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12 ABSTRACT

13 Turbulent mixing in the ocean surface boundary layer is unresolved in ocean models and is
14  parameterized using formulas based on physics with coefficients estimated empirically. In this
15 study, deep neural networks (DNNs) are employed to learn turbulent mixing characteristics in the
16  ocean surface boundary layer from turbulence-resolving large eddy simulations (LES) driven by
17  diverse wind, wave, and buoyancy conditions over the Gulf of Mexico (GOM). The extracted
18  knowledge is used to constrain parameters in the K-profile parameterization (KPP) scheme,

19  which is widely adopted in ocean models. The DNN-informed KPP is implemented into the

20  Hybrid Coordinate Ocean Model (HY COM) to simulate the evolution of oceanic properties in
21 the GOM, and its performance is evaluated against both observations and HY COM simulations
22  using the original KPP. Results indicate that the DNN-informed KPP improves sea surface

23  temperature (SST) simulations, particularly in winter, and effectively mitigates the warm SST
24 biases in the GOM simulated using the original KPP. Additionally, it enhances the accuracy of
25  the simulated mixed layer depth (MLD), better capturing its magnitude, distribution, and

26  variability. Sensitivity experiments demonstrate that the inclusion of ocean surface waves in the

27  DNN input is essential for optimal model performance.
28

29  Keywords: Turbulent mixing; K-profile parameterization; Neural network; Sea surface

30 temperature; Mixed layer depth; HY COM

31 1. Introduction

32 The Ocean Surface Boundary Layer (OSBL), typically extending from a few tens to

33  hundreds of meters below the ocean surface, is a critical zone dominated by various turbulent

34  mixing processes such as wind-driven shear, buoyancy forcing, and wave-induced Langmuir

35  turbulence (Belcher et al. 2012; Liang et al. 2013; D'Asaro 2014; Fox-Kemper et al. 2022).

36  These mixing processes play a vital role in regulating air-sea exchanges of heat, momentum, and
37  gases, thereby influencing the climate system and ocean environment (Toole 1998; McPhee

38  2008). Turbulent mixing in the OSBL also facilitates the entrainment of colder, nutrient-rich

39  water from the ocean interior into the surface layer, affecting not only the thermal structure of the
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upper ocean but also biological productivity and the marine carbon cycle (e.g., Gargett and
Marra 2002; Schmittner et al. 2005; Lévy et al. 2013; Smith et al. 2018). Due to its small spatial
scale and highly dynamic nature, explicitly resolving turbulent mixing in global ocean models
remains computationally prohibitive in the foreseeable future (Fox-Kemper et al. 2019). As a
result, turbulent mixing in the OSBL must be represented through subgrid-scale
parameterizations, and the fidelity of these schemes has a profound impact on the accuracy of

ocean model simulations (e.g., Large et al. 1994; McPhee 1999).

The development of mixing parameterizations often relies on high-fidelity simulations of
turbulent mixing under controlled forcing conditions produced by turbulence-resolving models
such as Large Eddy Simulations (LES). While observational data were directly utilized to
develop OSBL mixing parameterization in early studies (e.g., Large et al. 1994), they are
impacted by submesoscale, mesoscale and other larger-scale processes (Thompson et al. 2016),
making them less suitable than turbulence-resolving simulations for this purpose. Properties
extracted from LES solutions have been widely used to derive or calibrate structure functions in
parameterization schemes (e.g., Skyllingstad et al. 1996; Large and Gent 1999; Harcourt and
D'Asaro 2008; Noh et al. 2016). These schemes are then typically tested in one-dimensional (1D)
ocean models, such as General Ocean Turbulence Model (GOTM), which serve as efficient
testbeds for structural comparisons and sensitivity analysis (e.g., He and Chen 2011; Li et al.
2019; George et al. 2025; Wang et al. 2025). Ultimately, parameterization schemes must be
implemented into three-dimensional ocean models, where their impacts on key state variables,
such as SST and MLD, can be rigorously evaluated against observational datasets (e.g., Li et al.

2016; Ali et al. 2019; Sane et al. 2023; Sane et al. 2025).

A variety of vertical mixing parameterization schemes have been developed to represent
turbulent mixing processes in the OSBL in realistic ocean models (Kantha and Clayson 1994;
Large et al. 1994; Umlauf and Burchard 2003; Reichl and Hallberg 2018), yet they remain
inaccurate under certain conditions, as some physical processes modulating turbulent mixing
were not originally considered and included in the parameterizations. One of such examples is
the effect of non-breaking surface waves and the associated Langmuir turbulence, which LES
simulations (e.g., Skyllingstad et al. 1996; McWilliams et al. 1997; McWilliams and Sullivan
2000) and observations (e.g., Weller and Price 1988; D’Asaro and Dairiki 1997) show can
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elevate turbulent mixing intensity, deepening MLDs and enhancing entrainment fluxes.
However, when wind and wave are misaligned, turbulent mixing can be suppressed (e.g., Van

Roekel et al. 2012).

Attempts have been made by various studies to incorporate non-breaking wave effects into
baseline parameterization schemes (e.g., Qiao et al. 2004; Harcourt 2015; Li and Fox-Kemper
2017; Reichl and Li 2019; Wang et al. 2025). Despite differences in implementation, most
studies report enhanced mixing, deeper MLDs, and cooler SSTs compared to baseline runs
without wave effects (e.g., Li et al. 2019; Li et al. 2021; Yuan et al. 2024). In addition, no

consensus has been reached on the optimal approach (Li et al. 2019).

Wave-informed KPP schemes have been incorporated into three-dimensional (3D) ocean
models and evaluated against both baseline models without wave effects and observational data.
The outcomes using specific schemes vary depending on the specific wave-informed scheme,
geographic region and season. For example, Li et al. (2016) found that incorporating both wave-
enhanced velocity scales and unresolved shear leads to improved MLD representation in both
summer and winter in the Southern Ocean. Ali et al. (2019) reported that the wave effect tends to
have a much stronger influence in winter than in summer across six wave-informed schemes for
the North Atlantic Ocean, except for the Li and Fox-Kemper (2017) scheme, which incorporates
wave enhanced unresolved shear and the surface layer averaged Langmuir number. It has been
also shown that some of the schemes tends to systematically overestimate MLDs across much of
the global ocean under various conditions (e.g., Fan and Griffies 2014; Li et al. 2016; Ali et al.
2019). In certain regions and seasons, such as at mid-latitudes in northern hemisphere in winter,
simulated MLDs may have already been overestimated in baseline models (Fan and Griffies
2014; Li et al. 2016; Ali et al. 2019). In such cases, further adding wave enhancement can
degrades MLD and SST simulations.

Further improving traditional turbulent mixing parameterization schemes is challenging. In
recent years, there has been a growing interest in leveraging machine learning techniques to
address this issue, particularly deep neural networks (DNNs). Some studies have used DNNs to
directly predict turbulent fluxes (e.g., Gentine et al. 2018; Rasp et al. 2018; Liang et al. 2022;

Iyer et al. 2025), although numerical stability over long integration periods remains a concern
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(Brenowitz et al. 2020; Rasp 2020; Chattopadhyay and Hassanzadeh 2023). Other approaches
have used DNNSs to predict key parameters within well-established schemes while keeping the

remainder of the parameterization structure unchanged (e.g., Reichl and Hallberg 2018; Zhu et

al. 2022; Sane et al. 2023).

Yuan et al. (2024) utilized DNNSs to predict two key uncertain factors in KPP scheme: the
enhancement factors for the velocity scale and unresolved shear. The trained DNNs were
implemented into GOTM model and compared against traditional deterministic models. Their
results show that the GOTM model with DNN informed KPP not only computational efficient
but also yields reduced errors in both sea surface temperature (SST) and mixed layer depth
(MLD). Furthermore, their results also revealed more complex, yet structured relationships
between enhancement factors and physical variables such as MLD and turbulent Langmuir

number, relationships that are not captured by traditional wave-informed deterministic schemes.

This study builds upon and further extends Yuan et al. (2024)’s work by adopting their
approach of using deep neural networks (DNNs) to predict the two enhancement factors in the
KPP scheme. However, instead of testing the method in a one-dimensional model, the well-tuned
DNN s are integrated into the three-dimensional HYbrid Coordinate Ocean Model (HY COM) to
simulate the evolution of temperature, salinity, MLD and large-scale circulation in the Gulf of
Mexico (GOM). The model outputs are compared against both observational data and HYCOM
simulations using the baseline KPP scheme without wave effects, to evaluate whether the DNN-
informed KPP reduces the biases observed in the traditional parameterization and better aligns
with observations. In addition, the DNN inputs are revised to be more representative of the

broader GOM region, rather than being limited to a single fixed location as in Yuan et al. (2024).

The remainder of this paper is organized as follows: Section 2 describes the generation of
the training data for the DNNs, the configuration of the DNN models, and the implementation of
the trained DNNs into the HY COM framework. Section 3 presents the simulation results from
HYCOM, along with comparisons to observations from multiple perspectives, including SST
and MLD. Section 4 discusses the improvements achieved by HY COM simulations using DNN
over the baseline KPP, as well as the remaining challenges and areas requiring further

investigation. Finally, Section 5 provides concluding remarks.



128

129
130

131
132
133

134
135

136

137
138
139
140
141

142

143

144
145
146

147

148

2. The Neural Network Informed KPP for the GOM and its Implementation
in HYCOM

a. The KPP scheme with enhancement coefficients

This subsection provides an overview of the baseline KPP scheme, and the two key
coefficients introduced to the baseline model to account for wave effect. A more comprehensive

description can be found in Yuan et al. (2024).

In ocean models, the turbulent flux of a variable x (e.g., momentum, temperature, salinity or

other scalars), is expressed as:

- ox
w'x" = —K, (5 - Yx> (1)

Here, z is the vertical coordinate and w the vertical velocity. Overbars indicate ensemble
averages, while primes denote turbulent fluctuations. K, is the diffusivity or viscosity. ¥,
accounts for the contribution due to non-local effects that are not proportional to local gradients
only applied to scalar fluxes (e.g., temperature and salinity) and equals to zero for momentum.

In this study, only K, is modified.
In the KPP, ,p framework (Large et al. 1994), K, is given by:
Ky(0) = wy(0)hG,(0) (2)

Where h is the OSBL depth, 0 = z/h is the water depth normalized by the OSBL depth. w,
is a velocity scale determined by both surface forcing and the Monin-Obukhov similarity theory,

and G, (o) is a non-dimensional shape function.
The OSBL depth is diagnosed using the Bulk Richardson number:

Z(br - @)

(w - 2@) + U2

Riy(2) = 3)
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Where b is the buoyancy, u is the water current vector. The subscript r represents the

reference value. The effect of unresolved shear is parameterized as:

CyN(2)wy (2) 2]

Ud(z) =
Cc

(4)

Where C,, is a dimensionless constant and N (z) is the Brunt-Viséla frequency.

To account for additional physical processes that are absent (e.g., non-breaking waves) or
poorly represented (e.g., buoyancy stability) in the baseline KPP scheme (KP Py p), the KPPy p
scheme is modified by introducing two additional coefficients: the velocity scale coefficient €,
which modifies vertical mixing, and the unresolved shear coefficient 7, which modifies

entrainment at the base of the OSBL. Then, equations (1) and (4) become:
Kx(0)new = €wx(0)|h|Gy(0) (5)
UZ(Z)new = NUE(2) Lmp (6)

Here, the subscript “LMD” (Large, McWilliams and Doney) indicates the terms in the
baseline KPP scheme in Large et al. (1994), while the subscript “new’ represents terms after

modifications.

In previous studies (e.g., McWilliams and Sullivan 2000; Reichl et al. 2016; Li and Fox-
Kemper 2017), ), the two coefficients were modeled using semi-empirical equations tuned with
LES solutions of a limited set of forcing conditions and only used to quantify effects due to non-
breaking waves. In contrast, in Yuan et al. (2024) and in this study, these parameters are
predicted using DNNs trained on LES data, driven by a much broader spectrum of wind, wave,

and buoyancy conditions in the real ocean.
b. Data Generation using Large-Eddy Simulations

The DNNS are trained using solutions generated by the National Center for Atmospheric
Research large-eddy simulation model for the OSBL (NCAR-LES, Sullivan and McWilliams
2010). The NCAR-LES model has been applied to study mixing processes under various external

atmospheric forcing, turbulent mixing and entrainment enhancement due to breaking and non-
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breaking waves, mixing and entrainments associated with a frontal zone and submesoscale
instabilities, tracer dispersion driven by turbulence, and ocean response to extreme forcing such
as hurricanes (Kukulka et al. 2009; Hamlington et al. 2014; Liang et al. 2018; Yuan and Liang
2021). Turbulence-resolving models such as the NCAR-LES model offers an economical
approach to generate extensive training data sets for machine learning based parameterizations.
In this study, a suite of NCAR-LES simulations are conducted at various locations in the GOM

(Fig. 1) to generate turbulence-resolving solutions for DNN training.

Over 700 locations within the domain (Fig. 1) over water points are randomly selected to
ensure that our LES ensemble captures turbulent mixing under a wide range of meteorological,
water-column, and geographic conditions across the GOM. A 5-day LES simulation is performed
at each location with the first day of each simulation treated as spin-ups and thus discarded,
while solutions from days 2 to 5 are processed for DNN training. Each LES run corresponds to a
randomly selected distinct 5-day period. For example, the simulation at location
93.24°W, 28.78°N spans from Dec.26 2010 to Dec.30 2010, while the simulation at location
82.2°W, 18.73°N covers from Sep.22 2011 to Sep.26 2011. Altogether, these simulations span
the period of 10 years from December 26, 2010, to December 28, 2020.

Latitude

90°W 85°W

Longitude
Bathymetry (m)
B
2000 4000 6000
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Fig. 1. Map of Gulf of Mexico study region. The blue shading indicates bathymetry, with
grey contour lines at 300 meters. Black dots are the selected locations where large eddy

simulations are conducted. Land mask is shown in grey.

All LES simulations are forced by atmospheric and oceanic conditions derived from the
ERAS reanalysis (Hersbach et al. 2020), including zonal and meridional winds, net short-wave
radiation, net heat flux excluding short wave components, rates of evaporation minus
precipitation, and Stokes drift vector profiles computed from wave spectra. Initial temperature
and salinity profiles are extracted from the 41-layer HY COM+NCODA Global 1/12° Reanalysis
(GOFS 3.1). Both initial and forcing fields are interpolated to the specific spatial location and

time window of each LES run, with forcing fields provided at an hourly resolution.

While the wind stress, net heat flux excluding shortwave radiation and rates of evaporation
minus precipitation are applied only at the ocean surface, the shortwave radiation penetrates the
water column. Here, the Jerlov water type 1 (Jerlov 1976) is used to calculate the shortwave

radiation at depth z, given by:

Asw(2) = G (0) (r e*/¥1 + (1 = 1)e?/H2) (7)

qsw (0) is the net shortwave radiation at the surface, and the constants r = 0.58, u; =
0.35, u, = 23 correspond to Jerlov water type 1. In HY COM model, to avoid unrealistic heating
at the ocean floor in shallow coastal regions, HY COM redistributes the bottom-reaching
shortwave radiation throughout the water column. We apply the same adjustment in LES. The

modified shortwave radiation profile Q,,,(z) then becomes

0, z=—-—H
0@ ={o () = quu(HDVEl/H, &> ®)

with qg,, (H) being the shortwave radiation flux bottom-reaching before adjustment. This
ensures that the shortwave radiation at the seafloor is always zero, while preserving the net
shortwave radiation value at the ocean surface. The adjustment reduces Q,,(z) relative to the
original gy, (z),with larger differences in shallower waters. In deep waters, the impact of this

adjustment is negligible.
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c. Data standardization and DNN training

Feedforward deep neural networks are employed in this study. The inputs include profiles of
Brunt—Viisilé frequency squared, Stokes drift profiles in the zonal and meridional directions,
zonal and meridional wind components, net shortwave radiations, net heat fluxes excluding
shortwave components, rates of evaporation minus precipitation, latitudes, OSBL depths, and
bathymetry depths. A simplified illustration of the DNN architecture used in this work is shown
in Fig. 2. To assess the role of Stokes drift, an additional set of DNNs are trained with the same
inputs but without Stokes drift profiles, to highlight the importance of including Stokes drift
information for achieving sufficient predictive accuracy. The DNN-based KPP schemes with and

without Stokes drift profiles are referred as KPPpyy wy and KPPpyy yw, Tespectively, while

KPPpyy collectively refers to both DNN-based schemes.

Compared with Yuan et al (2024), the DNN models in this study introduce three additional
variables into the input array: the latitude to indicate effects due to Coriolis effects, the OSBL
depth to indicate the absolute depth range of input profile variables, and the bathymetry depth
indicating the data sparsity passed from HYCOM solutions to DNN models. It also replaces
temperature and salinity profiles with profiles of the Brunt-Vaisala frequency squared, to avoid
DNNs making unplausible predictions when the simulated temperature and salinity are outside

the ranges of the training data, a possibility in multi-year or multi-decadal simulations.

Three DNN models are trained to predict two scalar variables: models D,)q and D,, are used
to predict the enhancement to the unresolved shear contribution (1), while model D, is used to
predict the velocity scale coefficient (¢) in KPP formula. In shallow-water regions, h often
reaches the seafloor even when 7 = 0, resulting in a high occurrence of n = 0 in the data. To
better capture this, we adopt a two-step prediction strategy: model Dy, first predicts whether n =
0, and if not, D,, predicts the actual non-zero value of 7. For predicting 7, h from the previous
time step is included as an input. When predicting € in model D,, h at current time step is used,

as € depends directly on h at the same time step.
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Fig. 2. Conceptual framework of the modeling system. LES generates turbulence-resolving 3D
fields that are horizontally averaged and employed to train DNNs. In HYCOM runs, the model
provides profile and scalar variables as inputs to the trained DNNs, and the predicted empirical
parameters are passed back to HY COM. The information exchange between HY COM and the

DNN is implemented through the Fortran Keras Bridge (FKB).

All input variables are normalized before being fed into DNNs. Each input variable is
standardized by subtracting its mean, then divided by its standard deviation. For scalar input
variables, an additional sigmoid transformation f(x) = 1/(1 + e ™) is then applied to the
normalized value. This use of the sigmoid function is heuristic, introduced after we observed that
it improves prediction accuracy during model training. For the outputs, 7 in D, and € in D, are
transformed using a base-10 logarithm, i.e., 9,,0rm = log1o 1 and €,ym = logyo €. Data are
randomly separated into training, validation and testing datasets at a ratio of approximately 6:2:2.

To avoid spurious correlations and ensure that the datasets reflect distinct climatological
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conditions, we follow a block sampling strategy (Schultz et al, 202 1separating datasets by LES
simulations rather than by individual samples. The binary cross-entropy is used as loss function
in Dy, while the mean absolute error is used in D,, and D,.. A leaky ReLU activation, f(x) =
max (x, ax) with ¢ = 0.1, is applied in all hidden layers, and the Adam optimizer is used for

training. The DNN models are trained and tested using TensorFlow and Keras in R.

To identify the best-performing models, we evaluate architectures ranging from 1 to 10
hidden layers and from 4 up to 128 neurons in each hidden layer. Each model is trained for 1000
epochs, with the learning rate reduced by a factor of 0.1 if no improvement in validation loss is
observed over 5 consecutive epochs. Models with the lowest validation losses (for D, and D)
and the highest classification accuracy (for D;o) are selected for implementation in the HY COM
model. Configurations of the best trained DNN models are shown in Table 1. Model
performance, including training and validation losses over epochs, and the comparison between
predicted and target value distributions, is shown in Figs. S1 and S2. Offline tests confirm that
the trained models reliably capture the essential data distributions, justifying their

implementation into ocean models.

Scheme Model | Hidden layers | Neurons in each hidden layer
Dy 16
KPPpnn Nnw D, 5 8
D, 5 24
Dyo 5 4
KPPpynwy D, 3 16
D, 3 12

Table 1. Configurations of the best trained DNNs used in KPPpyy schemes.
KPPpyn nw €xcludes Stokes drift, while KPPpyy v includes it. Model D, classifies whether

the unresolved shear coefficient n equals 0. If not, model D,, is activated to predict its value.
Model D, predicts the velocity scale coefficient €.

d. The implementation of DNN informed KPP into HYCOM
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The Hybrid Coordinate Ocean Model (HYCOM, Bleck 2002; Chassignet et al. 2003;
Chassignet et al. 2009) is a three-dimensional ocean model designed to simulate the ocean's
general circulation across a wide range of spatial and temporal scales. It employs a hybrid
vertical coordinate system that combines terrain-following (sigma), isopycnic (density-
following), and fixed-depth (z-level) layers, allowing it to flexibly represent both shallow coastal
regions and the deep open ocean. HYCOM is particularly well-suited for regional and global
ocean forecasting applications, as well as climate simulations. Its vertical layering approach
enables good representation of stratification and vertical mixing processes, making it a powerful

tool for studying upper ocean dynamics and their interactions with large-scale circulation.

This study modifies the KPP related subroutines in HY COM to incorporate the use of well-
tuned DNNs for predicting 77 and €. Same as in Yuan et al. (2024), the Fortran-Keras Bridge
(FKB, Ott et al. 2020) is used to utilize weights and biases from trained DNNs to reconstruct the
network structures in HY COM. The incorporation process involves the following steps. First, the
trained weights stored in HDFS5 format files are converted into specifically organized ASCII
files. These files serve as inputs to FKB, allowing it to reconstruct the DNN architecture and
weights within the Fortran environment. Input arrays required by the DNNs, such as model state
variables, various surface forcing fields, latitudes, OSBL depths, and water depths, are read from
HYCOM, organized, and normalized according to the format expected by the DNNs. The DNN-
predicted coefficients are then de-normalized and incorporated into the KPP scheme within
HYCOM. A conceptual framework of information exchange between HY COM and DNNs
through FKB is shown in Fig. 2.

e. HYCOM model configuration

The HYCOM model domain is shown in Fig. 1. It spans from 18°N to 32°N in latitude and
from 77°W to 98°W in longitude. As shown in Fig. 1, this domain covers the entire GOM, the
northwestern Caribbean Sea, and parts of the Atlantic Ocean off the southeastern U.S. coast.

Bathymetry within the domain is derived from the 2019 version of the General Bathymetric

Chart of the Oceans (GEBCO Bathymetric Compilation Group 2019) .

The model uses a Mercator grid with 293 X 193 grids in the zonal and meridional

directions, respectively, and a horizontal resolution of the model is 1/12°. Vertically, the model
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is configured with 41 hybrid layers. The upper 83 meters of the water column consists of 14
sigma-Z layers, which are terrain-following where the seafloor depth is less than 83 meters. In
water deeper than 83 meters, layers 15 to 41 are isopycnal unless they outcrop into the near-
surface Z (fixed depth) regime. The top layer is 1 meter thick everywhere, so the model's SST is

actually the average over the top 1 m.

Three sets of HY COM simulations are conducted in this study. HY} yp, employs the KPP, p
scheme to parameterize effect due to vertical mixing in the OSBL. HYyy 1y uses the
KPPpny wy scheme, with Stokes drift profiles included in the input features are incorporated into
HYCOM to predict coefficients, n and €. HYpyy yw uses KPPpyy yyw scheme, excluding Stokes
drift information from the input arrays. HY;yp serves as a baseline control simulation, where

both 7 and € are fixed at one.

All simulations are initialized from the 3D HYCOM + NCODA Global 1/12° Reanalysis on
Jan. 1, 2001 (GLBu0.08, https://tds.hycom.org/thredds/catalogs/GLBu0.08/expt _19.1.html ) and

integrated for 22 years from year 2001 to year 2022, with the first year treated as model spin-up.
Atmospheric forcing required by HY COM is provided by the hourly Climate Forecast System
Reanalysis (CFSR) for year 2001~2010, and from the hourly Climate Forecast System Version 2
(CFSv2) for year 2011~2022. Stokes drift is one of the inputs in HYpyy y. To avoid the high
computational cost of coupled ocean-wave modeling (Li et al. 2016), Stokes drift profiles in both
zonal and meridional directions are computed offline from ERAS wave spectra (Hersbach et al.

2020). These wave forcing fields are treated as forcing by HYCOM, as in Ali et al. (2019).

3. Results

In this section, we compare simulated SSTs and MLDs with both observations and the
HY; yp model runs. We also construct regime diagrams to reveal how DNN-enhanced
modifications systematically affect SSTs and MLDs under different forcing regimes. Although
our primary goal is to demonstrate how DNNs can improve the KPP scheme’s representation of
vertical mixing, it is important to note that biases may stem from other processes as well, such as

the misrepresentation of large-scale horizontal circulations, not just vertical mixing alone.

a. Sea surface temperature
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In this subsection, the simulated SSTs are compared with reprocessed observational SST
data. The observational SST product is the Global Ocean Sea Surface Temperature and Sea Ice
Reprocessed produced by the UK Met Office as part of the Operational Sea Surface Temperature
and Sea Ice Analysis (OSTIA) system and distributed by the Copernicus Marine Environment
Monitoring Service (CMEMNS). It provides daily global SST fields from October 1981 to May
2022, at a horizontal resolution of 0.05° x 0.05°. The dataset is generated using a data
assimilation scheme that combines in situ observations (e.g., from ships and buoys) with satellite
radiometer measurements (e.g., AVHRR, SEVIRI) via optimal interpolation (Good et al. 2020).
In this study, both observed and simulated SST fields are averaged over the period 20022021,
separately for summer months (June, July, and August) and winter months (December, January,

and February).

Fig. 3a shows the spatial distribution of observed SST in the GOM, averaged over summer
months. During summer, the entire GOM is warm, with mean SSTs exceeding 28°C across most
of the basin, except in certain narrow coastal regions such as the westernmost GOM off the coast
of Texas and Mexico, as well as north of the Yucatan Peninsula. The cold bands along the coast,
with SSTs there 3 to 4 lower than offshore waters, and strong horizontal temperature gradients,

are results of summer-time coastal upwelling (e.g., Merino 1997; Zavala-Hidalgo et al. 2003;

Zavala-Hidalgo et al. 2006; Jouanno et al. 2018).

Figs. 3c, 3e and 3g display the SST differences between model simulations and observations
in summer, for HY, yp, HYpny yw, and HYpyy wy, respectively. In the deep open GOM, SST
deviations are small, within £0.25°C from observations. Positive deviations dominate in HY} yp,
while negative deviations prevail in HYpyy yw and HYpyy v However, both models exhibit
larger errors along the coasts, particularly in regions with sharp SST gradients, such as the

upwelling zones, highlighting the persistent challenge of resolving coastal dynamics.

Fig. 3b shows the spatial distribution of observed SSTs in the GOM averaged over winter
months. In contrast to summer, winter SSTs exhibit a pronounced meridional gradient, increasing
from north to south. SSTs along the northern coastal margin of the GOM shelf are significantly
cooler than those in the open ocean, and sharp cross-shelf gradients are evident. The influence of

the loop current (LC) is also clearly apparent, characterized by a northwestward intrusion of
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warm water from the Yucatan Channel into the east-central GOM, before exiting through the

Florida Strait.

Figs. 3d, 3f and 3h show the winter SST deviations from observations for HY yp,
HYpnn vw, and HYpyy wy, respectively. Except in the west GOM north of Cuba, SSTs in
HY,p are dominantly overestimated by at least 0.25°C across the GOM. Especially in the north
GOM, a prominent band of positive bias exceeding 0.75°C is centered around 27°N. The only
exception is the western GOM north of Cuba, where the bias is relatively smaller. HYpyn vy
does not mitigate this domain-wide warm bias. In fact, significant positive anomalies persist,
particularly in the northern GOM. In contrast, HYpyy 1wy shows substantial improvement: SST
biases in the western and northern regions are markedly reduced, with widespread areas showing
biases within +0.25°C. The pronounced warm anomaly belt evident in HY} yp and HYpny yw
becomes less distinct. However, near the LC core region, a bias dipole pattern emerges,
characterized by a strong positive anomaly (> 0.75°C) to the west (north of Yucatan Peninsula)

and negative anomaly (< —0.75°C) to the east (northwest of Cuba).
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Fig. 3. Climatological mean sea surface temperature (SST) in the Gulf of Mexico (GOM)
from 2002 to 2021. The left column (panels a, ¢, e and g) shows summer (June—August) SST,
and the right column (panels b, d, f and h) shows winter (December—February) SST. Panels (a)
and (b): observed mean SST. Panels (c) and (d): SST bias between the HY;,, and observations.
Panels (e) and (f): SST bias between HYpyy vy and observations. Panels (g) and (h): SST bias
between HYpyn wy and observations. The black dashed lines in panels (b—h) indicate the 0 °C
bias contour, thin black solid lines indicate £0.25 °C bias, and thick white lines indicate +0.75 °C
bias. The plus signs in panels (a) and (b) mark the locations of selected sites used for the bias
distribution analysis shown in Fig. 5.

The performance of HY COM simulated SSTs relative to observations is further evaluated
using Taylor diagrams (Fig. 4), which enable simultaneous comparison of three statistical
metrics: normalized standard deviation, correlation coefficient, and centered root mean square
error. All standard deviations and root mean square errors are normalized by observed standard
deviations. In summer, HYpyy wy outperforms HY;yp, showing a stronger correlation and a
slightly lower RMSE. In contrast, HYyy yw performs the worst among the three, implying that
omitting Stokes drift information limits the predictive capability of the trained DNNs. In winter,
the differences between HY, yp and HYpyy vy become subtler. HY yp achieves higher
correlation whereas standard deviation by HYpyy v 1s closer to unity. Their RMSEs are
comparable. Once again, HYpyy vy shows degraded performance, highlighting the consistent

importance of including Stokes drift profiles as input features for improved model skill.
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Fig. 4. Taylor diagrams comparing the mean sea surface temperature (SST) in the Gulf of
Mexico (GOM) from 2002 to 2021. Panel (a) shows results for summer (June—August), and
panel (b) for winter (December—February). In each diagram, the azimuthal position indicates the
correlation coefficient between model simulations and observations, the radial distance indicates
the normalized standard deviation (relative to the observed SST), and the red contours represent
the normalized root mean square error (RMSE).

To assess the localized performance of SST simulations, 12 representative sites, marked by
plus signs in Figs. 3a and 3b, are selected. Fig. 5 compares the density distributions of daily SST
biases at these locations for the three simulations. At most sites, HYpyy yy €xhibits the best
agreement with observations, characterized by bias distributions that are sharply peaked near
zero and more symmetric about the zero-bias axis. In contrast, HY,yp and HYpyy vy often show
rightward-shifted density peaks, particularly at locations (c—g, i—k), indicating a systematic warm

bias relative to observations.
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Fig. 5. Probability density distributions of daily SST biases (model minus observation) at 12
selected sites in the GOM (shown as plus signs in Fig. 3) during 2002—2021.Each panel
corresponds to a specific site, with the longitude and latitude indicated in the panel title.

b. Mixed layer depth

In this subsection, the simulated MLDs are compared with observations. Here, the MLD is
diagnosed as the depth at which water density increases by 0.03 kg m relative to a reference
depth of 10 m. Observed MLDs are calculated using vertical profiles of temperature, salinity,
and pressure, obtained from Argo floats (Wong et al. 2020) in the GOM. Although Argo floats
have been extensively deployed and have continuously sampled the global ocean since 2000
(Holte et al. 2017). However, the floats were mainly deployed in the deep open ocean before
2009 (Roemmich and Team 2009), increased deployment in marginal seas like GOM started
from 2010 (Jayne et al. 2017). Argo coverage in the GOM was sparse prior to 2010 but
increased markedly thereafter (Fig. S3a). Furthermore, the spatial distribution of Argo floats in

the GOM is uneven. Most floats measured the open ocean where the water exceeds 1000 m,
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while observations in shallower regions (<1000 m) are scarce (Fig. S3b). Even within the deep
ocean regions of the GOM, Argo profiles are not uniformly distributed, as data is more abundant
in the northern and eastern portions, whereas the southwestern area, including the Bay of

Campeche, has significantly fewer observations.

Fig. 6 presents a detailed comparison of seasonal mean MLDs in the GOM during summer
(June-August, left column) and winter (December-February, right column), based on Argo float
observations (green) and the three HY COM simulations. The analysis is conducted within a set
of hexagonal spatial bins, each summarizing MLD statistics from all Argo profiles that fall
within the region between 2002 and 2021. To enable a fair and consistent comparison with the
unevenly distributed Argo observations in both space and time, model outputs are interpolated to
the exact time and location of each Argo profile. Only hexagons containing at least 50 Argo

profiles are retained for analysis.

During summer (Fig. 6a), observed MLDs across the GOM are relatively shallow, mostly
shallower than 30 meters. Spatial variations in summer MLDs are relatively small, with the
deepest MLD near Yucatan Channel (~35 m), the core region of LC, while the shallowest MLD
offshore of Louisiana (~15 m), where river freshwater flux from Mississippi river helps
stabilizing the upper ocean. Mean MLD biases from all three HY COM simulations are small.

HY, yp (Fig. 6¢) underestimates MLD over most of the gulf, with the largest negative biases (~10
m) in the Yucatan Channel. With wave information incorporated, both HYpyy vy and HYpyn wy
(Figs. 6e and 6g) deepens the MLDs, with positive biases prevailing in the west GOM and

shallow MLD biases reduced in the Yucatan Channel and west of Florida Peninsula.

In contrast, the observed mixed layer is substantially deeper, and its depth is also more
spatially variable in winter over the GOM (Fig. 6b). Two distinct regions exhibit particularly
deep winter MLDs: one near the Loop Current system, and the other in the west-central GOM
(hexagons g and h). All three HYCOM simulations tend to overestimate winter MLDs across the
GOM, especially in the north-central region. Among the evaluated regions, hexagon ¢ exhibits
the largest positive MLD bias, with mean winter MLD overestimated by ~25-30 m in HY} yp
(Fig. 6d). The inclusion of wave effects in HYpyy yyw and HYpyy wy further increases the bias,

reaching ~30 m (Fig. 6f) and ~40 m (Fig. 6h), respectively. This suggests that while wave-
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461 Fig. 6. Comparison of seasonal mean mixed layer depth (MLD) between HY COM

462  simulations and observations. The left column presents MLD climatology for summer (June—
463  August), and the right column for winter (December—February). Panel (a) and (b) show the
464  observed mean MLDs, while panels (c)—(h) display mean MLD biases (simulation minus
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observation) for HY, yp, HYpyy yw and HYpyy wy. Each hexagon summarizes MLD statistics
from 2002 to 2021 for all Argo profiles located within the hexagonal region, along with
corresponding HY COM outputs interpolated to the same times and locations. Only hexagons
containing at least 50 Argo profiles are shown.

However, the larger overestimation of winter MLDs in HYpyy yw and HYpyy wy compared
to HY, ,p does not necessarily indicate poorer performance. To gain a more complete picture of
model behavior, boxplots of winter MLD distributions are constructed for five representative
winter hexagonal regions (¢, d, e, h, and 1 in the right column of Fig. 6), as shown in Fig. 7. Even
though the mean MLDs biases in HYpyy y are similar or even larger than in HY} yp, its median
MLDs more closely match the observed medians in most regions. In addition, there are large
portion of observed winter MLDs falls shallower than 50m, representing shallow mixing events
in winter. These shallow MLD events are rarely captured by HY; ypand HYpyy yw, Whose
interquartile ranges are consistently deeper. In contrast, HYyy iy not only better reproduces the
observed median MLD values but also produces more consistent interquartile ranges that have a
stronger ability to capture the shallow MLD events. An exception is found in hexagon c, where
none of the simulations adequately capture the observed MLD distribution. The interquartile
ranges from all three models are substantially deeper than the observations, suggesting that
factors other than vertical mixing, such as horizontal advection or mesoscale processes, may play

a more dominant role in stratification in this region.
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Fig. 7.

¢. Response of the DNN-informed KPP to Different Forcing Regimes

Surface forcing in the GOM varies markedly in space and time. Key drivers include wind
conditions,
collectively regulate near-surface turbulent mixing and therefore influence how the KPPpyy

schemes depart from the KPP, scheme, ultimately shaping the climatology of SSTs and
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Boxplot of winter MLD climatology distribution from HYCOM simulations and
observations in five selected hexagonal regions (c, d, e, h, and 1), as indicated in Fig. 6b. Each
panel compares the distribution of MLDs during winter (December—February) among the
observation (Obs) and HY COM simulation HY y;p, HYpyn yw and HYpyy wy -

wind-induced Langmuir waves, as well as buoyancy conditions. These processes

MLDs in HYCOM.
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To visualize the relative importance of these drivers, we adopt the regime diagram
introduced by Van Roekel et al. (2012) and later extended by Li et al. (2019). Fig. 8 replicates
this two-panel diagram: the top row represents destabilizing buoyancy conditions, while the
bottom row stabilizing buoyancy conditions. The turbulent Langmuir number La,along the x
axis, the square root of the ratio of friction velocity divided by the surface Stokes drift magnitude
as defined in McWilliams et al. (1997), quantifies the relative importance of wind/wave-driven
Langmuir turbulence over wind-induced shear turbulence, while the ratio between mixed layer
depth h and Langmuir stability depth L; along y-axis quantifies the relative importance of

buoyancy over wind and waves.
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Fig. 8. Regime diagrams of forcing conditions in the GOM from 2002 to 2021. The top row
(Panels a-c) depicts conditions under destabilizing buoyancy forcing, while the bottom row
(panels d-f) shows conditions under stabilizing buoyancy forcing. In the destabilizing cases, thin
dashed contours indicate the turbulent dissipation rate, and thick black lines enclose regimes
where a single turbulence mechanism (wind-driven, Langmuir, or convective) contributes more
than 90% of total dissipation. In the stabilizing cases, the horizontal blackline with —h/L; = 1/3
represents the maximum equilibrium value based on Pearson et al. (2015). Blue contours
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represent the probability distribution (30%, 60%, 90% and 99%) of global ocean conditions from
Li et al. (2019), while red panels indicate the corresponding distribution in the GOM over the full
20-year period (panels a and d), during summer months (panels b and e) and during winter
months (panels ¢ and f).

Blue contours in Fig. 8 represent the global distribution of forcing regimes from Li et al.
(2019), revealing that wind, wave, and buoyancy all play equally essential roles in modulating
oceanic turbulence globally. While unstable buoyancy forcing can be the primary driver of OSBL
turbulence, wind and wave are rarely the dominant driver. The forcing conditions in the GOM
over 20 years are overlayed in Fig. 8 as red contours, with the left, middle, right columns
representing distributions over all seasons, summer months and winter months, respectively.
Compared to the global ocean, the GOM exhibits slightly greater dominance of convective
turbulence under destabilizing buoyancy forcing. This aligns with the finding by Li et al. (2019)
that convection is more prominent at low latitudes. Seasonally, 90% of the winter daily buoyancy
forcing is destabilizing, and the winter forcing regime distributions under destabilizing forcing
resemble the annual pattern, while 80% of the summer daily buoyancy forcing is stabilizing, and
summer forcing regime distributions under stabilizing forcing are more representative of the

overall stabilizing regime.

To investigate how the DNN-informed KPP schemes affect SST and MLD under different
regimes, we calculated daily differences between HYpyy yw and HYpyy wy relative to HYyyp.
These differences are aggregated into hexagonal bins within the regime diagram, and the mean

values within each bin are mapped to visualize systematic patterns.

Fig. 9 shows the hexagonal regime diagrams for SST differences. A consistent pattern
across both HYpyn yw and HYpyy wy 1s that as wave effects become more dominant, there is a
negative trend of SST, indicating stronger wave induced turbulent mixing efficiently reduces
SSTs. Under destabilizing buoyancy forcing condition, HYpyy yw shows slightly warmer SSTs
than the HY; ,p (Fig. 8a), further amplifying KPP’s warm bias in the GOM during winter. In
contrast, HYpyy wy consistently produces lower SSTs across all regimes (Figs. 8b and 8d),

effectively correcting the warm bias.
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Fig. 9. Regime diagrams illustrating the SST differences of HY COM simulations,
HYpny nw (panels a and ¢) and HYpyy wy (panels b and d), relative to HY,yp, under different
turbulence forcing regimes. The top row (panels a and b) corresponds to the destabilizing
buoyancy forcing, while the bottom row (panels ¢ and d) corresponds to stabilizing buoyancy
forcing. The color of each hexagon represents the mean SST difference, averaged over all
samples whose forcing conditions fall within that hexagonal bin. Only hexagons with over
100,000 samples are shown. Definition of the gray dashed contours and black solid lines are
consistent with those in Fig. 8.

Fig. 10 shows corresponding MLD differences. Unlike SST, MLD difference changes
exhibit a stronger dependence on buoyancy forcing than on wave effects. Under destabilizing
buoyancy conditions (Figs. 10a and 10b), deeper MLDs are found in regions dominated by

convective mixing, with HYpyy yy exhibiting more pronounced deepening, potentially
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contributing to the higher chance of extreme deep MLDs (over 150m) in winter (shown in Fig.
7). Under stabilizing buoyancy condition (Figs. 10c and 10d), MLD deepens with increasing
stability. As reported by Yuan et al. (2024), the enhancement of 7 is stronger when MLD is
shallower, corresponding to stronger stabilizing forcing. This may be linked to that the strength
of Langmuir circulation is intense near surface (Weller and Price 1988; McWilliams et al. 1997;
Li and Fox-Kemper 2020), where wave effects become more effective in enhancing mixing and

thus deepening the MLD.
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Fig. 10. Same as Fig. 9, but for MLD differences.
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Another notable pattern from Fig. 10 is the shoaling of MLDs when wind and wave forcing
are more dominating than the buoyancy forcing, especially under destabilizing buoyancy forcing
in HYpyn wy. This shoaling results in large portion of shallower MLDs than in HY}p, thus
better agreeing with the distribution of observed MLDs. It is important to note that, this shoaling
does not suggest that wave effects potentially suppress turbulent mixing in the real ocean.
Instead, it is correcting the overestimation of MLDs by simulations using KPP scheme, whose

parameters were derived from datasets outside the GOM.
4. Discussion

In ocean models, biases of simulated SSTs and MLDs arise from inaccurate representation
of several interacting processes, including small-scale turbulence parameterization,
submesoscale, mesoscale dynamics and large-scale circulation. In this study, only the
parameterization for small-scale turbulent mixing is improved. As shown in Fig. S4 in the
supplementary materials, KP Ppyy schemes have limited impact on sea surface heights (SSH)
and high-frequency sea level anomaly (HSLA) fields, and similar bias patterns persist in all three
HYCOM simulations when compared with observations, indicating that unmodified large-scale

and mesoscale processes exert a dominant control on these features.

The persistent biases in SSH and HSLA fields also contribute to SST and MLD biases in the
simulations. For example, compared to observations, a dome of positive bias, implying stronger
anticyclonic circulation, exists in all three simulations in the northwest GOM. Within this dome
lies a saddle region near 93°W, characterized by sharp SSH anomaly gradients on both its eastern
and western flanks (Figs. S4c, S4e and S4g). This saddle region corresponds to hexagon ¢ during
winter months (Fig. 6), where the simulated MLDs from all HY COM simulations are
significantly deeper than observed, with minimal overlap in interquartile ranges (Fig. 7a). This
highlights that improving vertical mixing alone is insufficient to eliminate SST and MLD biases,
as the background circulation errors persist. To further reduce uncertainties in simulated SST and
MLD, additional efforts are necessary to better represent larger-scale processes in the models.
Since the three simulations exhibit similar climatological large-scale circulation, the differences
in SSTs and MLDs among simulations can be primarily attributed to the distinct turbulent mixing

parameterizations.
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Although strong misalignment between wind and wave, when they are opposing each other,
suppresses mixing (e.g., Van Roekel et al. 2012; McWilliams et al. 2014), the overall effect of
wave-enhanced KPP ,p schemes is to increase turbulent mixing over interannual time scales in
ocean models (e.g., Li et al. 2016; Ali et al. 2019), resulting in deeper mean MLDs than using the
KPP, p scheme. this is also found in HYpyy 1y, Wwhere mean MLDs are deepened over
climatological scales. It indicates enhanced mixing due to Langmuir turbulence is more prevalent
than suppressed mixing when waves oppose wind and underscore the importance of

incorporating wave effects into vertical mixing parameterization schemes.

Unlike previous works on enhancing KPP, ;p scheme mainly only considering wave
enhancements, our KPPpyy schemes also incorporate additional relationships into
enhancements, such as dependencies on buoyancy stability that are not represented in wave
enhancements in deterministic formulations. In the GOM, this results in MLD shoaling under
specific wind-wave-buoyancy forcing combinations (Fig. 10), bringing the simulated MLD
distributions closer to observations in HYpyy wy (Fig. 7). This suggests that KPPy, developed
outside of the GOM, can overestimate turbulent mixing intensity under certain forcing regimes in
this basin, and that simply adding wave effects without accounting for buoyancy stability
correction could exacerbate existing biases. This also demonstrates that, data-driven schemes like
KPPpyy offer the potential to adaptively balance competing mixing processes, providing a more

flexible alternative to fixed empirical enhancements.

The superior performance of HYpyy v in terms of simulated SST and MLD relative to
HYpnn nw highlights the extensive range of wind and wave conditions even over a regional

ocean such as the GOM and underscores the significance of incorporating wave conditions in

mixing parameterizations.
S. Conclusion

In this study, deep neural networks (DNNs) are trained on over 700 turbulence-resolving
large eddy simulation (LES) solutions, driven by a wide range of different forcing conditions in
the Gulf of Mexico region derived from reanalysis products. The DNN models are used to

predict two key coefficients in the K-Profile parameterization (KPP) scheme: the unresolved
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shear coefficient () and the velocity scale coefficient (€), as defined in equations 5 and 6. The
trained DNN models are implemented into HY COM to incorporate knowledge obtained from
LES solutions into KPP. Three HY COM simulations are conducted to evaluate the impact of
non-breaking surface waves on vertical mixing. HY} p uses the baseline KPP, ;, scheme
without any wave effects, HYpyy yw €xcludes Stokes drift information from DNN inputs, and

HYDNN,WV includes it.
Key conclusions are summarized as follows:

e HYpynwy improves the representation of sea surface temperature (SST) and mixed layer
depth (MLD) distribution, especially during winter when traditional schemes often suffer
from systematic biases.

e Under conditions where wave-induced turbulence is more dominant, HYpyy v tends to
produce a stronger cooling effect in SST compared to the HY; ,;p. When destabilizing
buoyancy forcing becomes more intense or stabilizing buoyancy becomes stronger,
HYpnn wy generally results in a deepening of the mixed layer relative to HY yp.

e However, improvements in vertical mixing alone are not sufficient to resolve SST and

MLD biases, since some biases are caused by large-scale circulation in the GOM.

This study demonstrates the promise of using machine learning to enhance traditional
vertical-mixing schemes, yielding improved SST and MLD using three-dimensional realistic
ocean models. However, it also indicates that SST and MLD variability depend not only on
vertical mixing, but the impact of large-scale circulation is also critical. Future model
development should consider combining DNN-based schemes with targeted approaches to
capture the structure and variability of the LC, potentially through additional machine learning
tools or deterministic corrections grounded in physical diagnostics. Moreover, expanding the
coverage and diversity of LES training datasets, especially in dynamically complex regions such
as high latitudes, equatorial areas and coastal regions, could further generalize the applicability

of DNN-based parameterizations to the global ocean.

Overall, this study highlights the potential of machine learning to improve ocean model

fidelity at critical air-sea interaction layers while pointing to the need for strategies that couple
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vertical and horizontal processes to achieve more realistic, physically consistent ocean

simulations.
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