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ABSTRACT

In a multi-resolution assimilation methodology based on hierarchical Markov Random Fields,

standard Gauss Markov random fields for background error at different resolutions levels are linked

together stochastically to form a coherent multi-resolution background error model. This error

model captures both global and local correlations and is combined with a multi-grid inspired algo-

rithm for efficient and consistent analysis across a range of scales. Several experiments illustrating

the method are presented using a model of the Intra-American Seas at resolutions ranging from

1/4𝑜 to 1/32𝑜. These experiments show: 1) that the multi-resolution analysis framework accounts

for differences in scales and precision of the component models and observations and allows better

depictions/control of both global and local features in the analysis, 2) representativity issues can be

addressed by assimilating data of different resolutions simply as measurements at different levels in

the hierarchical structure, and 3) the information exchange among the component models provides

a means to enforce consistency between the model solutions at different resolutions. Following

this regional evaluation, the methodology is implemented in a global-scale ocean analysis sys-

tem consisting of a 1/4◦ resolution global model and several of 1/16◦ regional models embedded

within. Results from a one-year hindcast with this system are presented and show that the system

is comparable to the leading current generation operational ocean analysis and forecast systems.
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1. Introduction29

In this paper, we introduce a multi-resolution data assimilation method for ocean forecasting30

and analysis. The method is designed to handle nested modeling configurations wherein fine-scale31

regional models are embedded in coarser scale basin or global models. The combination of nesting32

and multi-resolution analysis allows extraction of information from observations at multiple scales33

and to pass information consistently between nested grids. The end result is a system that can34

reconcile models and observations at different resolutions and produce consistent estimates across35

a number of scales in a computationally efficient manner.36

Ocean reanalysis and forecasts are routinely used for many practical applications ranging from37

scientific research, offshore engineering design, environmental impact assessments, operational38

weather windows and many others. An important goal of these analysis and forecasts is to39

simultaneously and accurately reconstruct the ocean state spanning multiple interacting spatio-40

temporal scales. Studies suggest that horizontal resolutions better than 3 km at mid-latitudes41

are required to better represent narrow meandering currents, fronts, eddies (Hurlburt and Hogan42

2000) and to simulate oceanic variability consistent with observational estimates (Chassignet and43

Xu 2017, 2021). However, deploying global models at these resolutions is extremely expensive44

computationally at present, and, for many multi-scale applications, it is standard practice to nest45

fine-scale regional models for areas of interest within a coarser global or basin scale model. It is46

relatively straightforward to extend this process and build a global scale multi-resolution system47

by nesting several regional scale models within a coarse global model. Assimilation of available48

measurements is a necessary component for hindcasting or forecasting applications. The simplest49

approach to assimilating data into a nested system is to treat each model independently and estimate50

its state based on available data. Alternatively, a more integrative approach can be considered where51
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the entire set of resolutions are viewed as a scale decomposition of the multi-scale error process52

and use corrections obtained for any one scale (model) to guide the estimates for all other scales53

(models) in the system1. Furthermore, as we will see, this scale view of the model system provides54

a means to fuse measurements of varying resolutions and to produce estimates consistent across55

multiple scales. Here, we follow the integrative approach to assimilate data into a global scale56

nested modeling system.57

Our approach to multi-resolution data assimilation is based on modeling the error process as58

Gauss Markov Random Fields (GMRF) at multiple resolutions. GMRFs are Gaussian random59

vectors defined over a set of discrete locations and are equivalent to undirected graphical models60

in which nodes represent random variables and edges capture conditional dependencies among61

the variables. They are both theoretically rich and practically versatile leading to their extensive62

use in statistical inference problems across many disciplines such as image processing, spatial63

statistics, economics, epidemiology and others (Hernandez-Lemus 2021; Kindermann and Snell64

1980). In ocean data assimilation applications, MRFs are used to model the background error65

process by defining the error vector in terms of a generalized (non-causal) autoregression using a66

small set of strictly local (in space) neighbors typically on the underlying ocean model grid (Chin67

et al. 1999; Srinivasan et al. 2022). This results in a sparse graph in which each node in the68

graph is connected to only a few other nodes. Such sparse graphical structures lead to sparsity69

in the information matrix (the inverse of the covariance matrix) with concomitant advantages of70

parsimonious parameterization and efficient inference. The sparse information matrix generally71

has a dense (nearly full) covariance matrix as its inverse implying long-range spatial dependencies.72

However, local MRF models are often poor at capturing longer-range correlations, and even73

when they do, it results in the information matrix being ill-conditioned. In practice strictly local74

1Here we use the term ‘scale’ to refer to the spatial discretization process rather than to an intrinsic property of the original random field
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parameterizations are seen to be adequate for models with resolutions on the order of 10 km or75

more (Chin et al. 1999; Srinivasan et al. 2022), but, unsurprisingly, MRF models defined on a fine76

scale model grids (less than 10 km resolution) do not adequately capture longer-range correlations.77

One can certainly try to remedy the situation by using a larger neighborhood (denser graph)78

to capture long-range interactions, but this defeats the intent of exploiting sparsity for efficient79

algorithms. To overcome this grid-specificity and to capture a range of scales, MRF’s can be80

defined on a hierarchy of grids for a multi-resolution analysis proceeding from the coarse scales to81

finer scales, successively filling in the details in a manner akin to the classic successive corrections82

schemes. Such an approach allows one to adequately model the multiscale correlations and to83

realize computational economy (e.g. Nychka et al. (2015)).84

There is a good deal of flexibility in implementing a multi-scale data assimilation system.85

The hierarchy of grids or the multiple scales may represent physically meaningful quantities with86

measurements acquired at different scales or alternatively the coarser scales may be hidden variables87

without measurements introduced solely for efficient analysis. Further, the analysis scales may be88

disjoint, with estimates in coarser scales used to simplify analysis in the finer scales or they may be89

linked together into a coherent statistical model, with either deterministic or stochastic interactions90

between scales. In nested modeling systems, where the parent and child grids are run together, the91

existing grid hierarchy naturally lends itself to such a multi resolution analysis. One can define a92

GMRF for each of the ocean model grids and link them stochastically to form a consistent multi-93

resolution error model across scales. By placing the coarsest model at the top of the hierarchy and94

finer resolution models at levels below, a pyramid type of multi-level graph structure is realized.95

The information matrix associated with this multi-level graph can be represented as a sum of96

sparse “in-scale” information matrices defined on the grids at each level, representing linkages97

within each level, and a second sparse “cross-scale” information matrix representing statistical98
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links between the levels. This setup can then be combined with a multi-grid type of two-pass99

estimation procedure for efficient analysis at multiple scales. Starting at the finest level, an analysis100

is computed at each level using the “in-scale” information matrix and passed upward using the101

“cross-scale” information matrix in succession until the coarsest level is reached. A subsequent102

downward sweep then completes a smoothing pass at each level and accounts for longer-range103

correlations in the finer scale models by capturing such behavior at coarser resolutions. There are104

several features of the multi-resolution analysis that are worth pointing out. The multi-resolution105

analysis accounts for differences in scales and precision of the component models and observations106

simultaneously in an integrated manner. Furthermore, since analyses are available at multiple107

resolutions, the multi-resolution analysis can be used to address the trade-off between regularity108

(smoothness) in the coarse resolution analysis and the locality (geometric details) of the finer109

resolutions. Another, useful aspect is the possibility of assimilating data or fusing information110

of drastically different resolutions simply as measurements at different levels in the hierarchical111

structure and thus addressing issue of representativity. Finally, since the analysis at each level is112

guided by analysis at other levels there is a two-way information exchange among the component113

models not only at the boundaries but also in the model interior unlike the standard two-way nested114

configurations where information exchange is only at the boundaries.115

The multi-resolution analysis technique has been in use successfully for the past several years in116

an ocean forecasting system consisting of a suite of nested ocean model configurations including117

a global 1/4◦ resolution model, two 1/16◦ models for the Atlantic and Indian Oceans and several118

1/32◦ resolution regional models implemented in response to unique needs of the offshore industry.119

The purpose of this paper is to shed some light on the theoretical underpinnings of the system and120

to present an evaluation of the methodology using a regional model with resolutions ranging from121

1/4◦ to 1/32◦ and a simplified global system with a 1/4◦ global model and several 1/16◦ models122
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nested within. The multi-resolution version of the GMRF assimilation and its evaluation presented123

herein builds on the evaluation of a GMRF based coarse resolution global system presented in124

Srinivasan et al. (2022). Although, this is a somewhat esoteric and particular implementation, we125

believe that this multi-resolution technique has a broader utility in addressing the emerging needs126

for nested fine resolution forecasts and reanalysis.127

The layout of this article is as follows. Section 2 describes the multi-resolution estimation128

approach. We provide two simple examples in Section 3 that illustrate the implementation and129

performance of the multi-resolution approach. In section 4, we introduce a global scale ocean130

system implemented using this methodology and present some hindcast results. We then conclude131

the paper with a discussion on the system and its possible extensions.132

2. Multi-Resolution GMRF Data Assimilation133

a. GMRF Models134

A GMRF, x, is an N-dimensional Gaussian random vector typically defined over a set of discrete135

locations such as a grid or lattice and has a Markov property: an element 𝑥𝑖 at a grid location136

𝑖 is conditionally independent from all other elements given the values of neighbors of 𝑖. The137

conditional distribution of 𝑥𝑖 given the values of its neighbors is138

𝑥𝑖 ∼ N
(∑︁
𝑗∈𝛿𝑖

𝛼𝑖 𝑗𝑥 𝑗 , 𝛽
2
𝑖

)
(1)

where 𝛿𝑖 is the set of neighbors for location 𝑖 (conventionally, the neighbor set 𝛿𝑖 does not include139

𝑖.) Modeling with a GMRF consists of specifying the neighborhood system 𝛿𝑖 with its interaction140

parameters 𝛼𝑖 𝑗 and the error variances 𝛽2
𝑖
. It can be shown (Rue and Held 2005) that Equation (1)141
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holds if and only if the joint distribution of x is Gaussian and the information matrix L is given by:142

L𝑖 𝑗 =



1
𝛽2
𝑖

if 𝑗 = 𝑖

𝛼𝑖 𝑗 if 𝑗 ∈ 𝛿𝑖

0 otherwise

(2)

The conditional distribution of 𝑥𝑖 in Equation (1) has the form of a Gaussian linear regression. The143

cardinality of the neighborhood 𝛿𝑖 determines the order of this regression and in turn the sparsity144

of the information matrix L whose diagonal elements are the conditional precisions 1
𝛽2
𝑗

and off-145

diagonal elements are the regression parameters 𝛼𝑖 𝑗 . It is common to summarize the conditional146

independence relations with an undirected graph G = (V,E). Here V is a set of nodes or vertices147

and E are edges connecting an unordered pair of vertices, 𝑖 and 𝑗 , if and only if L𝑖 𝑗 ≠ 0. Therefore,148

sparsity of the information matrix L is related to the independence properties of the GMRF, L𝑖 𝑗 = 0149

implies that 𝑥𝑖 and 𝑥 𝑗 independent. Further, when dealing with GMRF models it is convenient150

to specify the mean 𝜇 ≡ E[𝑥] and covariance 𝑃 ≡ E[(𝑥 − 𝜇) (𝑥 − 𝜇)𝑇 ] of Gaussian densities with151

its equivalent information form 𝜇 = L−1z and 𝑃 = L−1 where z is known as the information or152

potential vector. For our data assimilation application, the primary motivation for modeling153

the background error process as a GMRF is the ability of a small set of regression parameters154

and of small neighborhoods similar to Laplacian or biharmonic stencils usually, to encode the155

correlations spanning a range of distances and represent the background error covariance matrix156

of x in a numerically efficient, sparse form (Chin et al. 1999; Srinivasan et al. 2022).157

b. Hierarchical GMRF Models158

Since GMRF models are defined by specifying local interactions on discrete grids, the background159

error correlation scales that these models can represent are determined by the grid resolution. In160
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particular, long range correlations might not be well represented when progressively finer resolution161

grids are used. To overcome this limitation GMRF models can be defined at multiple resolutions162

going from coarse to fine to represent a range of correlation scales. Links, either stochastic or163

deterministic, between the GMRF models at different resolutions can then be used to transfer longer164

range correlations captured by coarse resolution GMRF models to the finer grids. This procedure is165

general and can be used with both stand-alone models and nested models. We consider the general166

problem first and then map the procedure to a set of nested grids. Consider a multi-resolution167

random field at 𝑀 levels of resolution with the finest scale denoted as 1 and the coarsest scale as168

𝑀 . Each scale m, (1 < 𝑚 < 𝑀), has a parent at 𝑚−1 and a child at 𝑚+1. The 𝑖𝑡ℎ random variable169

at scale 𝑚 is denoted as 𝑥𝑚
𝑖

and the collection of random variable at one scale is denoted by 𝑥𝑚.170

This arrangement can be thought of as a hierarchical pyramidal structure with coarser grids above171

the finer scale models (Figure 1). Such a model representing 𝑀 scales from fine to coarse can be172

represented by a product of conditional distributions173

𝜋

(
𝑥1 . . . 𝑥𝑀

)
= 𝜋

(
𝑥1

) 𝑀∏
𝑛=2

𝜋

(
𝑥𝑚 |𝑥𝑚−1

)
(3)

where 𝜋(𝑥𝑚), 𝑚 = 1 . . . 𝑀 , are MRF models at each scale, and the terms 𝜋(𝑥𝑚 |𝑥𝑚−1) represent the174

statistical interactions between different scales. For example, we have for a hierarchical model of175

two different scales:176

𝜋(𝑥1, 𝑥2) = 𝜋(𝑥1) 𝜋(𝑥2 |𝑥1) = 𝜋(𝑥2) 𝜋(𝑥1 |𝑥2) (4)

from Equation 4, the distribution of the fine scale random field indexed by 1 given a coarse scale177

field indexed by 2 is given by178

𝜋(𝑥1 |𝑥2) = 𝜋(𝑥1, 𝑥2)
𝜋(𝑥2)

=
𝜋(𝑥1)𝜋(𝑥2 |𝑥1)

𝜋(𝑥2)
∝ 𝜋(𝑥1)𝜋(𝑥2 |𝑥1). (5)
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In Equation 5, 𝜋(𝑥1) is the joint in-scale spatial distribution of 𝑥1 the fine scale process repre-179

sented by a GMRF, and 𝜋(𝑥2 |𝑥1) represents the links between the scales. If we consider models180

where only successive scales are linked then the information matrix L associated with this hierar-181

chical/pyramidal structure can be represented by a sparse matrix (Choi et al. 2010). As an example,182

for model with 4 levels, the information matrix is:183

L =

©­­­­­­­­­­«

L11 L12

L21 L22 L23

L32 L33 L34

L43 L44

ª®®®®®®®®®®¬
(6)

Here L𝑚𝑚 is the in-scale matrix and L𝑚,𝑚+1 = L𝑇
𝑚+1,𝑚 are matrices connecting the different184

scales. We model both in-scale joint spatial distribution and the scale to scale transitions with185

sparse Markov structures as described below.186

c. GMRF models for in-scale conditional distribution187

Two models are commonly used to represent the information matrix or the inverse of the back-188

ground error covariance matrix in ocean data assimilation applications (Chin et al. 1999; Srinivasan189

et al. 2022). The first one is a first order random walk or the thin-membrane model where each190

node is modeled close to its cardinal neighbors (Laplacian stencil). Denoting the set of neighbors191

of 𝑥𝑚 (𝑖) as 𝛿𝑖, the conditional distribution can be written as:192

𝜋(𝑥𝑚) ∝ exp

(
−

𝑁𝑚∑︁
𝑖=1

∑︁
𝑗∈𝛿𝑖

𝛼𝑚
𝑖 𝑗 (𝑥𝑚𝑖 − 𝑥𝑚𝑗 )2

)
∝ exp

(
−x𝑚𝑇L𝑡𝑚

𝑚𝑚x𝑚
)

(7)

where 𝑁𝑚 is the total number of grid points or nodes at level 𝑚, 𝛼𝑖 𝑗 is a parameter related193

to error variances and in this model controls how strongly the model penalizes the gradient by194
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minimizing the differences between the neighbors. L𝑡𝑚
𝑚𝑚 is the information matrix at scale 𝑚 with195

the superscript 𝑡𝑚 indicating the thin-membrane model and L𝑖 𝑗 = 0 for 𝑖 ∉ 𝛿𝑖, L𝑖 𝑗 = −𝛼𝑚
𝑖 𝑗

for 𝑖 ∈ 𝛿𝑖196

and L𝑖𝑖 = 𝛼𝑚
𝑖𝑖
|𝛿𝑖 | = 1

(𝛽𝑚
𝑖
)2 where 𝛽𝑚

𝑖
is the spatially varying background error standard deviation at197

each scale. The elements of L in this case is a scaled version of the negative Laplacian of the198

underlying continuous field.199

A second order random walk model where each node is modeled to be close to the average of its200

neighbors, also referred to as the thin-plate model, is similarly defined:201

𝜋(𝑥𝑚) ∝ exp

(
−

𝑁𝑚∑︁
𝑖=1

∑︁
𝑗∈𝛿𝑖

𝛼𝑚
𝑖 𝑗 (𝑥𝑚𝑖 − 1

|𝛿𝑖 |
∑︁
𝑗∈𝛿𝑖

𝑥𝑚𝑗 )2

)
∝ exp

(
−x𝑚𝑇L𝑡 𝑝

𝑚𝑚x𝑚
)

(8)

where, as before 𝑁𝑚 is the total number of grid points or nodes at level 𝑚, 𝛼𝑖 𝑗 is again related202

related to error variances but in this second order model it controls how strongly curvature is203

penalized and L𝑡 𝑝
𝑚𝑚 is the associated information matrix at scale 𝑚 and superscript 𝑡 𝑝 indicates the204

thin plate model and as before and L𝑖 𝑗 = 0 for 𝑖 ∉ 𝛿𝑖, L𝑖 𝑗 = −𝛼𝑚
𝑖 𝑗

for 𝑖 ∈ 𝛿𝑖 and L𝑖𝑖 = 𝛼𝑚
𝑖𝑖
|𝛿𝑖 | = 1

(𝛽𝑚
𝑖
)2205

where 𝛽𝑚
𝑖

is the spatially varying background error standard deviation at each scale. The elements206

of L in this case is a scaled version of the negative biharmonic operator of the underlying continuous207

field.208

Therefore, in both cases the error vector at each scale 𝑚 is defined by a regression using a small209

set of neighbors at the same scale and the resulting information matrices, L𝑡𝑚
𝑚𝑚 and L𝑡 𝑝

𝑚𝑚 are sparse210

and banded as they are built using either first or second order numerical difference operators. As211

mentioned before, the correlation scales implied by these operators are grid-dependent and will be212

discussed in the subsequent sections.213
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d. A Stochastic Link Model Between Different Scales214

Consider two random fields at different resolutions to be linked so that the components of the215

coarse field will depend stochastically on the components of the finer grids within the coarser grid.216

A Gaussian stochastic model for the transformation can then be written as:217

x𝑚𝑖 = 𝐹 (𝑥𝑚−1
𝑖 , 𝑖 = 1 . . . 𝑥𝑚−1

𝑛 ) +𝛾𝑚 (9)

where 𝐹 is a linear or non-linear transformation function, 𝑛𝑚−1 is the number of fine grid nodes218

that are direct children of the parent grid at scale 𝑚 and 𝛾𝑚 is Gaussian distributed error that219

represents the uncertainty in the transformation to the coarse scale. A simple linear averaging220

model represents the parent node in the hierarchical structure as a coarse representation of its221

children. Just as was done for the ”in-scale” model, we can simply impose the condition that the222

parent node is close to its children. Denoting the children of 𝑥𝑚
𝑖

by 𝛿𝑐𝑖, the link between the parent223

and child scales is given by:224

𝜋(𝑥𝑚 |𝑥𝑚−1) ∝ exp

(
−

𝑁𝑚∑︁
𝑖=1

∑︁
𝑗∈𝛿𝑐𝑖

𝛾𝑚𝑖 𝑗 (𝑥𝑚𝑖 − 𝑥𝑚−1
𝑗 )2

)
(10)

∝ exp
(
−x𝑚−1𝑇L𝑇

𝑚,𝑚−1L𝑚𝑚L𝑚,𝑚−1x𝑚−1
)

(11)

the parameter 𝛾𝑚
𝑖 𝑗

determines how severely we penalize the differences between the value at a225

node at scale 𝑚 and the value at each of its children at scale 𝑚 +1. L𝑚,𝑚−1 is a 𝑁𝑚𝑥𝑁𝑚−1 matrix226

representing scale to scale transitions and by the above modeling assumption is sparse with entries227

corresponding to parent-child pairs being −1
|𝛿𝑐𝑖 | and all others zero, further L𝑚,𝑚−1 = L𝑇

𝑚−1,𝑚.228

A potential problem is the loss of Markovianity in the resolution transformation operation229

Lakshmanan and Derrin (1993). In general, resolution transformation might require approximation230

of the process at the coarse level by a different Markov random field with potentially different231
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neighborhood. We however retain the same neighborhood structure. Although this might be less232

than optimal solution, from our experience and that of others (Lee et al. 2000) it does not appear to233

impact the results significantly. We mention in passing that several approaches to address the loss of234

Markovianity in resolution transformations have been proposed such as the Covariance Invariance235

Approximation (Lakshmanan and Derrin 1993), the use of conditional covariance (Choi et al.236

2010) or the technique of Krishnamachari and Chellappa (1997) to approximate GMRFs from237

non-Markov fields. These approaches provide a starting point to address this issue in further238

developments using this methodology.239

e. Correlation scales240

To get an idea of the correlation scales implied by the different models, we use a one-dimensional241

process on a grid of size 128. We first examine the correlation scales implied by the in-scale GMRF242

models in this grid. The information matrices are nearly singular, so a regularization term 𝜖 𝐼, with243

𝜖 = 0.1 was added to these matrices before inverting them. The correlation plots in Figure 2244

show that the thin membrane model is similar to an exponential correlation model. It puts more245

weight at the central grid point with correlations going to zero at roughly 10 grid points. For the246

thin-plate model, the initial decrease is not as rapid as the thin-membrane model but overall the247

correlations go to zero faster than the thin-membrane model. Given that both models do not have248

significant correlations beyond order of 𝑂 (10) grid points, it is clear that such models will have249

problems representing meso and larger-scale correlations in fine-resolution ocean model grids(< 5250

km at mid-latitudes) but will be appropriate to capture mesoscale processes in coarser resolution251

model grids of 10 km or higher grid spacing. The impact of the multi-resolution methodology can252

be assessed by using progressively coarser grids of 64,32,16 points respectively and transforming253

the correlations to the fine grid of 128 points.254
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The multi-resolution approach incorporating progressively coarser grids in the hierarchy is able to255

capture longer-range correlations as shown in Figure 2. Including a 16 points grid in the hierarchy256

more than doubles the correlation scales with both type of ”in-scale” models while the other coarse257

grids of 32 and 64 points increase the correlation scales to a lesser extent. This suggests that the258

grids in the hierarchy can be chosen to match the desired correlation scales. Further, the variance259

related parameters 𝛼 and 𝛾 in Equations 7, 8, and 10 can be specified as required to obtain a target260

covariance for the fine grid models. For example, we can decrease 𝛼𝑚 and 𝛾𝑚 by a factor of 4 as we261

move from a finer scale to its parent since the spatial distance between a pair of neighboring nodes262

at scale 𝑚 is twice the corresponding distance at scale 𝑚+1 and since our formulation involves the263

squares of differences (Equations 7 and 8).264

f. Multi-resolution analysis265

Computing optimal estimates for the hierarchical graph representing the multi-resolution model266

is equivalent to solving a linear system Lx̂ = z where L is as in Equation 6 and z is the information267

vector (Choi et al. 2010). The L matrix, by construction, can be decomposed as a sum of in-268

scale information matrices and scale-to-scale transition matrices corresponding to the hierarchical269

structure. We can alternate between an in-scale analysis for each resolution and scale-to-scale270

transitions in a multi-grid like approach for efficiently computing the analysis. For the in-scale271

analysis, we have, x𝑚, a collection of Gaussian distributed random variables: x𝑚 ∼ N(0, 𝐿−1
𝑚 )272

where L𝑚 is the in-scale information matrix for the given scale. Given a set of measurements273

y = Hx+ 𝜈 where H is a linearized observation operator and 𝜈 is zero-mean Gaussian distributed274

observation error vector with a diagonal covariance R. The maximum a posteriori (MAP) estimate275
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x̂𝑚, equivalent to the mean of the posterior distribution is:276

x̂𝑚 = argmax
𝑥𝑚

𝑝(x𝑚 |y) = E[x𝑚 |y] = (L𝑚 +H𝑇R−1H)−1)z (12)

where the information vector is z = R−1y. We start at the finest resolution, compute an analysis277

and then proceed on a fine-to-coarse sweep computing level transitions with L𝑚,𝑚−1x𝑚−1 products.278

After we reach the coarsest node, a downward coarse-to-fine smoothing step is executed. The279

analysis at any level, 𝑚, at downward pass ,𝑛, can be represented as:280

x̂𝑑𝑛𝑚 = L−1
𝑚𝑚 (z𝑚 −L𝑚,𝑚+1x𝑑𝑛𝑚+1 −L𝑚,𝑚−1x𝑢(𝑛−1)

𝑚−1 ) (13)

where the superscripts 𝑑 and 𝑢 indicate downward and upward passes, respectively. A similar281

expression is used for the upward pass. Since the different scales are statistically connected to282

each other, the changes at finer scales affect the nodes at coarser scales and vice-versa. Therefore,283

we need to perform the upward and downward passes a few times before the iterative inference284

algorithm converges. Typically, one or two iterations are sufficient for convergence. In situations285

where the child grids cover non-overlapping portions of the parent grid, as is usually the case in286

nested models, the analysis can be computed directly with a single upward and downward pass in287

a scale recursive fashion (Willsky 2002). The first pass moves upward from finer grids, merging288

analysis from each of the children into the parent grid and performing a second update at each289

parent node above the finest grids. The second pass starts at the coarsest node and moves downward290

to progressively finer scales, updating each node with smoothing information from coarser scale291

nodes. It is a generalization of the Rauch-Tung-Striebel smoother(Rauch et al. 1965) used to292

estimate the states of time series models when scale takes the role of time. Further, computational293

saving can be achieved by approximating the scale-to-scale transitions with x𝑚 = 𝐴(𝑚)x𝑚−1+𝛾(𝑚)294

and x𝑚−1 = 𝐹 (𝑚)x𝑚 + 𝛾(𝑚). Where 𝐴 and 𝐹 matrices are regular prolongation and restriction295

operators used in multi-grid applications. The 𝛾(𝑚) are zero mean Gaussian random errors in296

15



transformation from one resolution to another. The statistics of these errors are derived from model297

runs at different resolution after using the prolongation or restriction operators.298

3. Illustrative Applications299

In this section we illustrate the above methodology using two examples. The first is a simple 1d300

identical twin experiment which is then followed by a example with a set of realistic nested models301

for a regional domain.302

a. Illustration with an Order One Auto-Regressive (𝐴𝑅1) Process303

We consider a stationary time series given by the standard first-order difference equation x𝑛+1 =304

𝛼x𝑛 +𝜔 with the value of 𝛼 taken as 0.9 (Figure 3). The variance of this process is normalized305

to 1 so that the variance of 𝜔, a white noise process, is (1−𝛼2). The sample is generated over a306

grid of 𝑁 = 128 locations. The measurements of x𝑛 are sampled using the measurement process307

y𝑛 = x𝑛+𝜈𝑛 where the variance in 𝜈 is 𝑅, so that the SNR is 𝑅1/2. To represent patchy high resolution308

observations we sample once every 2 points in the first and last 32 points from the sample and once309

every 4 points in the middle to represent low resolution observations. We consider three cases310

to reconstruct the sample path from the measurements, a standard analysis with short correlation311

scales of 2 points, a large correlation scale of 6 points and then a multi-resolution case where312

we implement the algorithm of the previous section. For the standard cases we use the squared313

exponential correlation model, while for the multi resolution version we define a GMRF on a fine314

grid at the sample resolution and a coarse grid at one fourth resolution of the fine grid or 32 points.315

As seen from Figure 3, the standard analysis with short decorrelation scale fits the observations316

better in regions with high density of measurements while performance falls in the middle where317

only coarse resolution observations are available. The analysis with longer decorrelation scale318
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produces a much smoother reconstruction which is better in the middle than in the edges where319

high resolution observations are not used advantageously. In contrast to either of these approaches,320

the multi-resolution analysis results in significantly better reconstruction than either of the standard321

analysis. Here, the coarse data used in the example of Figure 3 are of 4-point averages of the322

fine-level process x corrupted with noise. As expected, the results from the standard analysis cases323

of short and long decorrelation scales show that the shorter decorrelation scale imposes a strong324

locality while a longer decorrelation scales serves to provide a measure of regularity or smoothness325

to the analysis. An analysis method that provides a optimal combination of these properties is326

likely to be better and this is what is seen in the multi-resolution analysis. The interpolation in the327

fine-grid preserves locality while information from the coarse data provides smoothing information328

that removes offset errors in regions where noisy fine scale data are available. The results also329

suggest that representativity errors in observations can be mitigated by the two pass algorithm.330

Observations can be assimilated into the model grid that has similar resolution as the data and the331

two pass algorithm can then be used to spread the increments to other models.332

b. Nested models of the Intra-American Seas (IAS)333

We extend the analysis of the previous subsection to a multi-resolution modeling system of334

the IAS region consisting of 1/4◦ , 1/16◦ and 1/32◦ resolution models. As before, we examine335

the impact of different correlation scales implicitly defined by GMRF parameterizations defined336

on each model grid (referred here as single scale) and then compare it with the multi-resolution337

analysis. For these experiments, the HYCOM model is configured for the region between 99𝑜W338

to 56𝑜W and 7𝑜N to 32𝑜N as shown in the top left panel of Figure 4. Bathymetry for the models339

were derived from the ETOPO dataset, the 1/32◦ bathymetry was first generated by smoothing the340

raw data two times and then further smoothed and sub-sampled to the 1/16◦ and the 1/4◦ grid to341
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make bathymetry consistent between the models. The surface boundary conditions were derived342

from the ERA 5 reanalysis, while lateral boundary conditions were derived from the Mercator343

operational model and provided every 3 days. Further model configuration details are provided in344

section 4.345

The model runs were initialized with the Mercator model state on 2017/12/01 and assimilated346

SLA data from all available altimeter platforms for 60 days(Figure 4). Additionally, SST and347

ARGO temperature and salinity profiles were also assimilated for this time period but we focus348

on the SSH field since the impact of the different correlation scales are manifested more visibly349

in the SSH reconstructions. Several experiments were run to examine the impact of single scale350

and the multi-resolution analysis (Table 1). For the single scale analysis, the models were run351

independently first with each model assimilating data with an equally weighted combination of352

thin membrane and thin plate GMRF models. This combination produces better results than353

either model by themselves. In particular, the bulls-eye type of artifacts in the analysis when354

using the thin membrane model is mitigated while simultaneously increasing the correlation scales355

associated with the thin plate model. This reason for this is clear from the correlation decays in356

Figure 2. These runs were then followed by a second run where the models were linked by the357

multi-resolution analysis and each using the weighted single scale combination described above.358

For these experiments, simple block averaging and interpolation were used to transition between359

the nested models.360

We compare snapshots of SSH (ADT) from AVISO for 20180131 (day 60 after initialization) with361

model derived SSH (Figure 4 top panel) and time series of RMS innovations(Figure 6) computed362

with respect to along track data for each experiment. In general there is a good qualitative agreement363

between the mesoscale features in all the model runs and AVISO product in the Caribbean Sea364

and the Atlantic portion of the domain. The main differences between the model runs are in the365

18



depiction of the Loop Current (LC) and the associated cyclonic frontal eddies, two in the eastern366

flank and two in the western flank of the LC as seen in the AVISO product. The snapshots from367

the 1/4◦ (second row in Figure 4), for both single scale and multi-resolution analysis, depict the368

LC and the cyclonic eddies almost identically. The major difference between these model runs369

and the AVISO product is the weak cyclonic circulation in the western flank of the LC instead370

of the two well defined smaller cyclonic eddies visible in the AVISO product. The correlation371

scales implied by the GMRF defined on the 1/4◦ grid is adequate for SSH reconstruction similar372

to AVISO maps. In contrast to the 1/4◦ model, there are significant differences between the runs373

with single scale and multi resolution analysis in the case of 1/16◦ and 1/32◦ models (last two rows374

in Figure 4). The single scale runs depict a smaller separated eddy to the north of the main LC,375

particularly so in the case of the 1/32◦ model. However, both runs with the 1/16◦ depict smaller376

scale cyclonic features in the western flank and on top of the LC. The multi-resolution analysis377

results in a better qualitative match of the 1/16◦ and 1/32◦ models with the AVISO product. The378

smoothing pass from the 1/4◦ grid to the 1/16◦ and 1/32◦ grids adds larger scale information379

and better reconstructs the LC and the cyclonic features in the eastern flank of the LC bringing380

it closer to both AVISO depiction. The filtering step has added some small scale features to the381

1/4◦ particularly evident in the western flank of the LC and the Caribbean Sea. The increments382

for SLA and temperature for the single scale and multi-resolution analysis (Figure 5) clearly show383

the smoothing effects in the multi-resolution analysis. Innovations are the lowest for the multi-384

resolution runs for both grids among all experiments (Figure 6). Overall the multi-resolution385

analysis produces both qualitatively and quantitatively consistent results across scales.386

To further examine the impact of the multi-resolution analysis on transferring information across387

scales a second set of experiments were done with subsampled and localized observations. To388

generate the subsampled data one out every 40 points along each altimeter track was retained (Figure389
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7, top left panel) while the localized observations were generated by restricting the SLA data to the390

89-83W and 23-29N to the LC portion of the of the IAS domain (Figure 7, top right panel). For391

this experiment, only the 1/4◦ and 1/16◦ were used and both models were first run independently392

assimilating subsampled SLA and localized SLA (and other observations) with single scale GMRF393

parameterization and these are compared to the multi-resolution run assimilating the subsampled394

data only in the 1/4◦ grid and the localized patchy data only into the 1/16◦ grid.395

Snapshots of the model SSH from both models assimilating the subsampled data (middle row of396

Figure 7) show that the data are too coarse to reconstruct the SSH filed adequately as compared397

to the AVISO SSH snapshot (upper right panel Figure 7). Both the LC and the frontal eddies are398

not well represented in these runs. As can be expected from the results of the previous section, the399

single scale 1/4◦ grid does a better reconstruction with lower RMS innovations than the single scale400

1/16◦ grid but RMS innovations (Figure 8) are significantly higher than the full data case(Figure401

6). In the case of localized observations, the SSH reconstructions by both models in regions where402

data is available is not accurate compared to the full data case and the errors are even larger for403

regions with no data. However, the multi-resolution run assimilating local observations in the404

1/16◦ grid and the subsampled data in the 1/4◦ grid is able to reconstruct the SSH field accurately405

at both resolutions. The LC and frontal eddies are in the right locations in both models and RMS406

errors (Figure 8) are significantly reduced compared to the single model subsampled and localized407

data cases. The filtering step of the multi-resolution analysis brings smaller scale information from408

the high-resolution observations and is essential for reconstruction the LC and the frontal eddies409

in the coarse grid. The smoothing step on the other hand adds larger scale information to the410

high-resolution details available in the 1/16◦ . The net result again is a consistent estimate across411

both models. The upshot of the above analysis is that the multi-resolution analysis is a practical412

way to address the regularity vs locality trade off that is inherent in any data assimilative system.413
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Coarse (fine) resolution observations can be assimilated into coarse (fine) models and the two pass414

update scheme can then be used to distribute the impact of the observations consistently to all the415

models in the nested system.416

4. Global Multi-Resolution Data Assimilation System417

We now extend the multi-resolution analysis to a global scale system consisting of a coarse418

resolution model with several high resolution nest for areas of interest (Figure 9). One of our419

goals in implementing the multi-resolution analysis system is to simultaneously address the issues420

related to correction of large-scale biases, better representation of interannual/seasonal variability421

and better control of mesoscale activity. Therefore, we implement models at two resolutions, a422

global 1/4◦ model is used to control larger scale errors and biases and to reconstruct the large scale423

variability while 1/16◦ models are used to depict and constrain mesoscale activity over four regions424

in the Atlantic and Indian Ocean namely, the Intra American Seas (IAS), East Africa (EFA), Brazil425

Region (BRS) and South Africa (TSA). In this setup, we have a two level pyramid with the global426

model at the top level and the four regional models at the lower level level of the pyramid.427

a. Model configuration and implementation details428

At all levels, we use the HYbrid Coordinate Ocean Model (HYCOM, http://hycom.org) code, a429

circulation model with Lagrangian vertical coordinates that is widely used by the oceanographic430

community (Bleck 2002; Chassignet et al. 2003). Our implementation of HYCOM is similar to431

configurations used in other HYCOM based operation centers such as NRL and NCEP (Chassignet432

et al. 2009). The model is configured with 32 hybrid layers with potential densities referenced to433

2000db. The model bathymetry is a combination of ETOPO1 and GEBCO products with local434

corrections in the Indian Ocean, Gulf of Mexico and Brazil current regions. Surface atmospheric435
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forcing is derived from the ECMWF Reanalysis v5 (ERA5) dataset (Hersbach et al. 2018) and436

consists of three hourly fields of air temperature and specific humidity at 2 m, surface net downward437

and long and shortwave radiation, precipitation and 10 m wind components. The atmospheric438

radiative fluxes are scaled using CERES energy balanced and filled gridded product (Kato et al.439

2018). Monthly climatological river discharge is used to specify a virtual salinity flux to include the440

effects of river inflow. A combination of Laplacian and bi-harmonic mixing is used for horizontal441

momentum diffusion while a bi-harmonic formulation is used for horizontal thickness diffusion.442

These are specified with diffusion velocities of magnitude 0.003 m/s for the Laplacian term and443

0.02 m/s for the bi-harmonic mixing terms, respectively. The K-Profile Parameterization (KPP,444

Large et al. (1994)) is used for vertical mixing with default values. Finally, a simple thermodynamic445

energy-loan model is used for heat balance in regions with ice in the global model. The models at446

each level of the tree are one way nested within the coarse model at a level above.447

Remotely sensed sea level anomalies (SLA) and SST as well as in-situ temperature/salinity448

(T/S) profiles from the ARGO program are the backbone of the system and thus are systematically449

assimilated in all nested levels (Figure 10). Along track SLA data of 7 km nominal resolution from450

six altimeters, Jason-3, Cryosat, Sentinel-3a and Sentinel-3b, Altika and HY-2B are sampled from451

a 7 day window (±3 days) centered on the analysis data are pooled together and assimilated daily452

(data coverage for a typical day from these altimeters is shown in Figure 9). A reference Mean453

Dynamic Topography (MDT) based on Centre National d’Etudes Spatiales–Collecte Localisation454

Satellites 18 MDT (Mulet et al. 2021) is added to the anomalies to convert the anomaly fields into455

the Sea surface Height (SSH) fields. For the altimeters used in this experiment, the data provider,456

CLS, suggests instrument errors ranging from 2 cm to 4 cm. However, we used a constant 7457

cm error for the altimeter data; this is slightly on the higher side than instrument accuracy but458

compensates for unknown errors in MDT in a crude way for this demonstration experiment. For459
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SST, the system assimilates both remotely sensed data and in-situ data with observation errors460

provided by the data producers. For ARGO temperature and salinity profiles an error of 0.1◦ and461

0.05 were specified. The observation errors are inflated to give more weight to the observations462

closest to the analysis day with a Gaussian weighting scheme which smoothly sets the errors after463

10 days to climatological levels.464

In our implementation of the two-step algorithm, the two regional scale models are run first465

and data is assimilated to get a corrected state at these locations. This is then block averaged and466

merged into the coarser model grid with added uncertainty. This merged product is the prior for467

the coarser model and data is assimilated now in this coarser grid implicitly with larger correlation468

scale. The corrections estimated at large scales at the top of the tree are then transmitted back469

down the tree by simple interpolation.470

b. Evaluation of the multi-resolution system471

In this section, we present the results from an hindcast for the year 2018 using the multi-472

resolution approach detailed above. We check for consistency, quality and accuracy of the analysis473

by examining innovation statistics (rather than data residuals) since innovations represent errors474

before assimilation and thus can be considered as ccomparisons with quasi-independent data.475

Since the outputs from the system are available at multiple resolution it is important to choose476

the correct resolution to evaluate the results. At present, several gridded products derived from477

observations are available at 1/4◦ degree resolution and these products can be naturally compared478

with the global model results. Such comparisons of the global model were presented in Srinivasan479

et al. (2022), therefore, we mainly focus on the results from 1/16◦ models in regions of intense480

mesoscale activity.481
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Snapshots of SSH depictions from ARMOR3D, a multi observation global analysis product482

(Guinehut et al. 2012; Mulet et al. 2012), and the models for a typical day are shown in Figure483

11. In all cases, the mesoscale field depicted by the model is qualitatively nearly identical to the484

ARMOR3D analysis. Both small and larger cyclonic and anti-cyclonic features are well depicted485

in all four regions. SLA innovations time series are shown for the four regions in the upper486

panel of Figure 12. With the exception of the South African domain, the SLA innovation levels487

in the assimilated product are close to the specified error levels and well below the observation488

standard deviation (Figure 12). However, in the Agulhas region, the innovations while still lower489

compared to the observed standard deviation, is higher than the specified error suggesting room490

for improvement.491

The system assimilates in-situ and satellite derived SST products and similar to SLA, SST is492

well constrained over the four domains with a slightly higher innovations for the Agulhas region493

(Figure 12). Here the SST innovations are on the order of 1.0◦ but these errors are well below the494

observed standard deviation of SST in these regions.495

Vertical profiles innovation statistics for temperature and salinity for the four regions are shown496

in Figure 13. As before, the maximal innovations are seen in the Agulhas region with RMS values497

of 1.5◦ for temperature and 0.3 for salinity. In general, the regions considered here are areas of498

vigorous mesoscale activity and error levels are on the higher side of commonly presented values.499

However, time series of globally averaged error is about 0.5◦ for temperature and 0.1 for salinity500

in line with the specified observation error(Figure 14). Globally, innovations averaged over the501

(0−2000 m) water column decrease with the depth and do not exceed 0.2◦ C for temperature and502

0.03 for salinity. Between 0 and 500 m, departures from in situ observations rarely exceed 1◦ C503

and 0.2 with the exceptions of high variability regions such as the Agulhas region.504
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Data from surface drifting buoys are not assimilated, and are therefore a source of independent505

information on the consistency and performance of the system. Using instantaneous velocities at506

00Z daily from the GDS data base from NOAA-AOML, we compare the model results with the507

observed drifter velocities at 15 m depth. The spatial map of error distributions shows the decrease508

in errors over all three oceans for the hindcast compared to a companion free run (Figure 15). The509

improvements in velocities range from 5− 10%. Although these improvements are modest, they510

are reassuring since the velocity data has not been assimilated. The corrections to the tracer fields511

and pressure act to improve the unconstrained variables through the model dynamics.512

As seen in the results presented in the preceding sections, the system produces analysis that513

closely match observations and in most cases are within specified error levels. Sea level, upper514

ocean temperature, upper ocean salinity and near surface velocities match observations to within 8515

cm, 0.5◦ C, 0.2 and 0.20 m/s respectively. The error metrics that we obtain for our system here is516

similar to the metrics obtained by other global and regional ocean analysis and prediction systems517

(e.g., Oke et al., 2012, Lellouche et al., 2013; Blockley et. al., 2014).518

5. Summary and Discussion519

The goal of this paper is to introduce and demonstrate the use of a computationally efficient multi-520

resolution analysis technique for assimilating data into a global scale system of nested models. In521

this technique, the error process is modeled as a GMRF at multiple resolutions with statistical522

links between successive resolutions. This setup can be likened to a pyramid type of structure523

in which the coarse resolution models are on the top and progressively finer resolution model524

populating the lower levels. The links between variables both at a particular level and between525

successive levels are described by sparse Markov structures that allow extremely efficient analysis526

- the primary advantage of this method. The GMRF used for each resolution (level) implicitly527
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defines a correlation scale for each of the levels, resulting in longer correlation scales for coarser528

models and progressively shorter correlation scales as the resolution of the models increase. A529

multi-grid inspired two-pass analysis scheme is used to impose some measure of locality in coarse530

resolution analysis and regularity to the fine resolution analysis. The two-pass scheme starts at the531

finest resolution and executes a upscaling/filtering operation successively from fine to the coarse532

nodes. In this filtering pass, local information from observations is retained at that level and non-533

local information is transmitted to the coarser resolution/larger scale models. After completing534

the upward pass for all models, the downward pass then adds large scale increments derived from535

longer distance correlations captured at coarser models to fine resolution models as smoothing536

operation. The multi-resolution technique addresses the grid-specificity and local nature of the537

single scale GMRF analysis and produces analysis that are consistent across all models in the538

system539

In results reported here, comparisons between single scale and multi-resolution analysis showed540

a modest improvement for the coarser models (1/4◦ and 1/16◦ ) not unlike results reported by541

Muscarella et al. (2014) and Mirouze et al. (2016). Results are significantly improved in the finer542

grid of 1/32◦ resolution. This is as expected since the single-scale analysis at 1/32◦ and higher543

resolutions will be highly local and will need smoothing information for adequately depicting544

mesoscale features. On the other hand, by controlling the effect of the smoothing pass, the finer545

details such as sub-mesoscale features in the fine scale analysis can be preserved to a greater or546

lesser extent depending on the application. The multi-resolution technique provides an alternative547

means to address errors at multiple scales and can be compared with other efforts such as multi-548

scale three-dimensional variational data assimilation(Li et al. 2015; Muscarella et al. 2014) in549

which the cost function is split into large and small scale components or other approaches where550
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multiple correlation scales are used in constructing the background covariance (Martin et al. 2007;551

Mirouze et al. 2016).552

The two-way information exchange between the sub components of the nested modeling system553

presented here has aspects in common with the two way nesting technique introduced by Sheng et al.554

(2005), in that both the inner and outer models are constrained by each other. The method presented555

here can be considered as an extension of their nudging approach to a fully data assimilative556

approach.557

The multi-resolution technique was implemented in a year long hindcast experiment with a558

global scale system of nested models. Sea surface temperature, sea-level anomaly, temperature559

and salinity profiles are assimilated regularly to constrain the component models. The system560

is evaluated for consistency with respect to other depictions of the ocean state based entirely on561

observations. As seen in the results presented in the preceding sections, the system produces562

analysis that closely match observations and in most cases are within specified error levels. Sea563

level, upper ocean temperature, upper ocean salinity and near surface velocities match observations564

to within 8 cm, 0.5◦ , 0.2, and 0.20 m/s respectively. The error metrics that we obtain for our565

system here are similar to the metrics obtained by other global and regional ocean analysis and566

prediction systems (Oke et al. 2013; Lellouche et al. 2013; Blockley et al. 2014; Waters et al. 2015;567

Martin et al. 2015).568

Finally, it is pointed out that the multi-resolution analysis presented here is not limited to a569

nested modeling system where both coarse and fine resolution models are available, it can also570

be used with a one way nested model by constructing analysis grids of varying resolutions and571

then successively iterating from coarse to fine grids. As noted in Moore et al. (2019) the need572

for analysis and reanalysis with higher horizontal and vertical resolution using regional models573

will continue to increase either in a stand-alone downscaling mode or embedded within coarser574
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models. Further, responding to emerging observing platforms such as Surface Water and Ocean575

Tomography(SWOT), high resolution radiometers, and rapid sampling using in-situ probes will576

require data assimilation into models with resolution 𝑂 (1) km and finer. We believe that the577

multi-resolution analysis framework presented here provides a useful starting point to integrate578

the patchy high resolution observations and conventional observations with models of varying579

resolution to derive state estimates that are consistent across the models(scales) in a nested system.580
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Table 1. List of experiments discussed in section 3b

𝑆.𝑁𝑜 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑀𝑜𝑑𝑒𝑙 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝐴𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛

1 G04-SS 1/4◦ full resolution SLA Single Scale

2 G04-MR 1/4◦ full resolution SLA multi-resolution

3 G16-SS 1/16◦ full resolution SLA Single Scale

4 G16-MR 1/16◦ full resolution SLA multi-resolution

5 G32-SS 1/16◦ full resolution SLA Single Scale

6 G32-MR 1/16◦ full resolution SLA multi-resolution

7 G04-sub 1/4◦ subsampled SLA single scale

8 G04-Local 1/4◦ local SLA single scale

9 G16-sub 1/4◦ subsampled SLA single scale

10 G16-local 1/4◦ local SLA single scale

11 G04-MR-sub 1/4◦ subsampled + local SLA multi-resolution

12 G16-MR-sub 1/16◦ subsampled SLA + local SLA multi-resolution
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Fig. 1. A set of three nested models grids mapped onto a hierarchical graphical structure. The coarsest

resolution, 𝐺0, is at the top of the structure and finer resolutions are at progressively lower levels. Each level has

a parent and(or) a child. A parent node in this structure is a coarse representation of its four children.

747

748

749

38



Fig. 2. Correlations from the first order model (top panel) and second order model(bottom panel). The

correlations are implicitly defined by the underlying grid and decay rapidly to zero at around 10-15 grid point

distances. This implies that these models by themselves will be insufficient to capture the longer-distance

correlations particularly when used with fine-resolution models (< 10 km) resolution. The multi-resolution

correlations shown in the Figure is able to capture longer-distance correlations at coarser resolutions. Two

different combinations of multi-scale correlations are shown for different values of parameter 𝛾 in equation 6.
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Fig. 3. An 𝐴𝑅−1 process and its sampling by noisy measurements at different resolutions. The measurements

are available at high resolution at the beginning and end of the path and at every fourth sample point at the

middle of the sample path. Reconstruction of the process for two correlation scales (short and long) and using

the multi-resolution approach are shown.
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Fig. 4. A sample of the along-track SLA assimilated in the experiments and the SSH (ADT) field for 20180131

used for comparison and verification(upper panel). Snapshots of SSH for the same day from single scale and

multi resolution analysis from a 1/4◦ , 1/16◦ and 1/32◦ labeled respectively as 𝐺04, 𝐺16, and 𝐺32. The single

scale (SS) runs for each model were done with an equally weighted combination of the thin membrane and thin

plate models. The multi-resolution (MR) runs are qualitatively consistent in the SSH reconstruction across all

resolutions unlike the single scale reconstructions.
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Fig. 5. Surface height and temperature increments for the 1/16◦ model calculated with single scale and multi

resolution analyses for the same initial conditions and observations.
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Fig. 6. RMS error in SLA from experiments discussed in section 3b and listed in Table 1. In all cases,

high resolution along track data over the entire IAS domain were used to calculate the RMS errors. The multi-

resolution analysis results in the lowest RMS errors for all models when assimilating high resolution full domain

observations
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Fig. 7. A sample of the subsampled SLA dataset retaining one out of every 40 along track points and

local high resolution observations in the LC vicinity (upper panel). Snapshots from experiements assimilating

only subsampled observations and experiments assimilating only high resolution observations (middle panels)

and from the multi-resolution analysis (bottom panel). In the latter case, the subsampled observations were

assimilated into the 1/4◦ and high resolution local observations were assimilated into the 1/16◦ .
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Fig. 8. RMS error in SLA from subsampling and local observations experiments discussed in section 3b and

listed in Table 1. In all cases, high resolution along track data over the entire IAS domain were used to calculate

the RMS errors. The multi-resolution analysis results in the lowest RMS errors for all models when assimilating

subsampled observations in the 1/4◦ and local observations into the 1/16◦ model
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Fig. 9. The models in the multi-resolution system. These include a coarse global (1/4◦ ) grid and four regional

scale models of 1/16◦ for Intra American Seas (IAS), East Africa (EFA), Brazil Region (BRS) and South Africa

(TSA)
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Fig. 10. A sample of the observations assimilated on any given day. Upper panel shows remotely sensed

along-track sea level anomalies (SLA) from multiple altimeters. In-situ Temperature/Salinity (T/S) profiles from

the ARGO program are shown in the bottom panel in magenta color and mooring locations are shown in black
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Fig. 11. Snapshots of the surface height fields from ARMOR3D an observation based product for all regions

and corresponding surface height fields from the models. As can be seen there is excellent agreement in the

location and shape of various mesoscale features in all regions.
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Fig. 12. Time series of averaged innovations in SLA (top) and SST (bottom). In all cases the innovations are

well within the observation standard deviations.
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Fig. 13. Vertical distribution of averaged innovations in Temperature(top) and Salinity (bottom). The dashed

lines are biases and solid lines are RMS innovations
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Fig. 14. Globally averaged innovations in temperature and salinity for the top 2000 m. Model forecast and

ARGO profiles were interpolated to 42 standard levels (0-2000m) for this comparison
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Fig. 15. Spatial map of the errors in current magnitude relative to the GDS drifter dataset. Hindcast is in the

top panel and a (control) free run is in the bottom panel.
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