﬁZ_Hpﬁatz ) (7
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where the two terms in this expression correspond to the thermosteric and halosteric SSH,
respectively. The nonlinear effects of the EOS, which are omitted here, are relatively small. We
note that using a linear EOS does not affect the main conclusions of this study, as our goal is to
examine the relative importance of the thermosteric and halosteric components rather than to
compute their exact magnitudes. As shown in Section 3.3, these two components together

accurately reconstruct the total steric SSH.
3 Key results

In this section, we first present a model-data comparison of SSH and ocean circulation in
and around the NWES (Section 3.1) to evaluate the model’s ability to represent circulation and
sea level variability. In Section 3.2, we decompose NWES sea level into different timescales and
assess their relative importance. Sections 3.3 and 3.4 quantify the contributions of steric and
mass changes to NWES sea level variability, respectively. Finally, Section 3.5 examines the
dynamic components of the lateral mass transport and their influence on NWES sea level

variability.

3.1 Model-observation comparison: circulation and sea surface height

Since the primary goal of this study is to examine NWES sea level variability, it is
essential to validate the model against observational data. To provide a broad view of the large-
scale circulation and its variability around the NWES, we first show the time-mean surface
geostrophic currents derived from observed mean dynamic topography and from the model SSH
in Figures 2a and 2b. The model captures the main currents flowing around the Rockall Trough,

Faroe-Shetland Trough, and Norwegian Trench.

Figures 2c and 2d show the surface eddy kinetic energy (EKE) computed from SSH-
derived geostrophic velocities for the satellite observations and the model, respectively. Satellite-
derived SSH is obtained by optimally interpolating along-track measurements onto a regular 1/8°
grid, which filters out many small-scale motions (Chassignet and Xu, 2017). In contrast, the
model resolves motions down to its 1/12° resolution. To ensure a fair comparison, the model
SSH was filtered with a 10-day temporal and 0.5° spatial window before computing EKE,
consistent with Chassignet and Xu (2017), who showed that the altimetry SSH wavenumber
spectrum closely matches a 10-day averaged, 150-km spatially filtered model output. The spatial



203  distribution of EKE is similar between the model and observations, indicating that the model
204  accurately represents variability in surface geostrophic currents. Overall, the model captures both

205  the main currents and their variability around the NWES effectively.
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207  Figure 2. Time-mean surface geostrophic currents (a-b) and surface EKE computed from SSH-
208  derived geostrophic velocities (c-d). (a) Derived from CNES-CLS-2022 Mean Dynamic

209 Topography (MDT). (b) Derived from time-mean model SSH over 2013-2022. (¢) Derived from
210 CMEMS (1/8°) over 2013-2022. (d) Derived from model SSH over 2013-2022. Note that the
211 model SSH are 10-day averaged and spatially smoothed with a nominal 0.5° (~60X60 km, 7 X 7

212 grid points) boxcar window.

213 We now shift our focus from large-scale circulation to shelf sea level. Modeled SSH is
214 compared with altimetry-derived ADT. Figure 3 shows the monthly SSH anomaly (SSHA)
215  averaged over the NWES for 1993-2022. The model accurately reproduces SSH variability
216  across intraseasonal to interannual timescales. The long-term linear trend in the model SSHA
217 (2.6 cm/decade) is close to the observed trend (3.4 cm/decade), with some differences arising

218  during the final few years of the simulation.

10
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Figure 3. Monthly sea surface heigh anomaly (SSHA) from model and the absolute dynamic
topography (ADT) anomaly derived from altimetry observations on the NWES over 1993-2022.
Dots denote annual mean values in each year. The anomalies are calculated relative to the 1993-

2022 mean. The red (black) dashed lines are the linear trends for the model and observations,

respectively.
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Figure 4. (a) Daily sea surface heigh anomaly (SSHA) from model and the absolute dynamic
topography (ADT) anomaly from altimetry observations on the NWES over 2013-2022. (b):
ADT anomaly and 10-d average of the SSHA. The anomalies are calculated relative to the 2013-
2022 mean. (this is to show the lower SSH variability in observations in panel a) is due to

filtering)

To evaluate shorter-timescale variability, we compare daily SSH from the model and
observations over 2013-2022 (Figure 4a). The model exhibits larger daily variability than
altimetry-derived SSH, reflecting the temporal and spatial smoothing applied to the altimetry
data to remove high-frequency fluctuations. To get a fair comparison, we apply a 10-day sliding
average to the detrended model SSH. The resulting averaged SSH closely matches altimetry
(Figure 4b) with a correlation of 0.93, demonstrating that the model reproduces short-timescale

SSH variability accurately.

Since most of our analysis focuses on shelf-averaged NWES SSH, we evaluate whether
this metric represents local SSH variability across the shelf. Figure 4 shows the temporal
correlation between shelf-averaged and local SSH for both observations and the model. High
correlations over most of the shelf confirm that shelf-averaged SSH is a representative measure

of local variability.

12
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Overall, the model effectively captures ocean circulation and SSH variability across
intraseasonal to interannual timescales on the NWES, supporting its use to investigate NWES

SSH variability and its underlying drivers.
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Figure 4. Correlations between the shelf averaged SSH and local SSH for the (a) observations
and (b) model. Data are daily from 2013-2022, with linear trends and seasonal cycles removed.
The black solid and dashed contour lines denote the 200 m and 1800 m isobaths, respectively.

3.2 SSH variability over different timescales

As noted in the Introduction, a systematic analysis of NWES SSH variability across
different timescales is lacking. In this subsection, we decompose SSH variability into four

timescales using running-average filters, which are mathematically equivalent to convolutions:
1) Interannual variability: computed using a 1-year running average.

2) Seasonal cycle: obtained by first calculating the multi-year daily climatology, then
applying a 90-day running average.

3) Intraseasonal variability (10 - 90 days): defined as the difference between the 10-day

and 90-day running averages.

4) High-frequency variability (< 10 days): calculated as the difference between the 10-

day running average and the original daily SSH time series.

All analyses use daily model outputs from 2013-2022. Figure 5 shows shelf-averaged SSH time

series for each timescale from both the model and observations. The decomposition successfully

13
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separates variabilities, with amplitude increasing as the timescale shortens. The model
reproduces NWES SSH well at nearly all timescales, except for the high-frequency component,
which is near zero in the observations due to satellite altimetry preprocessing. To quantify their
relative contributions, Table 1 lists the temporal standard deviations for each timescale. In the
model, the interannual variability accounts for ~17% of total SSH variability (1.4 cm vs. 8.4 cm),
whereas seasonal, intraseasonal, and high-frequency components contribute more substantially
(e.g., intraseasonal variability is ~50% of total SSH, 4.5 cm vs. 8.4 cm). Observations show
similar results, except that the high-frequency component is absent. These results highlight the
dominant role of sub-annual variabilities in the NWES sea level, which we further attribute to

different physical SSH components in the following sections.
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Figure 5. Time series of model and observed shelf averaged SSH decomposed onto different
timescales. (a) On the interannual timescale. (b) “Seasonal cycle” of the SSH. (c) On the
intraseasonal timescale. (d) On the high-frequency timescale. See text in Section 3.2 for the

calculation of these timescales.
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Table 1. Variabilities (defined as standard deviations) of the SSH over different timescales from
2013-2022. Values in brackets are estimated from the monthly data over 1993-2022 for
comparison. All values are rounded to one decimal place. *This is small because the satellite

observed SSH is filtered during pre-processing.

Timescales
Seasonal
All Interannual High-
L cycle Intraseasonal
Standard Deviations of SSH (cm) | (resolved) (1-year frequency
) (90d- (10d~90d)
timescales average) (<10d)
average)
Observations 6.5 (5.6) 1.3(1.4) 4.1 3.7 0.9*
Model 8.4 (5.6) 1.4 (1.8) 3.7 4.5 4.6
Model () 2.7 0.5 24 0.3 0.0
Model (1,,,) 7.9 1.5 2.7 4.4 4.5

3.3 Relative contribution of steric to manometric change to the NWES SSH

We now examine the processes contributing to the NWES sea level variability using the
time-integrated form of equation (3), which relates directly to SSH rather than its time derivative.
In particular, we focus on the effects of mass and steric changes. Daily model outputs of
velocity, density, and layer thickness are used to reconstruct the lateral mass flux. While this
reconstruction neglects sub-daily correlations between velocity and density, the resulting
discrepancy is negligible relative to the variability examined, as indicated by the small residual

in the subsequent SSH budget analysis.

Figure 6a shows the different terms of the time-integrated equation averaged over the
NWES. As noted previously, the shelf SSH exhibits strong seasonal and intraseasonal variability.
The steric SSH () contributes primarily to the seasonal cycle, accounting for ~17% of total
SSH variance. In contrast, the lateral mass flux component (7,,,) contributes to both seasonal and

intraseasonal variability and explains ~66% of total SSH variance.

Frequency spectra of the three terms (Figure 6b) show a close correspondence between
total SSH and 7n,,,. The power of 7, is at least an order of magnitude weaker than that of SSH and
Nm» €xcept at the annual (1-year) period corresponding to the seasonal cycle. At timescales

shorter than ~50 days (frequency > 2 x 1072 day™'), the spectrum of 1, decays more rapidly,

15



299  indicating reduced variability at high frequencies. Table 1 summarizes contributions of each
300 timescale to 1, and 7n,,. The variability in 1, is dominated by the seasonal cycle, with other
301 timescales playing only a minor role. In contrast, 7,,, exhibits substantial contributions from

302  seasonal, intraseasonal, and high-frequency variability, all of which are important to the total 7,,,.

303 The seasonal cycles from 7, and 7, are comparable to each other, highlighting the

304  importance of both components in driving the seasonal SSH variability. The interannual

305  variability of the total SSH is mainly driven by 7,,, as its variance exceeds that of 15 on this
306 timescale. Overall, the NWES SSH variability -- from high-frequency through intraseasonal to
307 interannual timescales -- is primarily controlled by mass changes rather than density variations.
308 This finding is consistent with, and extends, previous studies (e.g., Wise et al., 2024; Diabaté¢ et
309 al.,2025).
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312  Figure 6. (a) Time evolution of the terms in the time integrated SSH budget averaged over the

313  European Shelf (denoted by the dotted area in Figure 1). Grey line is SSH anomaly relative to the

16



314  initial value, blue is the contribution of lateral mass flux to SSH (1,,,), red is the steric SSH (%),
315  green is residual. Daily data are used, and the terms are 10-d averaged. Linear trends are
316  removed for all terms. (b) Power density spectrum for the original SSH anomaly, 1; and 7.

317  Vertical dashed line denotes period of 1 year.

17



318

319

320
321
322
323
324
325
326
327

328
329
330
331
332
333

5 T I I I

meanT ------ surf
10 H|——— lateral - diffus. e i

T "
S
AN N\
’ N P
7’ N 7 AY
\

W po

e . { PRaRS
N \ \ -
- ’ N -
-10 < “o- SRR -

- ’ \ PN
b) D NN
N /7

| | 1 |

temperature (°C)
o

2013 2015 2017 2019 2021 2023

Figure 7. (a) Partitioning of the steric SSH change (red solid line) into the thermosteric (dashed
line) and halosteric (orange solid line) components. Linear trends are removed for all series. (b)
Time evolution of the terms in the time-integrated thermal equation (5) averaged over the shelf
region. All terms are normalized by the ocean depth in the NWES to have the unit of temperature
[°C]. Solid line is the mean temperature change, dashed-dotted line is the contribution of lateral
heat flux, dashed line is the contribution of surface heat flux, magenta dotted line is the heat
diffusion, green line is residual due to numerical errors. Note that the red solid line in (b) is

essentially proportional to the thermosteric SSH (red dashed line in a)).

We first focus on the steric component of SSH. To assess the effects of temperature and
salinity, steric SSH is separated into thermosteric and halosteric components using equation (7).
Figure 7a shows their time series. The steric SSH variability is clearly dominated by the
thermosteric component, while the halosteric component contributes only a minor linear trend
(removed here). Thus, the seasonal variation of steric SSH over the NWES is primarily driven by

regional temperature changes rather than salinity. The small residual between steric SSH and the

18
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sum of thermosteric and halosteric components may arise from the use of a linear equation of

state.

To further explore processes controlling the thermosteric change, we use the column-

integrated thermal equation in HYCOM (Bleck, 2002):

D (Teh) = = ) V- (wehT) +
k k

where “k” denotes layer number, 7T is temperature, / is layer thickness, Fg,, s is the surface heat

F
surf E V- (kh VT,  (8)
pey L

flux into the ocean (W m™), p is seawater density, ¢, is specific heat capacity of seawater (J (kg
K)™1), and k is heat diffusivity (m? s'!). The left-hand side is proportional to the thermosteric SSH
change. The first two terms on the right-hand side represent lateral and surface heat fluxes, while
the last term represents subgrid-scale heat diffusion, which is small relative to the other terms.
Integrating equation (8) spatially over the NWES and dividing by the ocean volume gives the
rate of mean temperature change on the shelf. Figure 7b shows the time-integrated contributions.
The temperature evolution term (solid line) exhibits seasonal variability closely matching the
thermosteric SSH. Surface heat fluxes (dashed line) drive both seasonal variability and a net
cooling, while lateral heat transport primarily causes a net warming without significant

variability.

In summary, the steric change contributes to NWES SSH variability mainly on seasonal
timescale, dominated by temperature rather than salinity changes. Seasonal variation in surface

heating and cooling is the primary driver of this thermosteric SSH variability.

3.4 Contribution of mass change to the NWES SSH

As shown above, the dominant component of the NWES SSH is the lateral mass flux
convergence (the manometric component 1,,,), which explains most of the total SSH variability
and exhibits multiscale variations from seasonal to high-frequency (Table 1). Notably, the
seasonal cycle of n,,, is comparable in magnitude to that of steric SSH, indicating that seasonal
variations in total SSH are influenced not only by surface heating and cooling but also by
seasonality in lateral ocean processes, such as circulation and wind around the shelf. In this

section, we investigate the drivers of n,,, across different timescales.
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Given the complexity of the NWES circulation and the dominant role of wind forcing, we
first examine the relationship between regional wind and 7,,, (blue line in Figure 6a). Figure 8
shows correlation coefficients between the two fields. n,, is highly correlated with the zonal
wind stress at the northern boundary, reflecting meridional Ekman transport that drives mass
variations on the NWES and the corresponding SSH changes. Similarly, high correlations
between 1, and meridional wind stress are observed along the western boundary, consistent
with zonal Ekman transport. These results indicate that the lateral mass flux into the shelf is

primarily driven by wind-induced transport, in agreement with previous studies (e.g., Wise et al.,

2024).

70 0.8
65 1 0.6
60 A 0.4
55 0.2
50 14, 0

45 A -0.2
40 A -0.4
35 - -0.6
30 -0.8

-40
Figure 8. Correlations between the lateral flux contribution to the shelf SSH (7,,) and the local
wind stresses over 2013-2022: (a) for the zonal wind stress and (b) for the meridional wind

stress. Magenta line denotes the contour line of 0.4 for the correlation coefficient; black line is

the 200m isobath.
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Figure 9. Time series of wind stress averaged in the region of high correlation (magenta lines in
Figure 8) and the lateral term over different timescales. (a) Time series on the interannual
timescale. (b) Time series on the seasonal timescale. (c) Time series on the intraseasonal
timescale. (d) Time series on the high-frequency timescale. All series are normalized by their

respective standard deviations.
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To examine this relationship across timescales, local wind stresses are decomposed into
the same four timescales as 7,,, and correlated with the corresponding 7,, components. Figure 9
shows time series of normalized 7,,, and wind stresses averaged over areas where correlation
exceeds 0.4. We see that n,,, covaries with wind stresses over all four timescales, wind stresses
across all four timescales, highlighting the importance of wind in driving lateral mass flux

convergence into the shelf.

Figure 10 shows the spatial patterns of correlations between 7,, and wind stress at each
timescale. On intraseasonal and high-frequency scales, the patterns resemble those of the full
timescale (Figure 8), with strong correlations between zonal (meridional) wind at the northern
(western) boundary and 7,,,. The correlations on seasonal scale are even stronger, reflecting the
dominant role of seasonally varying wind in driving mass changes on the shelf. At interannual
timescale, high correlations extend to broader regions, including the Labrador Sea, suggesting a
link between large-scale atmospheric variability and lateral mass flux convergence, which
warrants further investigation using longer model simulations. Correlations at high-frequency
timescale are weaker but still statistically significant, likely due to short-scale motions not

directly driven by wind.

In summary, the lateral mass flux contribution to NWES SSH is closely linked to
regional wind via the Ekman transport mechanism (Hermans et al., 2022). This relationship
holds across interannual, seasonal, intraseasonal, and high-frequency timescales, although the

spatial patterns of the correlation vary depending on the timescale.
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Figure 10. Correlations between the lateral mass flux contribution to the shelf SSH (n,,,) and the
local wind stresses over different timescales. (a-d) For zonal wind stress; (e-h) for meridional
wind stress. (a, €) On the interannual timescale. (b, f) On the seasonal timescale. (¢, g) On the
intraseasonal timescale. (d, h) On the high-frequency timescale. Correlations on land points are

masked out.

3.5 Decomposition of the lateral mass transport

In the previous section, we established the link between regional wind stress and the mass
contribution to shelf SSH, consistent with prior studies. However, this relationship is somewhat
surprising because SSH or mass/volume changes in a region are directly determined by the time-
integrated mass transport into the region, whereas wind stress is proportional to the instantaneous

Ekman transport rather than its integral.

To further examine the contribution of lateral mass transport to shelf SSH, we decompose
the transport into different dynamic components, including the Ekman transport. This
decomposition approach, previously employed by Wise et al. (2024) under a Boussinesq
framework to study volumetric flow across the European shelf, is here applied in a non-

Boussinesq framework to the mass flux convergence in equation (2):

V-Uur VU’ v-U? V-U”
— p_Z — ﬁdeo _ p_ZEkS _ p_ZEkb + res. (9)
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Here, Ug co 15 the lateral mass flux associated with the geostrophic current and is calculated from

pressure gradients:

dz,

0 %
U - f kxVp
geo _H f

ngs and ngb are the lateral mass flux convergences due to the surface and bottom Ekman

currents, respectively:

) kxts p kxt?
Ul = — Up =—
Eks f ’ Ekb f 4

where T° is wind stress [N m2]. The bottom stress ”is calculated as
0 = Ca(lup| + u)uy,

where C; = 1 x 1073 is quadratic bottom drag coefficient, u, = 0.05 m/s is the rms flow speed
used for linear bottom friction, and uy, is the near-bottom velocity in the bottom boundary layer
(10 m in our model). The residual (res.) term accounts for unrepresented processes, such as the
kinetic energy gradient term in the momentum equation. These are less significant than the
geostrophic and Ekman terms (Wise et al., 2024) in the total mass transport and are therefore
neglected here. Although we work with mass flux, the units of all terms in equation (9) are

equivalent to volume flux (Sv), since mass fluxes are normalized by the column-mean density.

All terms in equation (9) are integrated over the NWES at each time step. Using the
divergence theorem, the resulting terms represent the net mass (or volume) transport into the
shelf. Figure 11a shows the original and 10-day averaged time series of the total, geostrophic,
and summed Ekman (surface plus bottom) transports from 2013-2022. The geostrophic and
Ekman transports covary inversely (r = -0.94 for the original series), indicating a near balance
between them. The total transport, representing the residual of the geostrophic and Ekman
components, is an order of magnitude smaller than either component. The surface Ekman
transport dominates over the bottom component (standard deviations: 2.9 Sv vs. 0.4 Sv),
highlighting the importance of wind in the lateral transport across the shelf. Figures 11b and 11c
show scatter plots of the geostrophic versus summed Ekman transports for the original and 10-
day averaged series, respectively, illustrating that geostrophic and Ekman transports largely

compensate each other. This compensation occurs because the wind-driven Ekman transport
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accumulates or removes water from the shelf, inducing pressure gradients that drive a
geostrophic response opposite to the Ekman transport. Consequently, the net lateral mass
transport into the NWES is primarily determined by the balance between wind-driven Ekman

transport and geostrophic adjustment.
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Figure 11. Decomposition of the total lateral mass flux into the shelf region. (a) Time series of
the total flux (black), the geostrophic transport (red), and the sum of the surface and bottom
Ekman transport (blue). Thick lines are original daily time series, and transparent lines are 10-d
averages. (b) Scatter plot of the original geostrophic and summed Ekman transports over 2013-
2022. (c) Same as (b) but for the 10-d averaged time series. Red line is a linear fit. All mass

fluxes are normalized by vertically averaged density and the units are Sv.

4 Conclusions and discussion

In this study, we examined the sea level variability on the Northwest European Shelf
(NWES) and its drivers across interannual, seasonal, intraseasonal, and high-frequency (<10
days) timescales. Using outputs from a realistic Atlantic Ocean simulation and the kinematic

evolution equation of sea surface height (SSH), we find that the model captures NWES SSH
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variability well across all timescales, as well as the long-term trend. The SSH variability is

decomposed into components arising from local steric (density) changes and mass changes. Our

main findings are as follows:

The NWES SSH variability is comparably high at high-frequency, intraseasonal, and
seasonal timescales (4.6, 4.5, and 3.7 cm, respectively; Table 1), while interannual
variability is smaller (1.4 cm), representing roughly 17% of the total variability (8.4 cm).
The steric and mass changes account for ~17% and ~66% of total NWES SSH variability,
respectively. The steric variability occurs primarily at seasonal timescale and is
dominated by temperature rather than salinity changes. Seasonal surface heat flux drives
this temperature variation, while lateral heat transport contributes to a net warming with
limited temporal variability.

The lateral mass transport contributes to SSH variability across all timescales. It
dominates intraseasonal and high-frequency variability and exceeds the steric effect at
seasonal and interannual scales. The manometric SSH component is strongly correlated
with regional wind stress across all timescales (except for interannual scale where remote
wind also plays a role), reflecting wind-driven Ekman transport. The net lateral mass
transport onto the shelf, driven by surface winds, induces pressure gradient responses and

geostrophic currents that largely compensate the Ekman flux.

Overall, mass changes due to lateral transport play a more significant role in NWES SSH

variability than steric changes. This is consistent with observations in other shelf regions, where

cross-shelf mass transport dominates near-coast sea level variability (Vinogradova et al., 2007;

Steinberg et al., 2024). In contrast, steric changes are often the main driver of long-term SSH

variability in the open ocean (Landerer et al., 2007; Yin et al., 2010). Importantly, short-term

SSH variability on the NWES exhibits larger magnitudes than interannual or longer-term

timescales, highlighting the importance of high-frequency processes. While the long-term

warming trends remain crucial, they may amplify short-term variability, as suggested by studies

on extreme sea levels (Tebaldi et al., 2021) and marine heatwaves (Frolicher et al., 2018).

The seasonality in both the steric and mass components underscores the dual role of

seasonal solar radiation: surface heating and cooling induce a seasonal steric SSH signal, while
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seasonally varying wind stress enhances the accumulation and discharge of water on the shelf,

driving seasonal variability in the manometric SSH.

The strong influence of wind on mass changes across all timescales highlights the
importance of atmospheric conditions in shaping NWES sea level. While the link between large-
scale atmospheric patterns and interannual SSH variability is well established (Calafat et al.,
2012; Chafik et al., 2017), shorter timescales and spatial patterns are less understood. This study
provides a comprehensive framework to quantify wind-driven contributions to NWES sea level

variability.

Finally, the wind is not the only driver of the sea level variability. The wind-driven
Ekman transport is partially compensated by geostrophic currents, which are also influenced by
large- and meso-scale ocean dynamics and Earth's rotation. These slowly-evolving currents can
affect the lateral transport and, thus, shelf sea level on longer timescales. Their role in regional

sea level changes warrants further investigation.
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