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 A B S T R A C T

Accurate circulation modeling in the Gulf of Mexico (GoM) is hampered by the limited availability of in-
situ subsurface data, leading to inaccuracies in subsurface representations. These inaccuracies diminish the 
reliability of ocean models and constrain the duration of dependable forecasts. This study introduces NeSPReSO 
(Neural Synthetic Profiles from Remote Sensing and Observations), a data-driven method to efficiently and 
accurately estimate subsurface temperature and salinity profiles using satellite-derived surface data. This 
provides an alternative to conventional synthetic data generation techniques.

Principal Component Analysis (PCA) is applied to extract the main features of temperature and salinity 
profiles of an Argo dataset. Then, a neural network is trained to predict these principal features using inputs 
such as time, location, and satellite-derived absolute dynamic topography alongside sea surface temperature 
and salinity. The model, evaluated using additional Argo profiles and glider data collected in the Gulf of 
Mexico, over-performs other traditional synthetic data generation methods, such as the Gravest Empirical 
Modes (GEM), Multiple Linear Regression (MLR) and Improved Synthetic Ocean Profile (ISOP), in terms of 
root mean square error and bias. Our findings indicate that our method effectively captures the main variations 
of subsurface fields, and that synthetic profiles generated by the model align well with actual observations, 
accurately capturing key features such as thermoclines, haloclines, and temperature-salinity structure of the 
region. This new method will be implemented in GoM data assimilative models and is expected to improve 
the accuracy of modeled subsurface currents.
1. Introduction

Accurate representation of the Gulf of Mexico (GoM) circulation in 
numerical models is of great importance for the scientific community 
and holds operational significance for fisheries, hurricane prediction, 
and oil and gas companies (Jaimes et al., 2016; Koch et al., 1991; 
National Academies of Sciences, Engineering, and Medicine, 2018). The 
GoM Loop Current (LC) is part of the Atlantic western boundary current 
system and plays an important role in the transport of heat from the 
Caribbean Sea to the Atlantic Ocean, contributing to climate regulation. 

∗ Correspondence to: Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 323064120, USA.
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The LC also holds strong currents (up to 2 ms−1) (Forristall et al., 
1992; Sturges et al., 2005; Hiron et al., 2021) and is very dynamic, 
shedding large (≈200–400 km) warm eddies at an irregular rate of 
6 to 17 months (Vukovich, 1988; Behringer et al., 1977; Sturges and 
Leben, 2000). Loop Current Eddies (LCEs) affect oil and gas activities 
in the GoM due to their strong peripheral velocities, and they can 
also fuel hurricane intensification by releasing heat to the atmosphere 
during storm passage (Shay and Uhlhorn, 2008; Shay, 2010; Jaimes 
et al., 2016). Cold-core, frontal eddies present in the vicinity of the 
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LC contribute to the detachment of the LCEs and can enhance activity 
across the trophic chain by pumping deep-water nutrients to the upper 
ocean (Hiron et al., 2020, 2022; Suthers et al., 2023). Although recent 
model advancements have improved the representation of this complex 
system, a key limitation across ocean models remains the scarcity of in 
situ data to effectively constrain the models.

Temperature and salinity observations are two essential variables 
to be assimilated in numerical models, as density gradients, driven by 
these variables and pressure, govern large-scale ocean circulation. The 
ocean surface is well constrained in models, thanks to global satellite-
derived sea surface height (SSH) and sea surface temperature (SST) 
data. However, subsurface observations are scarcer. The Argo program 
supports almost 4000 floats worldwide that provide valuable infor-
mation about the subsurface temperature and salinity structure of the 
ocean since 2005 (Roemmich and Gilson, 2009). In the GoM, the NAS-
funded LC-floats and the UGOS 3 program are significant initiatives 
in subsurface observation. The LC-floats, supported by the National 
Academy of Sciences (NAS), are designed for oceanographic research 
in the GoM. Since June 2019, these floats have played a key role 
in collecting data on subsurface temperature and salinity structures. 
The Understanding Gulf Ocean Systems program, cycle 3 (UGOS 3), 
involves specialized floats that have contributed to more than 7000 
profiles sampled since the same period.

Despite their significance in constraining subsurface models, these 
measurements are too sparse, limiting the accurate representation of 
subsurface mesoscale circulation. Techniques such as Multiple Lin-
ear Regression (Carnes et al., 1994) Gravest Empirical Modes (GEM) 
method (Watts et al., 2001; Sun and Watts, 2001; Meunier et al., 2022) 
and the Improved Synthetic Ocean Profile (ISOP) system (Helber et al., 
2013; Townsend et al., 2015; Helber et al., 2022) have been employed 
to generate synthetic temperature and salinity profiles for data assimi-
lation in large-scale and regional ocean models. Those synthetic profiles 
rely on past observations and are generated mainly from altimetry 
SSH fields, based on the presumed relationship between SSH values 
and subsurface temperature and salinity, valid for large-scale flows 
(geostrophic adjustment). Although promising, these methods can be 
computationally demanding and may not capture complex, non-linear 
relationships between surface and subsurface ocean fields.

In recent years, there has been significant advancement in deriving 
temperature and salinity profiles from ocean surface data using ma-
chine learning (ML) and artificial intelligence (AI) approaches. These 
models aim to bridge the gap between sparse in-situ measurements 
and satellite observations, enabling more comprehensive ocean mon-
itoring. For instance, Chen et al. (2022) developed a machine learning-
based assimilation system that uses a generalized regression neural 
network with fruit fly optimization to reconstruct T/S profiles from 
satellite observations, significantly improving the simulation of subsur-
face structures compared to direct assimilation of satellite data alone. 
Similarly, Tian et al. (2022) employed a feed-forward neural network 
to generate a high-resolution (0.25◦ × 0.25◦) global subsurface salinity 
dataset by merging in-situ profiles with satellite altimetry, sea surface 
temperature, and wind data. Mao et al. (2023) developed a dual-
path convolutional neural network to reconstruct ocean subsurface 
temperature and salinity from sea surface information, demonstrating 
improved accuracy over traditional methods. Pauthenet et al. (2022) 
reconstructed four-dimensional temperature, salinity, and mixed-layer 
depth in the Gulf Stream using neural networks, combining remote-
sensing and in situ observations. These AI-based methods have shown 
promise in capturing mesoscale features and improving upon tradi-
tional interpolation techniques, offering new possibilities for generating 
comprehensive ocean T/S datasets with enhanced spatial and temporal 
resolution.

In the Gulf of Mexico, machine learning has been used in numerous 
applications, such as forecasting LCE shedding events (Zeng et al., 
2015; Wang et al., 2019), predicting hurricane wave height (Mafi 
and Amirinia, 2017), and estimating spatial and temporal variation in 
2 
dissolved carbon dioxide near the Mississippi river outflow (Fu et al., 
2020). Meng et al. (2021) developed a convolutional neural network 
(CNN) method using satellite-observed sea surface data (SSH, SST, sea 
surface salinity (SSS), and surface wind speed) and ocean subsurface 
temperature and salinity from Argo to obtain three-dimensional salinity 
fields from 0–2000 m depth. Despite these advancements, research 
with ML for subsurface modeling in the Gulf of Mexico is ongoing, 
as traditional methods still face challenges in efficiency, accuracy, and 
capturing the complex dynamics of the Gulf’s circulation, especially at 
submesoscale.

In this study, we introduce Neural Synthetic Profiles from Remote 
Sensing and Observations (NeSPReSO), a method to effectively estimate 
subsurface temperature and salinity profiles using satellite-derived ab-
solute dynamic topography (ADT), SST, and SSS by leveraging in-situ 
Argo data and Principal Component Analysis (PCA). Unlike previous 
methods, NeSPReSO focuses specifically on the Gulf of Mexico, utilizing 
a neural network architecture optimized for this region’s oceanographic 
features. Our approach advances the field by combining PCA to re-
duce the dimensionality of the T/S profiles while capturing most of 
their variability, and a neural network that maps surface observations 
to these principal components. This methodology allows for efficient 
computation while capturing the complex, non-linear relationships be-
tween surface and subsurface ocean fields, thereby improving upon 
traditional methods and previous ML approaches in terms of accuracy 
and computational cost.

This study aims to address the following questions: How effectively 
can ML techniques, specifically neural networks (NN), be utilized to 
synthesize temperature and salinity profiles in the Gulf of Mexico? 
Can NeSPReSO provide an improvement over state-of-the-art methods? 
How do these synthetic profiles compare against independent measure-
ments? Applications of this study include investigating the effects of 
assimilating the synthetic subsurface temperature and salinity profiles 
into hindcast and forecast numerical models in the Gulf of Mexico 
to determine whether they improve forecast accuracy. Additionally, 
we plan to provide a system through which the scientific community 
can request synthetic profiles for specific locations and time periods 
(depending on satellite data availability) to foster further research and 
applications.

2. Data

Our ML approach builds upon in situ observations and satellite-
derived measurements. The following subsections details the specifics 
of each dataset, specifically Argo float, glider, and satellite datasets, as 
well as the ISOP statistics used as benchmark.

2.1. Argo data

The main dataset for this study is a total of 4145 temperature (T) 
and salinity (S) profiles acquired between 2015 and 2022 in the GoM 
region, and includes geographical coordinates, date, and time, as well 
as the estimated local steric height referenced to 1950 dbar (SH1950) 
for each profile. The distribution of these profiles is shown in Fig.  1. 𝑇
and S measurements were taken at one-meter intervals from the surface 
to a depth of 2000 m, capturing both major upper-ocean water masses 
present in the GoM: the warm and salty North Atlantic Subtropical 
Underwater (NASUW), typical of the Loop Current (SH1950 ≥ 0.17 m), 
and the fresher Gulf Common Water (GCW), representative of the Gulf 
waters (SH1950 < 0.17 m) (e.g., Hiron et al., 2022).

The dataset, described in detail by Meunier et al. (2022, 2023, 
2024), includes a mixture of real-time and delayed mode profiles, 
re-processed without using the standard quality control (QC) flags. Out-
liers, defined as values outside four standard deviations, were removed, 
as well as profiles showing biased salinity at depth. Although these 
profiles could potentially be recovered with further processing, they 
were excluded from this analysis to maintain data consistency.

ISOP statistics are limited to the 0 to 1800-m range. Given that 
our Argo database has missing data beyond 1800 m, we restricted our 
dataset for model training, testing, and validation to this range.
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Fig. 1. Temperature-Salinity (T-S) diagram (left) and spatial distribution (right) of glider tracks and Argo profiles used in this study. The T-S diagram identifies key water masses, 
including Gulf Common Water (GCW), North Atlantic Subtropical Underwater (NASUW), and Sub-Antarctic Intermediate Water (SAAIW). The spatial distribution uses markers/colors 
to represent dataset categories (train, validation, and test).
2.2. Glider dataset

This dataset comprises 𝑇  and S profiles from three missions (0006, 
0010, and 0012) conducted between June 2017 and October 2018, 
targeting various mesoscale structures within the Gulf of Mexico by 
the glider oceanographic monitoring group (GMOG) from Cicese. These 
missions, executed using Seagliders equipped with a Seabird free-flow 
CT-sail, aimed to capture the vertical thermohaline variability associ-
ated with these mesoscale features. Data were collected at an averaged 
vertical resolution of 1 m and horizontal resolution of 3 km.

Missions 0006 and 0012 sampled old and young LCEs, respectively, 
and mission 0010 targeted a cyclonic eddy in Campeche Bay. Dur-
ing post-processing, data was vertically binned at 5 m intervals, and 
temperature adjusted for thermal lag, while thermal-inertia effects on 
conductivity were corrected following the methodology of Lueck and 
Picklo (1990). A fourth-order low-pass Butterworth filter with a cut-off 
frequency of 1

48 h−1 was applied to smooth out high-frequency, near-
inertial gravity waves. Missing segments were linearly interpolated to 
maintain the integrity of the profiles.

The gliders sampled contrasting thermohaline structures critical for 
assessing the reconstruction algorithm’s proficiency. Significant differ-
ences in salinity (𝛥𝑆 = 0.2) and temperature (𝛥𝑇 = 2 ◦C) anomalies 
were observed between the eddies, with variations in the depth of the 
26 ◦C isotherm between young and old LCEs indicative of the effect 
of eddy age on thermohaline structure. However, large discrepancies 
are anticipated at the peripheries of the eddies due to submesoscale 
processes like density-compensated 𝑇  and S layering and intrusions, 
which are not captured by the satellite fields, challenging the model’s 
predictive capability in these areas.

2.3. Satellite data

Satellite-derived Absolute Dynamic Topography (ADT), sea surface 
temperature (SST) and salinity (SSS) were sourced from CMEMS, 
OISST, and SMAP, respectively. The Copernicus Marine Environment 
Monitoring Service (CMEMS) archives, validates, and interprets oceano-
graphic satellite data. We utilized ADT, available since 1993, serving 
as a proxy for SSH. CMEMS provides an ADT gridded product with 
a daily resolution and a horizontal grid-spacing of approximately 1

4
degrees (Copernicus Marine Service, 2024).

Optimum Interpolation Sea Surface Temperature (OISST) is a long-
term climate data record that incorporates observations from different 
sources to provide a high-resolution analysis of sea surface tempera-
tures. It uses an optimal interpolation technique to combine data from 
3 
satellites, ships, buoys, and other sources to create a consistent and 
accurate record of sea surface temperatures. Analyzed SST is available 
since 1981 on a daily basis, with a resolution of approximately 1

4
degrees (Good et al., 2020).

Finally, Soil Moisture Active Passive (SMAP) is a NASA satellite 
mission that uses active and passive microwave sensors to provide high-
resolution measurements of soil moisture, freeze/thaw state, and ocean 
surface salinity. SMAP SSS has been available since 2015 on a daily 
basis and has a resolution of 40 km (Meissner et al., 2018).

The ADT, SST, and SSS fields are interpolated to each location of 
the Argo and glider databases using bicubic interpolation, and together 
with spatial and temporal information, serve as input to the proposed 
neural network as described in Section 3.2. Following Leben (2005) 
and Hiron et al. (2020), the daily mean of ADT over the GoM deep 
waters (>200 m) is removed from the ADT field for each day. This 
removes the variations in ADT associated with thermal expansion and 
contraction of the upper ocean due to seasonal variability.

2.4. ISOP statistics

ISOP projects surface ocean data downward, generating 𝑇  and S 
profiles across the global ocean using surface observations and a mixed-
layer depth (MLD) estimate. Optionally, a prior forecast of 𝑇  and S 
profiles can be used. The creation of these synthetic profiles plays an 
important step in the Navy’s operational forecasting and is seamlessly 
integrated into their data assimilation workflows. ISOP divides the 
ocean’s depth into 78 fixed levels, extending from the surface to 6600 
m. The process begins with the compilation of a 𝑇  and S covariance 
matrix and climatology database from a comprehensive set of in-situ 
observations, followed by the application of a multilayered approach 
that considers three different dynamics zones within the ocean subsur-
face. These regions include the mixed layer, extending from the surface 
to the MLD; the thermocline layer, reaching from the MLD down to 1000 
m; and the deep ocean layer, below 1000 m.

For the mixed layer, there are two options. One option adjusts the 
initial estimated profile to align with the surface potential density at 
4 m depth and ensures consistency with the potential density and its 
gradient at the MLD within the thermocline layer. The second option for 
the mixed layer shifts the prior forecast profile (if provided) to match 
the input SST value. The thermocline layer prediction employs a varia-
tional method, leveraging climatological 𝑇  and S values and the first 
vertical Empirical Orthogonal Functions (EOFs), or modes, extracted 
from historical data to constrain the forecast. Detailed descriptions of 
the each term involved in this variational approach is available in 
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Fig. 2. General diagram of NeSPReSO. Step 1 computes the empirical PCA of the Argo database. Step 2 trains a dense neural network from interpolated SST, SSH and SSS satellite 
data, location and date to predict the PCS. Step 3 reconstruct the profiles using the predicted PCS and inverse PCA.
Ref. Helber et al. (2013). Finally, the prediction within the deep ocean 
layer involves modifying a decay function based on climatological data 
and the 𝑇  and S readings from the thermocline layer at 1000 m depth. 
This function accounts for the variance between climatological values 
and the 1000-m predictions, ensuring a coherent transition into the 
deep ocean predictions. The inputs for ISOP’s predictive models include 
SST and sea surface height anomaly (SSHA), along with uncertainty 
estimates, an MLD estimation, and an (optional) 𝑇  and S profile can 
be obtained from either climatological data or model outputs. In this 
work, the synthetics used climatological data for estimating the initial 
MLD and 𝑇  and S profiles, along with Argo-derived SST and SSH.

The ISOP data used in this work was generated by the US Navy and 
corresponds to the entire Argo dataset (4145 profiles). The provided 
data included only the average vertical statistics and binned spatial 
statistics of the ISOP synthetics relative to the Argo profiles (no indi-
vidual profiles were provided). These statistics were used as benchmark 
for the other methods.

3. Methods

In this section, we detail our methodology for training and val-
idating a multilayer perceptron (MLP) to predict subsurface 𝑇  and 
S profiles using surface data. The model is designed to learn the 
nonlinear functions that associates the ocean surface, through satel-
lite observations, with subsurface information from a comprehensive 
dataset of Argo profiles. NeSPReSO uses PCA to focus the model on the 
main variability within the subsurface profiles, while also reducing the 
data’s dimensionality and improving the efficiency of computation and 
training. Lastly, we assess the model’s performance using unseen Argo 
profiles (15% of the dataset, randomly selected) and compare it with 
MLR, GEM and ISOP methods. The four unseen glider transects in the 
GoM were also reconstructed using our method, and compared with the 
original glider data.

The Argo float dataset, consisting of 𝑇  and S profiles, is inherently 
high-dimensional, containing 1801 measurements (from 0 to 1800 m 
at 1-m intervals) for each parameter. In order to obtain an efficient 
model that captures the overall shape of the profiles, we applied PCA 
to the data sets of the 𝑇  and S profiles separately. By doing so, we can 
express each profile with a significantly reduced number of variables 
while retaining over 99% of the original data variability. Utilizing this 
transformation of data, we train the neural network to estimate the 30 
most significant principal component scores (PCS) for each profile in 
the Argo dataset used for training, which are used to reconstruct the 
profiles using the inverse PCA.
4 
Combining PCA with neural networks is an effective strategy for 
handling high-dimensional output spaces, as it reduces computational 
complexity and can improve prediction accuracy (Howley et al., 2006; 
Sun et al., 2023). PCA captures the most significant features in the 
data, and the neural network learns to predict these features from 
the inputs. This methodology has been successfully applied in various 
fields, including meteorology and oceanography (Preisendorfer and 
Mobley, 2023), finance (Sarıkoç and Celik, 2024), and engineering (Sun 
et al., 2023).

Fig.  2 shows a general diagram of our methodology and the main 
components of the proposed neural network.

3.1. Principal component analysis

Principal Component Analysis (PCA) is employed in various fields 
for dimensionality reduction of large datasets while preserving most of 
the original data variability. This method identifies orthogonal axes, 
known as principal components (PC), each representing a direction in 
which the data’s variance is maximized.

Given a centered data matrix 𝐘 of size 𝑛 × 𝑝, where 𝑛 is the 
number of observations (profiles) and 𝑝 is the number of variables 
(measurements).

A covariance matrix 𝐒 is computed as: 

𝐒 = 1
𝑛
𝐘𝑇𝐘, (1)

which captures the variances (in the diagonal) and the covariances 
(off-diagonals).

The next step involves solving the eigenvalue problem for 𝐒: 
𝐒𝐕 = 𝐃𝐕, (2)

where 𝐕 and 𝐃 are the eigenvector matrix and eigenvalue diagonal 
matrix of 𝐒, respectively. These eigenvectors define the directions 
of maximum variance in the data, and the eigenvalues indicate the 
magnitude of variance in these directions.

The eigenvectors and eigenvalues are arranged in descending order 
based on the magnitude of the eigenvalues. The first eigenvector, 
associated with the largest eigenvalue, becomes the first principal 
component (PC), and so forth. The eigenvector matrix 𝐕, which is the 
concatenation of all 𝐯𝐢 eigenvectors, is used to project the centered data 
matrix 𝐘 into the principal component space: 
𝐙 = 𝐘𝐕, (3)

where 𝐙 is a matrix of principal component scores (PCS), each col-
umn representing a principal component. To reduce dimensionality, 𝐕
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Fig. 3. Example of reconstruction of temperature and salinity profiles using 15 PCS. 
The profile were truncated at 500 m to emphasize the differences, which occur mostly 
in the upper ocean.

can be truncated, keeping only the eigenvectors corresponding to the 
largest eigenvalues.

The PCA transformation is linear and reversible. The inverse trans-
formation, which approximates the original data from its reduced 
principal component representation, is given by: 
𝐘̂ = 𝐙𝐕𝑇 , (4)

where 𝐘̂ is the reconstructed data. Note that if 𝐕 is truncated, this 
reconstruction is an approximation with some loss of information.

We applied PCA to the 𝑇  and S datasets, reducing the dimensionality 
of the data (from 1801 to 15) by transforming the raw measurements 
(𝐘) into PCS (𝐙), while retaining most of the variance: 99.8% for 
temperature and 99.4% for salinity. Fig.  3 illustrates the first 500 m 
of a temperature and salinity profile and its reconstruction using 15 
PCS.

Our proposed model is then trained to generate these 30 PCS for 
each Argo location in our training set. Next we describe NeSPReSO’s 
architecture and training.

3.2. NeSPReSO

Let 𝑋 ⊂ R𝑑𝑋  denote our input space, representing spatial and tem-
poral information along with surface measurements (e.g., sea surface 
temperature, salinity, and height), and let 𝑌 ⊂ R𝑑𝑌  be the output space 
consisting of the corresponding vertical profiles of temperature and 
salinity that we aim to predict. Our objective is to construct a mapping 
𝛷 ∶ 𝑋 → 𝑌  such that for each input vector 𝑥 ∈ 𝑋, the predicted profile 
𝑦 = 𝛷(𝑥) approximates the true profile 𝑦 ∈ 𝑌 .

Due to the high dimensionality of the vertical profiles, directly 
predicting 𝑦 with a neural network can be computationally intensive, 
inaccurate, and prone to overfitting. To address this, we employ Prin-
cipal Component Analysis (PCA) for dimensionality reduction, focusing 
on modeling the most significant features of the profiles (Jolliffe and 
Cadima, 2016; Preisendorfer and Mobley, 2023). Formally, we encode 
the output space 𝑌  into a lower-dimensional space 𝑍 ⊂ R𝑑𝑍 , where 
𝑑𝑍 ≪ 𝑑𝑌 , using an encoder 𝐸𝑌  such that 𝑧 = 𝐸𝑌 (𝑦), and reconstruct 
the profiles with a decoder 𝐷𝑌  such that 𝑦 ≈ 𝐷𝑌 (𝑧).

Applying PCA to the profiles in 𝑌  yields the PCS 𝑧 and defines the 
decoder operator 𝐷𝑃𝐶𝐴(𝑧) = 𝑧𝐕T, where 𝐕 is the matrix of eigenvectors 
from the PCA decomposition. Here, the encoder 𝐸𝑌  corresponds to the 
PCA transformation mapping profiles 𝑦 to their PCS 𝑧, and the decoder 
5 
𝐷𝑌  corresponds to the inverse PCA transformation reconstructing 𝑦
from 𝑧.

To predict 𝑧 from the surface measurements 𝑥, we design a neural 
network 𝜁 ∶ 𝑋 → 𝑍 that approximates the mapping from the input 
space to the PCA space. This approach leverages the ability of neural 
networks to model complex nonlinear relationships between inputs and 
outputs. By training the neural network to predict 𝑧, we can reconstruct 
the full profiles using the inverse PCA transformation. Combining PCA 
with neural networks is a common practice in machine learning for 
handling high-dimensional outputs (Howley et al., 2006; Sun et al., 
2023), as PCA reduces the output dimensionality and the neural net-
work captures the nonlinear relationships between inputs and principal 
components.

In designing the loss function for training the neural network 𝜁 , 
we consider the accuracy of the reconstructed profiles. Specifically, we 
minimize the difference between the reconstructed PCS 𝑧̂ and the true 
PCS 𝑧, and difference between the reconstructed profiles 𝑦̂ = 𝐷𝑃𝐶𝐴(𝑧̂)
and the true profiles 𝑦. Our approximation process can be formalized 
as:

min
𝜁

 = 1
𝑛𝐿𝑊

𝑛
∑

𝑖=1
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∑
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𝐹𝑀𝑆𝐸

(5)

where  denotes the total loss function, 𝑛 is the number of profiles 
(indexed by 𝑖), 𝑑𝑧 is the number of principal components used (indexed 
by 𝑗), and 𝑑𝑌  is the number of depth levels in each profile (indexed 
by 𝑘). The first term is the weighed mean squared error (WMSE) of 
the PCS, weighted by the variance captured by each component 𝑣𝑗 , 
where 𝑧̂𝑖𝑗 and 𝑧𝑖𝑗 represent the predicted and true PCS for sample 𝑖 and 
component 𝑗, respectively. The second term represents the functional 
mean squared error (FMSE), which is computed for both temperature 
and salinity profiles. Specifically, 𝑌 𝑇

𝑖𝑘  and 𝑌 𝑇
𝑖𝑘  denote the predicted (after 

inverse PCA transformation) and true temperature values, respectively, 
at depth 𝑘 for sample 𝑖. Similarly, 𝑌 𝑆

𝑖𝑘  and 𝑌 𝑆
𝑖𝑘  represent the predicted 

and true salinity values.
It is important to note that in our model  accounts for both tem-

perature and salinity predictions simultaneously, which have different 
scales and units. To ensure that the contributions of these parameters 
are appropriately scaled in this multi-task model, each mean squared 
error term is divided by the variance of the respective parameter: 𝜎2𝑧
for the PCS, 𝜎2𝑇  for temperature, and 𝜎2𝑆 for salinity (Zhang and Yang, 
2022).

Additionally, training the model using WMSE or FMSE individually 
results in different loss values, with 𝐿𝑊 ≈ 0.0255 for WMSE and 𝐿𝐹 ≈
2.8294 for FMSE. These values are used to normalize each term when 
combining them in the final loss function.

The neural network used in this study consists of a simple multilayer 
perceptron, suitable for regression tasks involving continuous outputs, 
with an input layer that receives satellite-derived ADT, SST, and SSS bi-
cubicly interpolated to the location of each Argo profile. It also receives 
spatial information coming from the latitude and longitude. Recogniz-
ing that latitude and longitude represent angular measurements with 
cyclical properties, we compute the sine and cosine harmonics for 
each normalized temporal and spatial inputs (2𝜋 𝑙𝑎𝑡

180 , 2𝜋
𝑙𝑜𝑛
360  and 2𝜋

𝑑𝑎𝑦
365 ), 

helping the network to capture the cyclical nature of these parameters, 
which has been shown to improve model performance in previous 
studies (Thottakkara et al., 2016). The output layer produces the pre-
dicted PCS, which are then used to reconstruct the full temperature and 
salinity profiles using the inverse PCA transformation.

We use 2 fully connected hidden layers with 512 neurons each, em-
ploying the Rectified Linear Unit (ReLU) activation function to reduce 
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computational complexity and mitigate vanishing gradients (Dubey 
et al., 2022; Nguyen et al., 2021). To prevent over-fitting, we apply 
a dropout rate of 20%, randomly disabling neurons during training, 
which encourages the network to learn more robust features (Zhang 
et al., 2024). Additional training parameters include using a batch size 
of 300, a maximum number of 8000 epochs and an early stopping 
mechanism of 500 epochs, if the loss value in the validation set is not 
improved.

The training of the neural network involves an iterative process 
where the model learns to approximate the PCS through exposure to 
different subsets of the data. The model is trained using 70% of the 
profiles (2895 in total), while its performance is continuously moni-
tored against a separate validation set comprising 621 (15%) profiles, 
which effectively determines when the training should stop. Training 
the model on this setting took 8 min using a single GPU. Evaluation of 
the model’s accuracy is conducted on the remaining 15% of the data 
(621 profiles), the test set, to assess its predictive capabilities.

NeSPReSO is compared against standard models for creating syn-
thetic profiles: Multiple Linear Regression, Gravest Empirical Modes 
and Improved Synthetic Ocean Profile.

3.3. Multiple linear regression approach

In addition to the neural network architecture, we explore a MLR 
model as a baseline method for predicting the PCS from surface mea-
surements (Carnes et al., 1994). The MLR serves to assess the effec-
tiveness of the neural network by comparing its performance with a 
simpler, linear approach.

Let us consider the same input space 𝑋 ⊂ R𝑑𝑋 , output space 𝑌 ⊂ R𝑑𝑌

and the reduced-dimensional space 𝑍 ⊂ R𝑑𝑍 , where 𝑑𝑍 ≪ 𝑑𝑌 , along 
with the encoder 𝐸𝑌  and decoder 𝐷𝑌  mappings. The MLR model aims 
to establish a linear relationship between the input variables in 𝑋 and 
the PCS in 𝑍. Specifically, we model each principal component score 
𝑧𝑗 as a linear combination of the input features: 

𝑧̂𝑗 = 𝛽𝑗 +
𝑑𝑋
∑

𝑖=1
𝛽𝑖𝑗𝑥𝑖, (6)

where 𝑧̂𝑗 is the predicted PCS for component 𝑗, 𝛽𝑗 is the intercept term, 
𝛽𝑖𝑗 are the regression coefficients, and 𝑥𝑖 represents the input features 
from 𝑋. The regression coefficients 𝛽 are then estimated by solving the 
least squares problem: 
𝛽 = (𝐗T𝐗)−1𝐗T𝐙, (7)

where 𝐙 is the matrix of true PCS obtained from PCA, and 𝐗 is the 
expanded feature matrix. The inverse operation (𝐗T𝐗)−1 denotes the 
pseudoinverse when 𝐗T𝐗 is not invertible. This estimation provides the 
exact least squares solution for the regression coefficients.

The MLR model predicts the PCS by applying the estimated coeffi-
cients to new input data: 
𝐙̂𝑀𝐿𝑅 = 𝐗new𝜷, (8)

where 𝐗new contains the polynomial features of the new input sam-
ples. The predicted PCS 𝐙̂𝑀𝐿𝑅 are then used with the decoder 𝐷𝑌  to 
reconstruct the full temperature and salinity profiles: 
𝑌𝑀𝐿𝑅 = 𝐷𝑌 (𝐙̂𝑀𝐿𝑅) = 𝐙̂𝑀𝐿𝑅𝐕T, (9)

where 𝐕 is the matrix of eigenvectors from the PCA decomposition.
In our implementation, we include the same inputs as in our NN 

approach: spatial and temporal harmonics of latitude, longitude, day 
of the year, and satellite SST, SSH and ADT. The MLR model is trained 
using the combined training and validation datasets, comprising 3516 
profiles (85% of the total data), to ensure sufficient data for estimating 
the regression coefficients accurately. Fitting the model took 180 ms on 
a single GPU.
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The remaining 15% of the data (621 profiles) is used as a test set 
to evaluate the model’s predictive performance. By comparing the MLR 
results with those of the neural network, we can assess the benefits of 
incorporating nonlinear activation functions and deeper architectures 
in capturing complex relationships within the data, and by comparing 
with GEM, we can assess the advantages of operating in a reduced 
dimensional space.

It is important to note that we initially experimented with poly-
nomial expansions up to degree 3 to capture potential nonlinear re-
lationships between the input variables and the PCS. However, these 
higher-degree models exhibited significant issues:

• Computational Challenges: The inclusion of polynomial terms 
up to degree 3 dramatically increased the dimensionality of the 
feature matrix. With a large number of samples and input vari-
ables, the feature matrix became extremely large. This led to high 
memory consumption (≈80 GB) and computational inefficiency 
and instabilities during model fit.

• Numerical Instability: The large size of the matrices exacerbated 
numerical issues, such as difficulty in inverting matrices during 
the estimation of regression coefficients. This instability adversely 
affected the model’s ability to learn accurate relationships.

• Overfitting: The expanded feature space increased the risk of 
overfitting, where the model captured noise rather than under-
lying patterns, resulting in poor generalization to unseen data.

• Multicollinearity: Higher-degree polynomial terms introduced
strong correlations among predictor variables, destabilizing co-
efficient estimates and reducing the reliability of the model.

As a result of these challenges, the higher-degree polynomial models 
were unstable, producing predictions that were too inaccurate for 
practical application. Therefore, we opted to use the degree 1 MLR 
model, which captures linear relationships between the input variables 
and the PCS.

3.4. Gravest empirical modes

The GEM method is a technique extensively utilized in oceanogra-
phy for the generation of synthetic temperature and salinity profiles. 
The GEM method is based on the establishment of an empirical rela-
tionship between dynamic height and other oceanographic parameters, 
capturing the essential spatiotemporal patterns of oceanic temperature 
and salinity, making it a valuable tool for studying and simulating these 
parameters. This method has been applied to various oceanic regions, 
contributing to a better understanding of ocean dynamics and climate 
processes (Watts et al., 2001; Liu et al., 2021; Meunier et al., 2022).

The implementation of the GEM method is described as follows:

A. The steric height is computed for each in situ profile of temper-
ature and salinity.

B. All profiles are sorted according to their steric height, and 
grouped by month.

C. A regular pressure grid is defined (0–1800 dbar) with a vertical 
grid-step of 1 dbar. For each reference pressure value and for 
each month, a cubic smoothing spline is fitted to the func-
tions 𝑇 (𝜁 )|𝑝,𝑚 and 𝑆(𝜁 )|𝑝,𝑚, where 𝑇  and 𝑆 are temperature and 
salinity, 𝜁 is ADT, 𝑝 is the pressure at which the variables are 
evaluated, and 𝑚 is the month.

The process of fitting GEM to the dataset took 3 s on CPU.

4. Results

In this section we analyze the performance of NeSPReSO with 
respect to 621 Argo profiles in our test dataset (15% of the dataset, 
randomly selected, not used in training), and compare its performance 
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Table 1
Statistics (RMSE, average bias, and 𝑅2) by depth range. Best results in bold.
 Depth range 0–20 20–100 100–200 200–500 500–1000 1000–1800 0–1000 0–1800 
 T NeSPReSO 0.430 0.816 0.802 0.587 0.301 0.083 0.682 0.637  
 RMSE GEM 1.468 1.419 1.094 0.854 0.394 0.125 1.195 1.116  
 (◦C) MLR 0.380 1.031 0.944 0.699 0.357 0.087 0.823 0.768  
 ISOP 0.140 0.835 0.917 0.756 0.360 0.111 0.673 0.598  
 T NeSPReSO 0.047 −0.038 0.015 0.016 0.005 0.003 0.001 0.001  
 BIAS GEM −0.043 −0.153 −0.059 −0.036 0.006 0.006 −0.077 −0.067 
 (◦C) MLR −0.011 −0.041 0.016 −0.001 −0.010 0.000 −0.014 −0.012 
 ISOP 0.022 0.186 0.203 0.137 −0.057 −0.074 0.127 0.102  
 T NeSPReSO 0.983 0.956 0.971 0.986 0.987 0.973 0.995 0.997  
 𝑅2 GEM 0.773 0.870 0.949 0.970 0.978 0.941 0.986 0.991  
 MLR 0.986 0.929 0.960 0.980 0.981 0.970 0.993 0.996  
 S NeSPReSO 0.280 0.139 0.116 0.088 0.032 0.009 0.154 0.143  
 RMSE GEM 0.478 0.193 0.163 0.122 0.046 0.009 0.241 0.225  
 (PSU) MLR 0.299 0.154 0.155 0.112 0.044 0.009 0.173 0.162  
 ISOP 0.604 0.229 0.160 0.147 0.049 0.015 0.240 0.210  
 S NeSPReSO 0.012 −0.002 0.005 0.003 −0.001 0.000 0.003 0.002  
 BIAS GEM −0.036 −0.010 −0.014 −0.005 0.002 0.000 −0.013 −0.011 
 (PSU) MLR −0.021 −0.007 0.002 0.001 −0.001 0.000 −0.005 −0.005 
 ISOP −0.092 −0.086 −0.033 0.023 −0.009 −0.010 −0.048 −0.043 
 S NeSPReSO 0.829 0.729 0.887 0.985 0.977 0.861 0.962 0.975  
 𝑅2 GEM 0.337 0.411 0.789 0.971 0.958 0.833 0.905 0.939  
 MLR 0.803 0.654 0.786 0.975 0.957 0.857 0.952 0.969  
against GEM, MLR and ISOP methods. We also generate NeSPReSO 
synthetics to reconstruct four glider sections in the GoM.

The average processing time per profile on CPU is around 60 μs for 
NeSPReSO, 20 μs for MLR and 11600 μs for our GEM implementation, 
when generating synthetics for our test set. However, it is important to 
note that in an operational setting, where profiles are generated on the 
fly, the time to extract the satellite information from stored data is the 
limiting factor for generating synthetics, regardless of the method used 
(0.5 s per day of interest, regardless of the number of profiles).

NeSPReSO and MLR synthetics were generated using satellite sur-
face information (ADT, SST and SSS) interpolated to the locations of 
the measurements, location, and day of the year, while GEM synthetics 
used month and ADT. ISOP utilized climatological MLD and profile-
derived SSH and SST, with only statistical summaries of the ISOP 
synthetics being available, rather than individual profiles. This limi-
tation, along with the fact that ISOP synthetics was not derived from 
satellite sources like the other methods, may skew the comparison in 
the upper ocean.

4.1. Test set

We use root mean square error (RMSE) and bias as analysis met-
rics to evaluate the performance of our model relative to observa-
tions. RMSE, measuring precision and accuracy, indicates the model’s 
prediction consistency and closeness to observed values. RMSE pe-
nalizes larger deviations and reflects the average prediction error, 
with lower RMSE indicating more reliable predictions. Average bias 
measures the average deviation from observed values, showing if the 
model consistently overestimates or underestimates the variable under 
consideration. Both statistics are given by: 

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − 𝑦̂𝑖
)2, (10)

Bias = 1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − 𝑦̂𝑖
)

, (11)

where 𝑦𝑖 is the observed value, 𝑦̂𝑖 is the predicted value, and 𝑁 is 
the number of observations. For calculations at each depth level, 𝑁
represents the number of profiles at that depth. When computing RMSE 
and bias over a depth range, the statistics are averaged over all depths 
within that range.
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The Pearson correlation coefficient (𝑅2) quantifies the degree of 
linear correlation between the predicted and observed values, with 
values closer to 1 indicating a stronger correlation. It is calculated as: 

𝑅2 =

⎛

⎜

⎜

⎜

⎝

∑𝑁
𝑖=1

(

𝑦𝑖 − 𝑦̄
) (

𝑦̂𝑖 − ̄̂𝑦
)

√

∑

𝑖 = 1𝑁
(

𝑦𝑖 − 𝑦̄
)2
√

∑𝑁
𝑖=1

(

𝑦̂𝑖 − ̄̂𝑦
)2

⎞

⎟

⎟

⎟

⎠

2

, (12)

where 𝑦̄ and ̄̂𝑦 are the mean values of the observed and predicted data, 
respectively. The 𝑅2 metric assesses the proportion of variance in the 
observed data that is predictable from the predicted data. Since we do 
not have access to individual ISOP synthetics, we could not calculate 
𝑅2 for ISOP.

The statistics of the profiles in the test set are shown on Table  1, 
calculated using predictions at the same depths as ISOP, for fairness. 
For temperature, the RMSE values indicate that NeSPReSO consistently 
outperforms the GEM predictions across all depth ranges, MRL below 
20 m and ISOP below 100 m. However, it is difficult to draw compar-
isons with ISOP near the surface, given that it uses Argo SST, but we 
observe a more accurate estimation of temperature profiles compared 
to the GEM method, which we attribute to the use of satellite SST. Av-
erage bias values for temperature are comparable between all methods, 
implying that the methods exhibit a similar direction and magnitude of 
systematic error in temperature estimation. For salinity, NeSPReSO also 
demonstrates lower RMSE and average bias than the other methods for 
most of the depth ranges, indicating superior performance in salinity 
predictions.

The Pearson correlation coefficient (R2) values for both 𝑇  and 
S predictions are higher for NeSPReSO compared to GEM across all 
depths, and particularly pronounced in the upper 100 m. NeSPReSo 
also overperforms MLR in most cases, except for 𝑇  on the range from 
0 to 20 m. This improvement in R2 signifies a stronger correlation be-
tween predictions and observations, meaning a better characterization 
of the upper-ocean.

Fig.  4 presents the average 𝑇  and S RMSE and bias per depth for all 
methods. In general, NeSPReSO yields better approximations compared 
to the other methods, as indicated by the lower RMSE and bias val-
ues overall. The improved prediction of upper-ocean temperature and 
salinity profiles in our model compared to GEM is likely due to the use 
of satellite SST and SSS, which offer additional information about the 
upper thermal and haline structures that might not be captured in the 
ADT fields, such as low salinity due to river outflow.
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Fig. 4. Average RMSE for temperature and salinity predictions (top), and average bias (bottom) as a function of depth.
The synthetic profiles were aggregated spatially into 1-degree lat-
itude by 1-degree longitude grid cells to assess the methods’ perfor-
mance in predicting 𝑇  and S across the area of study. Figures referenced 
as 5 through 8 present the spatial distribution of RMSE and average bias 
for 𝑇  and S. The statistics were calculated using predictions at the same 
depths as ISOP for a fair comparison.

The results indicate a robust performance of NeSPReSO in real-
world scenarios and applications, as NeSPReSO has lower overall RMSE 
for both 𝑇  and S predictions across the entire GoM region, with a 
few exceptions likely due to the scarcity of profiles in these regions. 
NeSPReSO shows a spatial distribution of average bias predominantly 
of low magnitude and somewhat homogeneous (no apparent predomi-
nant bias). MRL has a very similar spatial distributions as NeSPReSO, 
with slightly higher magnitudes. GEM also demonstrates a relatively 
homogeneous distribution, but with even higher magnitude on average. 
Meanwhile, ISOP exhibits a clear warmer and low magnitude trend for 
𝑇  and fresher for S, with greater magnitudes in the eastern portion of 
the GoM. Notably, in regions adjacent to the Mississippi River, ISOP 
demonstrates increased errors.

4.2. Glider tracks

This section presents a comparative analysis of processed glider 
tracks against the reconstructions from NeSPReSO, offering a direct 
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assessment of the model’s performance by replicating independent 
observations.

Figs.  9 to 12 illustrate four different processed glider crossings with 
the corresponding synthetic reconstructions and the differences. Over-
all, the displacement of isothermals and isohalines are in agreement 
with the observations, and the reconstructed fields are smoother, as 
expected.

Table  2 shows the RMSE, average bias, and 𝑅2 for each LCE cross-
ing. The 𝑇  and S RMSE closely aligns with those derived from the test 
set ([0-1000] range on Table  1). The average bias for 𝑇  and S exhibits a 
larger magnitude relative to the test set across each crossing, with vari-
ations between positive and negative biases. One possible explanation 
for these variations is related to the temporal and spatial resolution of 
satellite observations, particularly of ADT. These factors may contribute 
to a consistent directional bias in the model’s predictions.

The 𝑅2 values range from 0.996 to 0.998 for 𝑇  predictions, and 
from 0.988 to 0.994 for S predictions, meaning NeSPReSO consistently 
captures around 99% of the 𝑇  and S variances.

5. Conclusions

This study underscores the efficacy of machine learning in pro-
ducing synthetic temperature and salinity profiles for oceanographic 
data. By integrating Principal Component Analysis (PCA) with neural 
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Fig. 5. Distribution of average temperature RMSE for predictions down to 1800 m for NeSPReSO (left), with the number of profiles in each bin is displayed in gray, and RMSE 
values in black. Statistics for ISOP (top), MLR (center), and GEM (bottom) are shown in the center column, and their respective differences in magnitude compared to NeSPReSO 
are shown on the right column (blues indicate NeSPReSO performs better, and reds indicate NeSPReSO performs worse).

Fig. 6. Distribution of average salinity RMSE for predictions down to 1800 m for NeSPReSO (left), with the number of profiles in each bin is displayed in gray, and RMSE values 
in black. Statistics for ISOP (top), MLR (center), and GEM (bottom) are shown in the center column, and their respective differences in magnitude compared to NeSPReSO are 
shown on the right column (blues indicate NeSPReSO performs better, and reds indicate NeSPReSO performs worse).

Fig. 7. Distribution of average temperature bias for predictions down to 1800 m for NeSPReSO (left) with the number of profiles in each bin is displayed in gray, and average 
bias in black. Statistics for ISOP (top), MLR (center), and GEM (bottom) are shown in the center column, and their respective differences in magnitude compared to NeSPReSO 
are shown on the right column (blues indicate NeSPReSO performs better, and reds indicate NeSPReSO performs worse).

Ocean Modelling 196 (2025) 102550 

9 



J.R. Miranda et al. Ocean Modelling 196 (2025) 102550 
Fig. 8. Distribution of average salinity bias distribution for predictions down to 1800 m for NeSPReSO (left), with the number of profiles in each bin is displayed in gray, and 
average bias in black. Statistics for ISOP (top), MLR (center), and GEM (bottom) are shown in the center column, and their respective differences in magnitude compared to 
NeSPReSO are shown on the right column (blues indicate NeSPReSO performs better, and reds indicate NeSPReSO performs worse).
Table 2
RMSE, average bias and 𝑅2 between observations and synthetics across mesoscale eddy crossings.
 Crossing T RMSE T Bias T 𝑅2 S RMSE S Bias S 𝑅2  
 Mission 0006, crossing #1 0.546 0.070 0.997 0.096 −0.006 0.988 
 Mission 0006, crossing #2 0.516 −0.119 0.998 0.094 −0.025 0.990 
 Mission 0010 0.544 0.121 0.996 0.072 0.020 0.992 
 Mission 0012 0.586 0.003 0.997 0.086 −0.035 0.994 
network models, we successfully generated subsurface profiles from 
surface data, surpassing traditional methods like MLR, GEM and ISOP 
in accuracy and reliability.

Our results indicate that the neural network model consistently 
outperforms other investigated methods in terms of average RMSE, 
bias, and 𝑅2, suggesting a more accurate representation of the tem-
perature and salinity profiles in the Gulf of Mexico. This improvement 
is notable given the complex, nonlinear relationships between surface 
and subsurface properties of the ocean, which machine learning models 
are particularly adept at capturing.

These results raises several questions that warrant further investi-
gation. For instance, how will NeSPReSO perform in different oceanic 
regions with distinct hydrodynamic and thermohaline characteristics, 
and what adaptations might be required for different regional applica-
tions? Also, how can NeSPReSO be adapted and trained to effectively 
generate accurate temperature and salinity profiles in oceanic regions 
with depths shallower than the model’s current maximum depth range?

Future work should focus on addressing these questions, perhaps 
exploring other machine learning techniques or hybrid models that 
combine the strengths of various approaches. With the UGOS3 au-
tonomous profiling floats fleet projected to accumulate approximately 
1500 profiles annually, the expanding dataset will significantly en-
hance the model’s training and refinement. This expansion is crucial 
for extending the model’s applicability across different oceanic areas, 
enriching our comprehension of its potential and constraints.

In conclusion, this work lays a precedent for using advanced ma-
chine learning methods in oceanographic data synthesis, offering a 
promising direction for future research in this field. The ability to 
accurately predict subsurface oceanographic profiles using surface data 
not only aids in understanding ocean dynamics but also has practical 
implications in weather forecasting, climate modeling, and resource 
exploration.
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Fig. 9. Temperature and salinity sections of mission 0006, crossing #1. First column: Temperature. Second column: Salinity. First row: processed data from glider. Second row: 
synthetic profiles using NeSPReSO. Third row: differences. Last row: ADT field and position of the glider track.
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Fig. 10. Temperature and salinity sections of mission 0006, crossing #2. First column: Temperature. Second column: Salinity. First row: processed data from glider. Second row: 
synthetic profiles using NeSPReSO. Third row: differences. Last row: ADT field and position of the glider track.
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J.R. Miranda et al.

Fig. 11. Temperature and salinity sections of mission 0010. First column: Temperature. Second column: Salinity. First row: processed data from glider. Second row: synthetic 
profiles using NeSPReSO. Third row: differences. Last row: ADT field and position of the glider track.
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J.R. Miranda et al. Ocean Modelling 196 (2025) 102550 
Fig. 12. Temperature and salinity sections of mission 0012. First column: Temperature. Second column: Salinity. First row: processed data from glider. Second row: synthetic 
profiles using NeSPReSO. Third row: differences. Last row: ADT field and position of the glider track.
Data availability

Data will be made available on request.
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