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ABSTRACT 12 

       Turbulent mixing in the ocean surface boundary layer is unresolved in ocean models and is 13 

parameterized using formulas based on physics with coefficients estimated empirically. In this 14 

study, deep neural networks (DNNs) are employed to learn turbulent mixing characteristics in the 15 

ocean surface boundary layer from turbulence-resolving large eddy simulations (LES) driven by 16 

diverse wind, wave, and buoyancy conditions over the Gulf of Mexico (GOM). The extracted 17 

knowledge is used to constrain parameters in the K-profile parameterization (KPP) scheme, 18 

which is widely adopted in ocean models. The DNN-informed KPP is implemented into the 19 

Hybrid Coordinate Ocean Model (HYCOM) to simulate the evolution of oceanic properties in 20 

the GOM, and its performance is evaluated against both observations and HYCOM simulations 21 

using the original KPP. Results indicate that the DNN-informed KPP improves sea surface 22 

temperature (SST) simulations, particularly in winter, and effectively mitigates the warm SST 23 

biases in the GOM simulated using the original KPP. Additionally, it enhances the accuracy of 24 

the simulated mixed layer depth (MLD), better capturing its magnitude, distribution, and 25 

variability. Sensitivity experiments demonstrate that the inclusion of ocean surface waves in the 26 

DNN input is essential for optimal model performance. 27 
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1. Introduction 31 

           The Ocean Surface Boundary Layer (OSBL), typically extending from a few tens to 32 

hundreds of meters below the ocean surface, is a critical zone dominated by various turbulent 33 

mixing processes such as wind-driven shear, buoyancy forcing, and wave-induced Langmuir 34 

turbulence (Belcher et al. 2012; Liang et al. 2013; D'Asaro 2014; Fox-Kemper et al. 2022). 35 

These mixing processes play a vital role in regulating air-sea exchanges of heat, momentum, and 36 

gases, thereby influencing the climate system and ocean environment (Toole 1998; McPhee 37 

2008). Turbulent mixing in the OSBL also facilitates the entrainment of colder, nutrient-rich 38 

water from the ocean interior into the surface layer, affecting not only the thermal structure of the 39 



upper ocean but also biological productivity and the marine carbon cycle (e.g., Gargett and 40 

Marra 2002; Schmittner et al. 2005; Lévy et al. 2013; Smith et al. 2018). Due to its small spatial 41 

scale and highly dynamic nature, explicitly resolving turbulent mixing in global ocean models 42 

remains computationally prohibitive in the foreseeable future (Fox-Kemper et al. 2019). As a 43 

result, turbulent mixing in the OSBL must be represented through subgrid-scale 44 

parameterizations, and the fidelity of these schemes has a profound impact on the accuracy of 45 

ocean model simulations (e.g., Large et al. 1994; McPhee 1999).  46 

         The development of mixing parameterizations often relies on high-fidelity simulations of 47 

turbulent mixing under controlled forcing conditions produced by turbulence-resolving models 48 

such as Large Eddy Simulations (LES). While observational data were directly utilized to 49 

develop OSBL mixing parameterization in early studies (e.g., Large et al. 1994), they are 50 

impacted by submesoscale, mesoscale and other larger-scale processes (Thompson et al. 2016), 51 

making them less suitable than turbulence-resolving simulations for this purpose. Properties 52 

extracted from LES solutions have been widely used to derive or calibrate structure functions in 53 

parameterization schemes (e.g., Skyllingstad et al. 1996; Large and Gent 1999; Harcourt and 54 

D'Asaro 2008; Noh et al. 2016). These schemes are then typically tested in one-dimensional (1D) 55 

ocean models, such as General Ocean Turbulence Model (GOTM), which serve as efficient 56 

testbeds for structural comparisons and sensitivity analysis (e.g., He and Chen 2011; Li et al. 57 

2019; George et al. 2025; Wang et al. 2025). Ultimately, parameterization schemes must be 58 

implemented into three-dimensional ocean models, where their impacts on key state variables, 59 

such as SST and MLD, can be rigorously evaluated against observational datasets (e.g., Li et al. 60 

2016; Ali et al. 2019; Sane et al. 2023; Sane et al. 2025). 61 

        A variety of vertical mixing parameterization schemes have been developed to represent 62 

turbulent mixing processes in the OSBL in realistic ocean models (Kantha and Clayson 1994; 63 

Large et al. 1994; Umlauf and Burchard 2003; Reichl and Hallberg 2018), yet they remain 64 

inaccurate under certain conditions, as some physical processes modulating turbulent mixing 65 

were not originally considered and included in the parameterizations. One of such examples is 66 

the effect of non-breaking surface waves and the associated Langmuir turbulence, which LES 67 

simulations (e.g., Skyllingstad et al. 1996; McWilliams et al. 1997; McWilliams and Sullivan 68 

2000) and observations (e.g., Weller and Price 1988; D’Asaro and Dairiki 1997) show can 69 



elevate turbulent mixing intensity, deepening MLDs and enhancing entrainment fluxes. 70 

However, when wind and wave are misaligned, turbulent mixing can be suppressed (e.g., Van 71 

Roekel et al. 2012).  72 

        Attempts have been made by various studies to incorporate non-breaking wave effects into 73 

baseline parameterization schemes (e.g., Qiao et al. 2004; Harcourt 2015; Li and Fox-Kemper 74 

2017; Reichl and Li 2019; Wang et al. 2025). Despite differences in implementation, most 75 

studies report enhanced mixing, deeper MLDs, and cooler SSTs compared to baseline runs 76 

without wave effects (e.g., Li et al. 2019; Li et al. 2021; Yuan et al. 2024). In addition, no 77 

consensus has been reached on the optimal approach (Li et al. 2019). 78 

          Wave-informed KPP schemes have been incorporated into three-dimensional (3D) ocean 79 

models and evaluated against both baseline models without wave effects and observational data. 80 

The outcomes using specific schemes vary depending on the specific wave-informed scheme, 81 

geographic region and season. For example, Li et al. (2016) found that incorporating both wave-82 

enhanced velocity scales and unresolved shear leads to improved MLD representation in both 83 

summer and winter in the Southern Ocean. Ali et al. (2019) reported that the wave effect tends to 84 

have a much stronger influence in winter than in summer across six wave-informed schemes for 85 

the North Atlantic Ocean, except for the Li and Fox-Kemper (2017) scheme, which incorporates 86 

wave enhanced unresolved shear and the surface layer averaged Langmuir number. It has been 87 

also shown that some of the schemes tends to systematically overestimate MLDs across much of 88 

the global ocean under various conditions (e.g., Fan and Griffies 2014; Li et al. 2016; Ali et al. 89 

2019). In certain regions and seasons, such as at mid-latitudes in northern hemisphere in winter, 90 

simulated MLDs may have already been overestimated in baseline models (Fan and Griffies 91 

2014; Li et al. 2016; Ali et al. 2019). In such cases, further adding wave enhancement can 92 

degrades MLD and SST simulations.  93 

        Further improving traditional turbulent mixing parameterization schemes is challenging. In 94 

recent years, there has been a growing interest in leveraging machine learning techniques to 95 

address this issue, particularly deep neural networks (DNNs). Some studies have used DNNs to 96 

directly predict turbulent fluxes (e.g., Gentine et al. 2018; Rasp et al. 2018; Liang et al. 2022; 97 

Iyer et al. 2025), although numerical stability over long integration periods remains a concern 98 



(Brenowitz et al. 2020; Rasp 2020; Chattopadhyay and Hassanzadeh 2023). Other approaches 99 

have used DNNs to predict key parameters within well-established schemes while keeping the 100 

remainder of the parameterization structure unchanged (e.g., Reichl and Hallberg 2018; Zhu et 101 

al. 2022; Sane et al. 2023).  102 

        Yuan et al. (2024) utilized DNNs to predict two key uncertain factors in KPP scheme: the 103 

enhancement factors for the velocity scale and unresolved shear. The trained DNNs were 104 

implemented into GOTM model and compared against traditional deterministic models. Their 105 

results show that the GOTM model with DNN informed KPP not only computational efficient 106 

but also yields reduced errors in both sea surface temperature (SST) and mixed layer depth 107 

(MLD). Furthermore, their results also revealed more complex, yet structured relationships 108 

between enhancement factors and physical variables such as MLD and turbulent Langmuir 109 

number, relationships that are not captured by traditional wave-informed deterministic schemes. 110 

        This study builds upon and further extends Yuan et al. (2024)’s work by adopting their 111 

approach of using deep neural networks (DNNs) to predict the two enhancement factors in the 112 

KPP scheme. However, instead of testing the method in a one-dimensional model, the well-tuned 113 

DNNs are integrated into the three-dimensional HYbrid Coordinate Ocean Model (HYCOM) to 114 

simulate the evolution of temperature, salinity, MLD and large-scale circulation in the Gulf of 115 

Mexico (GOM). The model outputs are compared against both observational data and HYCOM 116 

simulations using the baseline KPP scheme without wave effects, to evaluate whether the DNN-117 

informed KPP reduces the biases observed in the traditional parameterization and better aligns 118 

with observations. In addition, the DNN inputs are revised to be more representative of the 119 

broader GOM region, rather than being limited to a single fixed location as in Yuan et al. (2024). 120 

        The remainder of this paper is organized as follows: Section 2 describes the generation of 121 

the training data for the DNNs, the configuration of the DNN models, and the implementation of 122 

the trained DNNs into the HYCOM framework. Section 3 presents the simulation results from 123 

HYCOM, along with comparisons to observations from multiple perspectives, including SST 124 

and MLD. Section 4 discusses the improvements achieved by HYCOM simulations using DNN 125 

over the baseline KPP, as well as the remaining challenges and areas requiring further 126 

investigation. Finally, Section 5 provides concluding remarks. 127 



2. The Neural Network Informed KPP for the GOM and its Implementation 128 

in HYCOM 129 

a. The KPP scheme with enhancement coefficients 130 

        This subsection provides an overview of the baseline KPP scheme, and the two key 131 

coefficients introduced to the baseline model to account for wave effect. A more comprehensive 132 

description can be found in Yuan et al. (2024). 133 

        In ocean models, the turbulent flux of a variable 𝑥𝑥 (e.g., momentum, temperature, salinity or 134 

other scalars), is expressed as: 135 

𝑤𝑤′𝑥𝑥′ = −𝐾𝐾𝑥𝑥 �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝛾𝛾𝑥𝑥� (1) 136 

        Here, 𝑧𝑧 is the vertical coordinate and 𝑤𝑤 the vertical velocity. Overbars indicate ensemble 137 

averages, while primes denote turbulent fluctuations. 𝐾𝐾𝑥𝑥 is the diffusivity or viscosity. 𝛾𝛾𝑥𝑥 138 

accounts for the contribution due to non-local effects that are not proportional to local gradients 139 

only applied to scalar fluxes (e.g., temperature and salinity) and equals to zero for momentum.  140 

In this study, only 𝐾𝐾𝑥𝑥 is modified. 141 

        In the 𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 framework (Large et al. 1994), 𝐾𝐾𝑥𝑥 is given by: 142 

𝐾𝐾𝑥𝑥(𝜎𝜎) = 𝑤𝑤𝑥𝑥(𝜎𝜎)ℎ𝐺𝐺𝑥𝑥(𝜎𝜎) (2) 143 

        Where ℎ is the OSBL depth, 𝜎𝜎 = 𝑧𝑧/ℎ is the water depth normalized by the OSBL depth. 𝑤𝑤𝑥𝑥 144 

is a velocity scale determined by both surface forcing and the Monin-Obukhov similarity theory, 145 

and 𝐺𝐺𝑥𝑥(𝜎𝜎) is a non-dimensional shape function.  146 

        The OSBL depth is diagnosed using the Bulk Richardson number: 147 

𝑅𝑅𝑖𝑖𝑏𝑏(𝑧𝑧) =
𝑧𝑧 �𝑏𝑏𝑟𝑟 − 𝑏𝑏(𝑧𝑧)�

�𝒖𝒖𝑟𝑟 − 𝒖𝒖(𝑧𝑧)�
2

+ 𝑈𝑈𝑡𝑡2(𝑧𝑧)
(3) 148 



        Where 𝑏𝑏 is the buoyancy, 𝒖𝒖 is the water current vector. The subscript 𝑟𝑟 represents the 149 

reference value. The effect of unresolved shear is parameterized as:  150 

𝑈𝑈𝑡𝑡2(𝑧𝑧) =
𝐶𝐶𝑣𝑣𝑁𝑁(𝑧𝑧)𝑤𝑤𝑥𝑥(𝑧𝑧)|𝑧𝑧|

𝑅𝑅𝑖𝑖𝑐𝑐
(4) 151 

        Where 𝐶𝐶𝑣𝑣 is a dimensionless constant and 𝑁𝑁(𝑧𝑧) is the Brunt-Väsälä frequency.  152 

        To account for additional physical processes that are absent (e.g., non-breaking waves) or 153 

poorly represented (e.g., buoyancy stability) in the baseline KPP scheme (𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿), the 𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 154 

scheme is modified by introducing two additional coefficients: the velocity scale coefficient 𝜖𝜖, 155 

which modifies vertical mixing, and the unresolved shear coefficient 𝜂𝜂, which modifies 156 

entrainment at the base of the OSBL. Then, equations (1) and (4) become: 157 

𝐾𝐾𝑥𝑥(𝜎𝜎)𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜖𝜖𝜖𝜖𝑥𝑥(𝜎𝜎)|ℎ|𝐺𝐺𝑥𝑥(𝜎𝜎) (5) 158 

𝑈𝑈𝑡𝑡2(𝑧𝑧)𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜂𝜂𝑈𝑈𝑡𝑡2(𝑧𝑧)𝐿𝐿𝐿𝐿𝐿𝐿 (6) 159 

        Here, the subscript “LMD” (Large, McWilliams and Doney) indicates the terms in the 160 

baseline KPP scheme in Large et al. (1994), while the subscript “new” represents terms after 161 

modifications.  162 

        In previous studies (e.g., McWilliams and Sullivan 2000; Reichl et al. 2016; Li and Fox-163 

Kemper 2017), ), the two coefficients were modeled using semi-empirical equations tuned with 164 

LES solutions of a limited set of forcing conditions and only used to quantify effects due to non-165 

breaking waves. In contrast, in Yuan et al. (2024) and in this study, these parameters are 166 

predicted using DNNs trained on LES data, driven by  a much broader spectrum of wind, wave, 167 

and buoyancy conditions in the real ocean. 168 

b. Data Generation using Large-Eddy Simulations 169 

        The DNNs are trained using solutions generated by the National Center for Atmospheric 170 

Research large-eddy simulation model for the OSBL (NCAR-LES, Sullivan and McWilliams 171 

2010). The NCAR-LES model has been applied to study mixing processes under various external 172 

atmospheric forcing, turbulent mixing and entrainment enhancement due to breaking and non-173 



breaking waves, mixing and entrainments associated with a frontal zone and submesoscale 174 

instabilities, tracer dispersion driven by turbulence, and ocean response to extreme forcing such 175 

as hurricanes (Kukulka et al. 2009; Hamlington et al. 2014; Liang et al. 2018; Yuan and Liang 176 

2021). Turbulence-resolving models such as the NCAR-LES model offers an economical 177 

approach to generate extensive training data sets for machine learning based parameterizations. 178 

In this study, a suite of NCAR-LES simulations are conducted at various locations in the GOM 179 

(Fig. 1) to generate turbulence-resolving solutions for DNN training.  180 

        Over 700 locations within the domain (Fig. 1) over water points are randomly selected to 181 

ensure that our LES ensemble captures turbulent mixing under a wide range of meteorological, 182 

water-column, and geographic conditions across the GOM. A 5-day LES simulation is performed 183 

at each location with the first day of each simulation treated as spin-ups and thus discarded, 184 

while solutions from days 2 to 5 are processed for DNN training. Each LES run corresponds to a 185 

randomly selected distinct 5-day period. For example, the simulation at location 186 

93.24°𝑊𝑊, 28.78°𝑁𝑁 spans from Dec.26 2010 to Dec.30 2010, while the simulation at location 187 

82.2°𝑊𝑊, 18.73°𝑁𝑁 covers from Sep.22 2011 to Sep.26 2011. Altogether, these simulations span 188 

the period of 10 years from December 26, 2010, to December 28, 2020. 189 

  190 



        Fig. 1. Map of Gulf of Mexico study region. The blue shading indicates bathymetry, with 191 

grey contour lines at 300 meters. Black dots are the selected locations where large eddy 192 

simulations are conducted. Land mask is shown in grey.  193 

        All LES simulations are forced by atmospheric and oceanic conditions  derived from the 194 

ERA5 reanalysis (Hersbach et al. 2020), including zonal and meridional winds, net short-wave 195 

radiation, net heat flux excluding short wave components, rates of evaporation minus 196 

precipitation, and Stokes drift vector profiles computed from wave spectra. Initial temperature 197 

and salinity profiles are extracted from the 41-layer HYCOM+NCODA Global 1/12° Reanalysis 198 

(GOFS 3.1). Both initial and forcing fields are interpolated to the specific spatial location and 199 

time window of each LES run, with forcing fields provided at an hourly resolution. 200 

        While the wind stress, net heat flux excluding shortwave radiation and rates of evaporation 201 

minus precipitation are applied only at the ocean surface, the shortwave radiation penetrates the 202 

water column. Here, the Jerlov water type 1 (Jerlov 1976) is used to calculate the shortwave 203 

radiation at depth 𝑧𝑧, given by: 204 

𝑞𝑞𝑠𝑠𝑠𝑠(𝑧𝑧) = 𝑞𝑞𝑠𝑠𝑠𝑠(0)�𝑟𝑟 𝑒𝑒𝑧𝑧/𝜇𝜇1 + (1 − 𝑟𝑟)𝑒𝑒𝑧𝑧/𝜇𝜇2� (7) 205 

        𝑞𝑞𝑠𝑠𝑠𝑠(0) is the net shortwave radiation at the surface, and the constants 𝑟𝑟 = 0.58, 𝜇𝜇1 =206 

0.35, 𝜇𝜇2 = 23 correspond to Jerlov water type 1. In HYCOM model, to avoid unrealistic heating 207 

at the ocean floor in shallow coastal regions, HYCOM redistributes the bottom-reaching 208 

shortwave radiation throughout the water column. We apply the same adjustment in LES. The 209 

modified shortwave radiation profile 𝑄𝑄𝑠𝑠𝑠𝑠(𝑧𝑧) then becomes 210 

𝑄𝑄𝑠𝑠𝑠𝑠(𝑧𝑧) = �0,                                              𝑧𝑧 = −𝐻𝐻
𝑞𝑞𝑠𝑠𝑠𝑠(𝑧𝑧) − 𝑞𝑞𝑠𝑠𝑠𝑠(𝐻𝐻)|𝑧𝑧|/𝐻𝐻,      𝑧𝑧 > −𝐻𝐻 (8) 211 

with  𝑞𝑞𝑠𝑠𝑠𝑠(𝐻𝐻) being the shortwave radiation flux bottom-reaching before adjustment. This 212 

ensures that the shortwave radiation at the seafloor is always zero, while preserving the net 213 

shortwave radiation value at the ocean surface. The adjustment reduces 𝑄𝑄𝑠𝑠𝑠𝑠(𝑧𝑧) relative to the 214 

original 𝑞𝑞𝑠𝑠𝑠𝑠(𝑧𝑧),with larger differences in shallower waters. In deep waters, the impact of this 215 

adjustment is negligible. 216 



 217 

c. Data standardization and DNN training 218 

        Feedforward deep neural networks are employed in this study. The inputs include profiles of 219 

Brunt–Väisälä frequency squared, Stokes drift profiles in the zonal and meridional directions, 220 

zonal and meridional wind components, net shortwave radiations, net heat fluxes excluding 221 

shortwave components, rates of evaporation minus precipitation, latitudes, OSBL depths, and 222 

bathymetry depths. A simplified illustration of the DNN architecture used in this work is shown 223 

in Fig. 2. To assess the role of Stokes drift, an additional set of DNNs are trained with the same 224 

inputs but without Stokes drift profiles, to highlight the importance of including Stokes drift 225 

information for achieving sufficient predictive accuracy. The DNN-based KPP schemes with and 226 

without Stokes drift profiles are referred as 𝐾𝐾𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 and 𝐾𝐾𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁, respectively, while 227 

𝐾𝐾𝐾𝐾𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 collectively refers to both DNN-based schemes.  228 

        Compared with Yuan et al (2024), the DNN models in this study introduce three additional 229 

variables into the input array: the latitude to indicate effects due to Coriolis effects, the OSBL 230 

depth to indicate the absolute depth range of input profile variables, and the bathymetry depth 231 

indicating the data sparsity passed from HYCOM solutions to DNN models. It also replaces 232 

temperature and salinity profiles with profiles of the Brunt-Vaisala frequency squared, to avoid 233 

DNNs making unplausible predictions when the simulated temperature and salinity are outside 234 

the ranges of the training data, a possibility in multi-year or multi-decadal simulations.  235 

         Three DNN models are trained to predict two scalar variables: models 𝐷𝐷𝜂𝜂0 and 𝐷𝐷𝜂𝜂 are used 236 

to predict the enhancement to the unresolved shear contribution (𝜂𝜂), while model 𝐷𝐷𝜖𝜖 is used to 237 

predict the velocity scale coefficient (𝜖𝜖) in KPP formula. In shallow-water regions, ℎ often 238 

reaches the seafloor even when 𝜂𝜂 = 0, resulting in a high occurrence of 𝜂𝜂 = 0 in the data. To 239 

better capture this, we adopt a two-step prediction strategy: model 𝐷𝐷𝜂𝜂0 first predicts whether 𝜂𝜂 =240 

0, and if not, 𝐷𝐷𝜂𝜂 predicts the actual non-zero value of 𝜂𝜂. For predicting 𝜂𝜂, ℎ from the previous 241 

time step is included as an input.  When predicting 𝜖𝜖 in model 𝐷𝐷𝜖𝜖, ℎ at current time step is used, 242 

as 𝜖𝜖 depends directly on ℎ at the same time step.  243 



 244 

Fig. 2. Conceptual framework of the modeling system. LES generates turbulence-resolving 3D 245 

fields that are horizontally averaged and employed to train DNNs. In HYCOM runs, the model 246 

provides profile and scalar variables as inputs to the trained DNNs, and the predicted empirical 247 

parameters are passed back to HYCOM. The information exchange between HYCOM and the 248 

DNN is implemented through the Fortran Keras Bridge (FKB). 249 

        All input variables are normalized before being fed into DNNs. Each input variable is 250 

standardized by subtracting its mean, then divided by its standard deviation. For scalar input 251 

variables, an additional sigmoid transformation 𝑓𝑓(𝑥𝑥) = 1/(1 + 𝑒𝑒−𝑥𝑥) is then applied to the 252 

normalized value. This use of the sigmoid function is heuristic, introduced after we observed that 253 

it improves prediction accuracy during model training. For the outputs, 𝜂𝜂 in 𝐷𝐷𝜂𝜂 and 𝜖𝜖 in 𝐷𝐷𝜖𝜖 are 254 

transformed using a base-10 logarithm, i.e., 𝜂𝜂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = log10 𝜂𝜂 and 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = log10 𝜖𝜖. Data are 255 

randomly separated into training, validation and testing datasets at a ratio of approximately 6:2:2. 256 

To avoid spurious correlations and ensure that the datasets reflect distinct climatological 257 



conditions, we follow a block sampling strategy (Schultz et al, 2021separating datasets by LES 258 

simulations rather than by individual samples. The binary cross-entropy is used as loss function 259 

in 𝐷𝐷𝜂𝜂0, while the mean absolute error is used in 𝐷𝐷𝜂𝜂 and 𝐷𝐷𝜖𝜖. A leaky ReLU activation, 𝑓𝑓(𝑥𝑥) =260 

max (𝑥𝑥,𝛼𝛼𝛼𝛼) with 𝛼𝛼 = 0.1, is applied in all hidden layers, and the Adam optimizer is used for 261 

training. The DNN models are trained and tested using TensorFlow and Keras in R.  262 

        To identify the best-performing models, we evaluate architectures ranging from 1 to 10 263 

hidden layers and from 4 up to 128 neurons in each hidden layer. Each model is trained for 1000 264 

epochs, with the learning rate reduced by a factor of 0.1 if no improvement in validation loss is 265 

observed over 5 consecutive epochs. Models with the lowest validation losses (for 𝐷𝐷𝜂𝜂 and 𝐷𝐷𝜖𝜖) 266 

and the highest classification accuracy (for 𝐷𝐷𝜂𝜂0) are selected for implementation in the HYCOM 267 

model. Configurations of the best trained DNN models are shown in Table 1. Model 268 

performance, including training and validation losses over epochs, and the comparison between 269 

predicted and target value distributions, is shown in Figs. S1 and S2. Offline tests confirm that 270 

the trained models reliably capture the essential data distributions, justifying their 271 

implementation into ocean models.  272 

Scheme Model Hidden layers Neurons in each hidden layer 

𝐾𝐾𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 

𝐷𝐷𝜂𝜂0 2 16 

𝐷𝐷𝜂𝜂 5 8 

𝐷𝐷𝜖𝜖 5 24 

𝐾𝐾𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 

𝐷𝐷𝜂𝜂0 5 4 

𝐷𝐷𝜂𝜂 3 16 

𝐷𝐷𝜖𝜖 3 12 

          273 

       Table 1. Configurations of the best trained DNNs used in 𝐾𝐾𝐾𝐾𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 schemes. 274 
𝐾𝐾𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 excludes Stokes drift, while 𝐾𝐾𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 includes it. Model 𝐷𝐷𝜂𝜂0 classifies whether 275 
the unresolved shear coefficient 𝜂𝜂 equals 0. If not, model 𝐷𝐷𝜂𝜂 is activated to predict its value. 276 
Model 𝐷𝐷𝜖𝜖 predicts the velocity scale coefficient 𝜖𝜖. 277 

d. The implementation of DNN informed KPP into HYCOM  278 



        The Hybrid Coordinate Ocean Model (HYCOM, Bleck 2002; Chassignet et al. 2003; 279 

Chassignet et al. 2009) is a three-dimensional ocean model designed to simulate the ocean's 280 

general circulation across a wide range of spatial and temporal scales. It employs a hybrid 281 

vertical coordinate system that combines terrain-following (sigma), isopycnic (density-282 

following), and fixed-depth (z-level) layers, allowing it to flexibly represent both shallow coastal 283 

regions and the deep open ocean. HYCOM is particularly well-suited for regional and global 284 

ocean forecasting applications, as well as climate simulations. Its vertical layering approach 285 

enables good representation of stratification and vertical mixing processes, making it a powerful 286 

tool for studying upper ocean dynamics and their interactions with large-scale circulation.  287 

        This study modifies the KPP related subroutines in HYCOM to incorporate the use of well-288 

tuned DNNs for predicting 𝜂𝜂 and 𝜖𝜖. Same as in Yuan et al. (2024), the Fortran-Keras Bridge 289 

(FKB, Ott et al. 2020) is used to utilize weights and biases from trained DNNs to reconstruct the 290 

network structures in HYCOM. The incorporation process involves the following steps. First, the 291 

trained weights stored in HDF5 format files are converted into specifically organized ASCII 292 

files. These files serve as inputs to FKB, allowing it to reconstruct the DNN architecture and 293 

weights within the Fortran environment. Input arrays required by the DNNs, such as model state 294 

variables, various surface forcing fields, latitudes, OSBL depths, and water depths, are read from 295 

HYCOM, organized, and normalized according to the format expected by the DNNs. The DNN-296 

predicted coefficients are then de-normalized and incorporated into the KPP scheme within 297 

HYCOM. A conceptual framework of information exchange between HYCOM and DNNs 298 

through FKB is shown in Fig. 2.  299 

e. HYCOM model configuration 300 

        The HYCOM model domain is shown in Fig. 1. It spans from 18°N to 32°N in latitude and 301 

from 77°W to 98°W in longitude. As shown in Fig. 1, this domain covers the entire GOM, the 302 

northwestern Caribbean Sea, and parts of the Atlantic Ocean off the southeastern U.S. coast. 303 

Bathymetry within the domain is derived from the 2019 version of the General Bathymetric 304 

Chart of the Oceans (GEBCO Bathymetric Compilation Group 2019) .  305 

        The model uses a Mercator grid with 293 × 193 grids in the zonal and meridional 306 

directions, respectively, and a horizontal resolution of the model is 1/12°. Vertically, the model 307 



is configured with 41 hybrid layers. The upper 83 meters of the water column consists of 14 308 

sigma-Z layers, which are terrain-following where the seafloor depth is less than 83 meters.  In 309 

water deeper than 83 meters, layers 15 to 41 are isopycnal unless they outcrop into the near-310 

surface Z (fixed depth) regime.  The top layer is 1 meter thick everywhere, so the model's SST is 311 

actually the average over the top 1 m. 312 

        Three sets of HYCOM simulations are conducted in this study. 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿 employs the 𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 313 

scheme to parameterize effect due to vertical mixing in the OSBL. 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 uses the 314 

𝐾𝐾𝐾𝐾𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 scheme, with Stokes drift profiles included in the input features are incorporated into 315 

HYCOM to predict coefficients, 𝜂𝜂 and 𝜖𝜖. 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 uses 𝐾𝐾𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 scheme, excluding Stokes 316 

drift information from the input arrays. 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿 serves as a baseline control simulation, where 317 

both 𝜂𝜂 and 𝜖𝜖 are fixed at one. 318 

        All simulations are initialized from the 3D HYCOM + NCODA Global 1/12° Reanalysis on 319 

Jan. 1, 2001 (GLBu0.08, https://tds.hycom.org/thredds/catalogs/GLBu0.08/expt_19.1.html ) and 320 

integrated for 22 years from year 2001 to year 2022, with the first year treated as model spin-up. 321 

Atmospheric forcing required by HYCOM is provided by the hourly Climate Forecast System 322 

Reanalysis (CFSR) for year 2001~2010, and from the hourly Climate Forecast System Version 2 323 

(CFSv2) for year 2011~2022. Stokes drift is one of the inputs in 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊. To avoid the high 324 

computational cost of coupled ocean-wave modeling (Li et al. 2016), Stokes drift profiles in both 325 

zonal and meridional directions are computed offline from ERA5 wave spectra (Hersbach et al. 326 

2020). These wave forcing fields are treated as forcing by HYCOM, as in Ali et al. (2019).  327 

3. Results 328 

        In this section, we compare simulated SSTs and MLDs with both observations and the 329 

𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿 model runs. We also construct regime diagrams to reveal how DNN-enhanced 330 

modifications systematically affect SSTs and MLDs under different forcing regimes. Although 331 

our primary goal is to demonstrate how DNNs can improve the KPP scheme’s representation of 332 

vertical mixing, it is important to note that biases may stem from other processes as well, such as 333 

the misrepresentation of large-scale horizontal circulations, not just vertical mixing alone. 334 

a. Sea surface temperature 335 

https://tds.hycom.org/thredds/catalogs/GLBu0.08/expt_19.1.html


        In this subsection, the simulated SSTs are compared with reprocessed observational SST 336 

data. The observational SST product is the Global Ocean Sea Surface Temperature and Sea Ice 337 

Reprocessed produced by the UK Met Office as part of the Operational Sea Surface Temperature 338 

and Sea Ice Analysis (OSTIA) system and distributed by the Copernicus Marine Environment 339 

Monitoring Service (CMEMS). It provides daily global SST fields from October 1981 to May 340 

2022, at a horizontal resolution of 0.05° × 0.05°. The dataset is generated using a data 341 

assimilation scheme that combines in situ observations (e.g., from ships and buoys) with satellite 342 

radiometer measurements (e.g., AVHRR, SEVIRI) via optimal interpolation (Good et al. 2020). 343 

In this study, both observed and simulated SST fields are averaged over the period 2002–2021, 344 

separately for summer months (June, July, and August) and winter months (December, January, 345 

and February).  346 

        Fig. 3a shows the spatial distribution of observed SST in the GOM, averaged over summer 347 

months. During summer, the entire GOM is warm, with mean SSTs exceeding 28°C across most 348 

of the basin, except in certain narrow coastal regions such as the westernmost GOM off the coast 349 

of Texas and Mexico, as well as north of the Yucatan Peninsula. The cold bands along the coast, 350 

with SSTs there 3 to 4 lower than offshore  waters, and strong horizontal temperature gradients, 351 

are results of summer-time coastal upwelling  (e.g., Merino 1997; Zavala-Hidalgo et al. 2003; 352 

Zavala-Hidalgo et al. 2006; Jouanno et al. 2018).  353 

        Figs. 3c, 3e and 3g display the SST differences between model simulations and observations 354 

in summer, for 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁, and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊, respectively. In the deep open GOM, SST 355 

deviations are small, within ±0.25°𝐶𝐶 from observations. Positive deviations dominate in 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿, 356 

while negative deviations prevail in 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊. However, both models exhibit 357 

larger errors along the coasts, particularly in regions with sharp SST gradients, such as the 358 

upwelling zones, highlighting the persistent challenge of resolving coastal dynamics. 359 

        Fig. 3b shows the spatial distribution of observed SSTs in the GOM averaged over winter 360 

months. In contrast to summer, winter SSTs exhibit a pronounced meridional gradient, increasing 361 

from north to south. SSTs along the northern coastal margin of the GOM shelf are significantly 362 

cooler than those in the open ocean, and sharp cross-shelf gradients are evident. The influence of 363 

the loop current (LC) is also clearly apparent, characterized by a northwestward intrusion of 364 



warm water from the Yucatan Channel into the east-central GOM, before exiting through the 365 

Florida Strait.  366 

        Figs. 3d, 3f and 3h show the winter SST deviations from observations for 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿, 367 

𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁, and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊, respectively. Except in the west GOM north of Cuba, SSTs in 368 

𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 are dominantly overestimated by at least 0.25°𝐶𝐶 across the GOM. Especially in the north 369 

GOM, a prominent band of positive bias exceeding 0.75°𝐶𝐶 is centered around 27°N. The only 370 

exception is the western GOM north of Cuba, where the bias is relatively smaller. 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁  371 

does not mitigate this domain-wide warm bias. In fact, significant positive anomalies persist, 372 

particularly in the northern GOM. In contrast, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 shows substantial improvement: SST 373 

biases in the western and northern regions are markedly reduced, with widespread areas showing 374 

biases within ±0.25°𝐶𝐶. The pronounced warm anomaly belt evident in 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 375 

becomes less distinct. However, near the LC core region, a bias dipole pattern emerges, 376 

characterized by a strong positive anomaly (> 0.75°𝐶𝐶) to the west (north of Yucatan Peninsula) 377 

and negative anomaly (< −0.75°𝐶𝐶) to the east (northwest of Cuba). 378 



 379 



        Fig. 3. Climatological mean sea surface temperature (SST) in the Gulf of Mexico (GOM) 380 
from 2002 to 2021. The left column (panels a, c, e and g) shows summer (June–August) SST, 381 
and the right column (panels b, d, f and h) shows winter (December–February) SST. Panels (a) 382 
and (b): observed mean SST. Panels (c) and (d): SST bias between the 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 and observations. 383 
Panels (e) and (f): SST bias between 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 and observations. Panels (g) and (h): SST bias 384 
between 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 and observations. The black dashed lines in panels (b–h) indicate the 0 °C 385 
bias contour, thin black solid lines indicate ±0.25 °C bias, and thick white lines indicate ±0.75 °C 386 
bias. The plus signs in panels (a) and (b) mark the locations of selected sites used for the bias 387 
distribution analysis shown in Fig. 5. 388 

        The performance of HYCOM simulated SSTs relative to observations is further evaluated 389 

using Taylor diagrams (Fig. 4), which enable simultaneous comparison of three statistical 390 

metrics: normalized standard deviation, correlation coefficient, and centered root mean square 391 

error. All standard deviations and root mean square errors are normalized by observed standard 392 

deviations. In summer, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 outperforms 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿, showing a stronger correlation and a 393 

slightly lower RMSE. In contrast, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 performs the worst among the three, implying that 394 

omitting Stokes drift information limits the predictive capability of the trained DNNs. In winter, 395 

the differences between 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊  become subtler. 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 achieves higher 396 

correlation whereas standard deviation by 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 is closer to unity.  Their RMSEs are 397 

comparable. Once again, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 shows degraded performance, highlighting the consistent 398 

importance of including Stokes drift profiles as input features for improved model skill. 399 



 400 

        Fig. 4. Taylor diagrams comparing the mean sea surface temperature (SST) in the Gulf of 401 
Mexico (GOM) from 2002 to 2021. Panel (a) shows results for summer (June–August), and 402 
panel (b) for winter (December–February). In each diagram, the azimuthal position indicates the 403 
correlation coefficient between model simulations and observations, the radial distance indicates 404 
the normalized standard deviation (relative to the observed SST), and the red contours represent 405 
the normalized root mean square error (RMSE).  406 

        To assess the localized performance of SST simulations, 12 representative sites, marked by 407 

plus signs in Figs. 3a and 3b, are selected. Fig. 5 compares the density distributions of daily SST 408 

biases at these locations for the three simulations. At most sites, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 exhibits the best 409 

agreement with observations, characterized by bias distributions that are sharply peaked near 410 

zero and more symmetric about the zero-bias axis. In contrast, 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 often show 411 

rightward-shifted density peaks, particularly at locations (c–g, i–k), indicating a systematic warm 412 

bias relative to observations. 413 



 414 

        Fig. 5. Probability density distributions of daily SST biases (model minus observation) at 12 415 
selected sites in the GOM (shown as plus signs in Fig. 3) during 2002–2021.Each panel 416 
corresponds to a specific site, with the longitude and latitude indicated in the panel title.  417 

b. Mixed layer depth 418 

        In this subsection, the simulated MLDs are compared with observations. Here, the MLD is 419 

diagnosed as the depth at which water density increases by 0.03 kg m⁻³ relative to a reference 420 

depth of 10 m.  Observed MLDs are calculated using vertical profiles of temperature, salinity, 421 

and pressure, obtained from Argo floats (Wong et al. 2020) in the GOM. Although Argo floats 422 

have been extensively deployed and have continuously sampled the global ocean since 2000 423 

(Holte et al. 2017). However, the floats were mainly deployed in the deep open ocean before 424 

2009 (Roemmich and Team 2009), increased deployment in marginal seas like GOM started 425 

from 2010 (Jayne et al. 2017).  Argo coverage in the GOM was sparse prior to 2010 but 426 

increased markedly thereafter (Fig. S3a). Furthermore, the spatial distribution of Argo floats in 427 

the GOM is uneven. Most floats measured the open ocean where the water exceeds 1000 m, 428 



while observations in shallower regions (<1000 m) are scarce (Fig. S3b). Even within the deep 429 

ocean regions of the GOM, Argo profiles are not uniformly distributed, as data is more abundant 430 

in the northern and eastern portions, whereas the southwestern area, including the Bay of 431 

Campeche, has significantly fewer observations.  432 

        Fig. 6 presents a detailed comparison of seasonal mean MLDs in the GOM during summer 433 

(June-August, left column) and winter (December-February, right column), based on Argo float 434 

observations (green) and the three HYCOM simulations. The analysis is conducted within a set 435 

of hexagonal spatial bins, each summarizing MLD statistics from all Argo profiles that fall 436 

within the region between 2002 and 2021. To enable a fair and consistent comparison with the 437 

unevenly distributed Argo observations in both space and time, model outputs are interpolated to 438 

the exact time and location of each Argo profile. Only hexagons containing at least 50 Argo 439 

profiles are retained for analysis.  440 

        During summer (Fig. 6a), observed MLDs across the GOM are relatively shallow, mostly 441 

shallower than 30 meters. Spatial variations in summer MLDs are relatively small, with the 442 

deepest MLD near Yucatan Channel (~35 m), the core region of LC, while the shallowest MLD 443 

offshore of Louisiana (~15 m), where river freshwater flux from Mississippi river helps 444 

stabilizing the upper ocean. Mean MLD biases from all three HYCOM simulations are small. 445 

𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 (Fig. 6c) underestimates MLD over most of the gulf, with the largest negative biases (~10 446 

m) in the Yucatan Channel. With wave information incorporated, both 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 447 

(Figs. 6e and 6g) deepens the MLDs, with positive biases prevailing in the west GOM and 448 

shallow MLD biases reduced in the Yucatan Channel and west of Florida Peninsula. 449 

        In contrast, the observed mixed layer is substantially deeper, and its depth is also more 450 

spatially variable in winter over the GOM (Fig. 6b). Two distinct regions exhibit particularly 451 

deep winter MLDs: one near the Loop Current system, and the other in the west-central GOM 452 

(hexagons g and h). All three HYCOM simulations tend to overestimate winter MLDs across the 453 

GOM, especially in the north-central region. Among the evaluated regions, hexagon c exhibits 454 

the largest positive MLD bias, with mean winter MLD overestimated by ~25-30 m in 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 455 

(Fig. 6d). The inclusion of wave effects in 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 further increases the bias, 456 

reaching ~30 m (Fig. 6f) and ~40 m (Fig. 6h), respectively. This suggests that while wave-457 



induced mixing enhances vertical mixing in certain areas, it may also lead to excessive 458 

deepening of the MLD in regions where background stratification is already weak. 459 

 460 

        Fig. 6. Comparison of seasonal mean mixed layer depth (MLD) between HYCOM 461 
simulations and observations. The left column presents MLD climatology for summer (June–462 
August), and the right column for winter (December–February). Panel (a) and (b) show the 463 
observed mean MLDs, while panels (c)–(h) display mean MLD biases (simulation minus 464 



observation) for 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊. Each hexagon summarizes MLD statistics 465 
from 2002 to 2021 for all Argo profiles located within the hexagonal region, along with 466 
corresponding HYCOM outputs interpolated to the same times and locations. Only hexagons 467 
containing at least 50 Argo profiles are shown. 468 

        However, the larger overestimation of winter MLDs in 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 compared 469 

to 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 does not necessarily indicate poorer performance. To gain a more complete picture of 470 

model behavior, boxplots of winter MLD distributions are constructed for five representative 471 

winter hexagonal regions (c, d, e, h, and i in the right column of Fig. 6), as shown in Fig. 7. Even 472 

though the mean MLDs biases in 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 are similar or even larger than in 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿, its median 473 

MLDs more closely match the observed medians in most regions. In addition, there are large 474 

portion of observed winter MLDs falls shallower than 50m, representing shallow mixing events 475 

in winter. These shallow MLD events are rarely captured by 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁, whose 476 

interquartile ranges are consistently deeper. In contrast, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 not only better reproduces the 477 

observed median MLD values but also produces more consistent interquartile ranges that have a 478 

stronger ability to capture the shallow MLD events. An exception is found in hexagon c, where 479 

none of the simulations adequately capture the observed MLD distribution. The interquartile 480 

ranges from all three models are substantially deeper than the observations, suggesting that 481 

factors other than vertical mixing, such as horizontal advection or mesoscale processes, may play 482 

a more dominant role in stratification in this region. 483 



 484 

        Fig. 7. Boxplot of winter MLD climatology distribution from HYCOM simulations and 485 
observations in five selected hexagonal regions (c, d, e, h, and i), as indicated in Fig. 6b. Each 486 
panel compares the distribution of MLDs during winter (December–February) among the 487 
observation (Obs) and HYCOM simulation 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊. 488 

c. Response of the DNN-informed KPP to Different Forcing Regimes 489 

        Surface forcing in the GOM varies markedly in space and time. Key drivers include wind 490 

conditions, wind-induced Langmuir waves, as well as buoyancy conditions. These processes 491 

collectively regulate near-surface turbulent mixing and therefore influence how the 𝐾𝐾𝐾𝐾𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 492 

schemes depart from the 𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 scheme, ultimately shaping the climatology of SSTs and 493 

MLDs in HYCOM. 494 



         To visualize the relative importance of these drivers, we adopt the regime diagram 495 

introduced by Van Roekel et al. (2012) and later extended by Li et al. (2019). Fig. 8 replicates 496 

this two-panel diagram: the top row represents destabilizing buoyancy conditions, while the 497 

bottom row stabilizing buoyancy conditions. The turbulent Langmuir number 𝐿𝐿𝑎𝑎𝑡𝑡along the x 498 

axis, the square root of the ratio of friction velocity divided by the surface Stokes drift magnitude 499 

as defined in McWilliams et al. (1997), quantifies the relative importance of wind/wave-driven 500 

Langmuir turbulence over wind-induced shear turbulence, while the ratio between mixed layer 501 

depth ℎ and Langmuir stability depth 𝐿𝐿𝐿𝐿 along y-axis quantifies the relative importance of 502 

buoyancy over wind and waves.  503 

 504 

        Fig. 8. Regime diagrams of forcing conditions in the GOM from 2002 to 2021. The top row 505 
(Panels a-c) depicts conditions under destabilizing buoyancy forcing, while the bottom row 506 
(panels d-f) shows conditions under stabilizing buoyancy forcing. In the destabilizing cases, thin 507 
dashed contours indicate the turbulent dissipation rate, and thick black lines enclose regimes 508 
where a single turbulence mechanism (wind-driven, Langmuir, or convective) contributes more 509 
than 90% of total dissipation. In the stabilizing cases, the horizontal blackline with −ℎ/𝐿𝐿𝐿𝐿 = 1/3 510 
represents the maximum equilibrium value based on Pearson et al. (2015). Blue contours 511 



represent the probability distribution (30%, 60%, 90% and 99%) of global ocean conditions from 512 
Li et al. (2019), while red panels indicate the corresponding distribution in the GOM over the full 513 
20-year period (panels a and d), during summer months (panels b and e) and during winter 514 
months (panels c and f).  515 

        Blue contours in Fig. 8 represent the global distribution of forcing regimes from Li et al. 516 

(2019), revealing that wind, wave, and buoyancy all play equally essential roles in modulating 517 

oceanic turbulence globally. While unstable buoyancy forcing can be the primary driver of OSBL 518 

turbulence, wind and wave are rarely the dominant driver. The forcing conditions in the GOM 519 

over 20 years are overlayed in Fig. 8 as red contours, with the left, middle, right columns 520 

representing distributions over all seasons, summer months and winter months, respectively. 521 

Compared to the global ocean, the GOM exhibits slightly greater dominance of convective 522 

turbulence under destabilizing buoyancy forcing. This aligns with the finding by Li et al. (2019) 523 

that convection is more prominent at low latitudes. Seasonally, 90% of the winter daily buoyancy 524 

forcing is destabilizing, and the winter forcing regime distributions under destabilizing forcing 525 

resemble the annual pattern, while 80% of the summer daily buoyancy forcing is stabilizing, and 526 

summer forcing regime distributions under stabilizing forcing are more representative of the 527 

overall stabilizing regime. 528 

        To investigate how the DNN-informed KPP schemes affect SST and MLD under different 529 

regimes, we calculated daily differences between 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 relative to 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿. 530 

These differences are aggregated into hexagonal bins within the regime diagram, and the mean 531 

values within each bin are mapped to visualize systematic patterns. 532 

        Fig. 9 shows the hexagonal regime diagrams for SST differences. A consistent pattern 533 

across both 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 is that as wave effects become more dominant, there is a 534 

negative trend of SST, indicating stronger wave induced turbulent mixing efficiently reduces 535 

SSTs. Under destabilizing buoyancy forcing condition, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 shows slightly warmer SSTs 536 

than the 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 (Fig. 8a), further amplifying KPP’s warm bias in the GOM during winter. In 537 

contrast, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 consistently produces lower SSTs across all regimes (Figs. 8b and 8d), 538 

effectively correcting the warm bias. 539 



 540 

        Fig. 9. Regime diagrams illustrating the SST differences of HYCOM simulations, 541 
𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 (panels a and c) and 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 (panels b and d), relative to 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿, under different 542 
turbulence forcing regimes. The top row (panels a and b) corresponds to the destabilizing 543 
buoyancy forcing, while the bottom row (panels c and d) corresponds to stabilizing buoyancy 544 
forcing. The color of each hexagon represents the mean SST difference, averaged over all 545 
samples whose forcing conditions fall within that hexagonal bin. Only hexagons with over 546 
100,000 samples are shown. Definition of the gray dashed contours and black solid lines are 547 
consistent with those in Fig. 8. 548 

        Fig. 10 shows corresponding MLD differences. Unlike SST, MLD difference changes 549 

exhibit a stronger dependence on buoyancy forcing than on wave effects. Under destabilizing 550 

buoyancy conditions (Figs. 10a and 10b), deeper MLDs are found in regions dominated by 551 

convective mixing, with 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 exhibiting more pronounced deepening, potentially 552 



contributing to the higher chance of extreme deep MLDs (over 150m) in winter (shown in Fig. 553 

7). Under stabilizing buoyancy condition (Figs. 10c and 10d), MLD deepens with increasing 554 

stability. As reported by Yuan et al. (2024), the enhancement of 𝜂𝜂 is stronger when MLD is 555 

shallower, corresponding to stronger stabilizing forcing. This may be linked to that the strength 556 

of Langmuir circulation is intense near surface (Weller and Price 1988; McWilliams et al. 1997; 557 

Li and Fox-Kemper 2020), where wave effects become more effective in enhancing mixing and 558 

thus deepening the MLD.  559 

 560 

        Fig. 10. Same as Fig. 9, but for MLD differences. 561 



        Another notable pattern from Fig. 10 is the shoaling of MLDs when wind and wave forcing 562 

are more dominating than the buoyancy forcing, especially under destabilizing buoyancy forcing 563 

in 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊. This shoaling results in large portion of shallower MLDs than in 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿, thus 564 

better agreeing with the distribution of observed MLDs. It is important to note that, this shoaling 565 

does not suggest that wave effects potentially suppress turbulent mixing in the real ocean. 566 

Instead, it is correcting the overestimation of MLDs by simulations using KPP scheme, whose 567 

parameters were derived from datasets outside the GOM. 568 

4. Discussion 569 

        In ocean models, biases of simulated SSTs and MLDs arise from inaccurate representation 570 

of several interacting processes, including small-scale turbulence parameterization, 571 

submesoscale, mesoscale dynamics and large-scale circulation. In this study, only the 572 

parameterization for small-scale turbulent mixing is improved. As shown in Fig. S4 in the 573 

supplementary materials, 𝐾𝐾𝐾𝐾𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 schemes have limited impact on sea surface heights (SSH) 574 

and high-frequency sea level anomaly (HSLA) fields, and similar bias patterns persist in all three 575 

HYCOM simulations when compared with observations, indicating that unmodified large-scale 576 

and mesoscale processes exert a dominant control on these features.  577 

        The persistent biases in SSH and HSLA fields also contribute to SST and MLD biases in the 578 

simulations. For example, compared to observations, a dome of positive bias, implying stronger 579 

anticyclonic circulation, exists in all three simulations in the northwest GOM. Within this dome 580 

lies a saddle region near 93°W, characterized by sharp SSH anomaly gradients on both its eastern 581 

and western flanks (Figs. S4c, S4e and S4g). This saddle region corresponds to hexagon c during 582 

winter months (Fig. 6), where the simulated MLDs from all HYCOM simulations are 583 

significantly deeper than observed, with minimal overlap in interquartile ranges (Fig. 7a). This 584 

highlights that improving vertical mixing alone is insufficient to eliminate SST and MLD biases, 585 

as the background circulation errors persist. To further reduce uncertainties in simulated SST and 586 

MLD, additional efforts are necessary to better represent larger-scale processes in the models. 587 

Since the three simulations exhibit similar climatological large-scale circulation, the differences 588 

in SSTs and MLDs among simulations can be primarily attributed to the distinct turbulent mixing 589 

parameterizations.  590 



        Although strong misalignment between wind and wave, when they are opposing each other, 591 

suppresses mixing (e.g., Van Roekel et al. 2012; McWilliams et al. 2014), the overall effect of 592 

wave-enhanced 𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 schemes is to increase turbulent mixing over interannual time scales in 593 

ocean models (e.g., Li et al. 2016; Ali et al. 2019), resulting in deeper mean MLDs than using the 594 

𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 scheme. this is also found in 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊, where mean MLDs are deepened over 595 

climatological scales. It indicates enhanced mixing due to Langmuir turbulence is more prevalent 596 

than suppressed mixing when waves oppose wind and underscore the importance of 597 

incorporating wave effects into vertical mixing parameterization schemes. 598 

        Unlike previous works on enhancing 𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 scheme mainly only considering wave 599 

enhancements, our 𝐾𝐾𝐾𝐾𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷  schemes also incorporate additional relationships into 600 

enhancements, such as dependencies on buoyancy stability that are not represented in wave 601 

enhancements in deterministic formulations. In the GOM, this results in MLD shoaling under 602 

specific wind-wave-buoyancy forcing combinations (Fig. 10), bringing the simulated MLD 603 

distributions closer to observations in 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 (Fig. 7). This suggests that 𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿, developed 604 

outside of the GOM, can overestimate turbulent mixing intensity under certain forcing regimes in 605 

this basin, and that simply adding wave effects without accounting for buoyancy stability 606 

correction could exacerbate existing biases. This also demonstrates that, data-driven schemes like 607 

𝐾𝐾𝐾𝐾𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 offer the potential to adaptively balance competing mixing processes, providing a more 608 

flexible alternative to fixed empirical enhancements. 609 

        The superior performance of 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 in terms of simulated SST and MLD relative to 610 

𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 highlights the extensive range of wind and wave conditions even over a regional 611 

ocean such as the GOM and underscores the significance of incorporating wave conditions in 612 

mixing parameterizations. 613 

5. Conclusion 614 

        In this study, deep neural networks (DNNs) are trained on over 700 turbulence-resolving 615 

large eddy simulation (LES) solutions, driven by a wide range of different forcing conditions in 616 

the Gulf of Mexico region derived from reanalysis products. The DNN models are used to 617 

predict two key coefficients in the K-Profile parameterization (KPP) scheme: the unresolved 618 



shear coefficient (𝜂𝜂) and the velocity scale coefficient (𝜖𝜖), as defined in equations 5 and 6. The 619 

trained DNN models are implemented into HYCOM to incorporate knowledge obtained from 620 

LES solutions into KPP. Three HYCOM simulations are conducted to evaluate the impact of 621 

non-breaking surface waves on vertical mixing. 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿 uses the baseline 𝐾𝐾𝐾𝐾𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 scheme 622 

without any wave effects, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁 excludes Stokes drift information from DNN inputs, and 623 

𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 includes it.  624 

        Key conclusions are summarized as follows: 625 

• 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 improves the representation of sea surface temperature (SST) and mixed layer 626 

depth (MLD) distribution, especially during winter when traditional schemes often suffer 627 

from systematic biases. 628 

• Under conditions where wave-induced turbulence is more dominant, 𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 tends to 629 

produce a stronger cooling effect in SST compared to the 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿. When destabilizing 630 

buoyancy forcing becomes more intense or stabilizing buoyancy becomes stronger, 631 

𝐻𝐻𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊 generally results in a deepening of the mixed layer relative to 𝐻𝐻𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿. 632 

• However, improvements in vertical mixing alone are not sufficient to resolve SST and 633 

MLD biases, since some biases are caused by large-scale circulation in the GOM.  634 

        This study demonstrates the promise of using machine learning to enhance traditional 635 

vertical-mixing schemes, yielding improved SST and MLD using three-dimensional realistic 636 

ocean models. However, it also indicates that SST and MLD variability depend not only on 637 

vertical mixing, but the impact of large-scale circulation is also critical. Future model 638 

development should consider combining DNN-based schemes with targeted approaches to 639 

capture the structure and variability of the LC, potentially through additional machine learning 640 

tools or deterministic corrections grounded in physical diagnostics. Moreover, expanding the 641 

coverage and diversity of LES training datasets, especially in dynamically complex regions such 642 

as high latitudes, equatorial areas and coastal regions, could further generalize the applicability 643 

of DNN-based parameterizations to the global ocean. 644 

        Overall, this study highlights the potential of machine learning to improve ocean model 645 

fidelity at critical air-sea interaction layers while pointing to the need for strategies that couple 646 



vertical and horizontal processes to achieve more realistic, physically consistent ocean 647 

simulations. 648 

 649 

Acknowledgements. 650 

        JY and JHL were supported by the Office of Naval Research under Grant No. N00014-23-1-651 

2553. JHL was also supported by the National Science Foundation under Grant No. 652 

OCE1945502. were supported by the Office of Naval Research through Grant N00014-23-1-653 

2547. Computations were performed using the high-performance computing resources provided 654 

by Louisiana State University and the Louisiana Optical Network Initiative (LONI). 655 

 656 

Data Availability Statement. 657 

        The CFSR and CFSv2 atmospheric reanalysis forcing data used to drive both LES and 658 

HYCOM simulations are available from the UCAR Research Data Archive 659 

(https://rda.ucar.edu/datasets/d093002/ for CFSR and https://rda.ucar.edu/datasets/d094002/ for 660 

CFSv2). The ERA5 wave spectra data are available from the Climate Data Store 661 

(https://cds.climate.copernicus.eu/datasets/reanalysis-era5-complete). The HYCOM source code 662 

with the KPP_DNN models is attached to the submission and will be made available through a 663 

GitHub page in the final version of the paper. 664 

REFERENCES 665 

Ali, A., and Coauthors, 2019: A comparison of Langmuir turbulence parameterizations and key 666 
wave effects in a numerical model of the North Atlantic and Arctic Oceans. Ocean 667 
Modelling, 137, 76-97. 668 

Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean 669 
surface boundary layer. Geophysical Research Letters, 39, L18605. 670 

Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian 671 
coordinates. Ocean modelling, 4, 55-88. 672 

Brenowitz, N. D., T. Beucler, M. Pritchard, and C. S. Bretherton, 2020: Interpreting and 673 
stabilizing machine-learning parametrizations of convection. Journal of the Atmospheric 674 
Sciences, 77, 4357-4375. 675 

https://rda.ucar.edu/datasets/d093002/
https://rda.ucar.edu/datasets/d094002/
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-complete


Chassignet, E. P., L. T. Smith, G. R. Halliwell, and R. Bleck, 2003: North Atlantic simulations 676 
with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate 677 
choice, reference pressure, and thermobaricity. Journal of Physical Oceanography, 33, 678 
2504-2526. 679 

Chassignet, E. P., and Coauthors, 2009: US GODAE Global Ocean Prediction with the HYbrid 680 
Coordinate Ocean Model (HYCOM). Oceanography, 22, 64-75. 681 

Chattopadhyay, A., and P. Hassanzadeh, 2023: Long-term instabilities of deep learning-based 682 
digital twins of the climate system: The cause and a solution. arXiv preprint 683 
arXiv:2304.07029. 684 

D'Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Ann Rev Mar Sci, 6, 101-115. 685 
D’Asaro, E. A., and G. T. Dairiki, 1997: Turbulence intensity measurements in a wind-driven 686 

mixed layer. Journal of physical oceanography, 27, 2009-2022. 687 
Fan, Y., and S. M. Griffies, 2014: Impacts of parameterized Langmuir turbulence and 688 

nonbreaking wave mixing in global climate simulations. Journal of Climate, 27, 4752-689 
4775. 690 

Fox-Kemper, B., L. Johnson, and F. Qiao, 2022: Ocean near-surface layers. Ocean mixing, 691 
Elsevier, 65-94. 692 

Fox-Kemper, B., and Coauthors, 2019: Challenges and Prospects in Ocean Circulation Models. 693 
Frontiers in Marine Science, 6, 65. 694 

Gargett, A. E., and J. Marra, 2002: Effects of upper ocean physical processes (turbulence, 695 
advection and air-sea interaction) on oceanic primary production. The sea, Wiley & Sons, 696 
19-49. 697 

Gentine, P., M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis, 2018: Could machine learning 698 
break the convection parameterization deadlock? Geophysical Research Letters, 45, 699 
5742-5751. 700 

George, J., M. A. Teixeira, and I. Stiperski, 2025: A physically-based modification of the KPP 701 
turbulence closure scheme for the upper ocean that accounts for the effects of Langmuir 702 
turbulence. Journal of Physical Oceanography, 55, 1067-1081. 703 

Good, S., and Coauthors, 2020: The current configuration of the OSTIA system for operational 704 
production of foundation sea surface temperature and ice concentration analyses. Remote 705 
Sensing, 12, 720. 706 

Group, G. B. C., 2019: The GEBCO_2019 Grid - a continuous terrain model of the global oceans 707 
and land. NERC British Oceanographic Data Centre. 708 

Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir-709 
Submesoscale Interactions: Descriptive Analysis of Multiscale Frontal Spindown 710 
Simulations. Journal of Physical Oceanography, 44, 2249-2272. 711 

Harcourt, R. R., 2015: An Improved Second-Moment Closure Model of Langmuir Turbulence. 712 
Journal of Physical Oceanography, 45, 84-103. 713 

Harcourt, R. R., and E. A. D'Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure 714 
wind seas. Journal of Physical Oceanography, 38, 1542-1562. 715 

He, H., and D. Chen, 2011: Effects of surface wave breaking on the oceanic boundary layer. 716 
Geophysical Research Letters, 38, L07604. 717 

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal 718 
Meteorological Society, 146, 1999-2049. 719 

Holte, J., L. D. Talley, J. Gilson, and D. Roemmich, 2017: An Argo mixed layer climatology and 720 
database. Geophysical Research Letters, 44, 5618-5626. 721 



Iyer, S., K. G. Hughes, and J. N. Moum, 2025: Predicting ocean turbulence across orders of 722 
magnitude using neural networks trained on multiyear observations. Artificial 723 
Intelligence for the Earth Systems, 4, 240093. 724 

Jayne, S. R., D. Roemmich, N. Zilberman, S. C. Riser, K. S. Johnson, G. C. Johnson, and S. R. 725 
Piotrowicz, 2017: The Argo program: Present and future. Oceanography, 30, 18-28. 726 

Jerlov, N. G., 1976: Marine optics.  Elsevier. 727 
Jouanno, J., E. Pallàs‐Sanz, and J. Sheinbaum, 2018: Variability and dynamics of the Yucatan 728 

upwelling: high‐resolution simulations. Journal of Geophysical Research: Oceans, 123, 729 
1251-1262. 730 

Kantha, L. H., and C. A. Clayson, 1994: An Improved Mixed-Layer Model for Geophysical 731 
Applications. Journal of Geophysical Research-Oceans, 99, 25235-25266. 732 

Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of 733 
Langmuir circulation in upper ocean mixing: Comparison of observations and 734 
simulations. Geophysical Research Letters, 36, L10603. 735 

Large, W. G., and P. R. Gent, 1999: Validation of vertical mixing in an equatorial ocean model 736 
using large eddy simulations and observations. Journal of Physical Oceanography, 29, 737 
449-464. 738 

Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic Vertical Mixing - a Review and 739 
a Model with a Nonlocal Boundary-Layer Parameterization. Reviews of Geophysics, 32, 740 
363-403. 741 

Lévy, M., L. Bopp, P. Karleskind, L. Resplandy, C. Éthé, and F. Pinsard, 2013: Physical 742 
pathways for carbon transfers between the surface mixed layer and the ocean interior. 743 
Global Biogeochemical Cycles, 27, 1001-1012. 744 

Li, Q., and B. Fox-Kemper, 2017: Assessing the Effects of Langmuir Turbulence on the 745 
Entrainment Buoyancy Flux in the Ocean Surface Boundary Layer. Journal of Physical 746 
Oceanography, 47, 2863-2886. 747 

——, 2020: Anisotropy of Langmuir turbulence and the Langmuir-enhanced mixed layer 748 
entrainment. Physical Review Fluids, 5, 013803. 749 

Li, Q., J. Bruggeman, H. Burchard, K. Klingbeil, L. Umlauf, and K. Bolding, 2021: Integrating 750 
CVMix into GOTM (v6.0): a consistent framework for testing, comparing, and applying 751 
ocean mixing schemes. Geoscientific Model Development, 14, 4261-4282. 752 

Li, Q., A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein, 753 
2016: Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean 754 
Modelling, 103, 145-160. 755 

Li, Q., and Coauthors, 2019: Comparing Ocean Surface Boundary Vertical Mixing Schemes 756 
Including Langmuir Turbulence. Journal of Advances in Modeling Earth Systems, 11, 757 
3545-3592. 758 

Liang, J. H., X. Wan, K. A. Rose, P. P. Sullivan, and J. C. McWilliams, 2018: Horizontal 759 
Dispersion of Buoyant Materials in the Ocean Surface Boundary Layer. Journal of 760 
Physical Oceanography, 48, 2103-2125. 761 

Liang, J. H., C. Deutsch, J. C. McWilliams, B. Baschek, P. P. Sullivan, and D. Chiba, 2013: 762 
Parameterizing bubble-mediated air-sea gas exchange and its effect on ocean ventilation. 763 
Global Biogeochemical Cycles, 27, 894-905. 764 

Liang, J. H., J. Yuan, X. Wan, J. Liu, B. Liu, H. Jang, and M. Tyagi, 2022: Exploring the use of 765 
machine learning to parameterize vertical mixing in the ocean surface boundary layer. 766 
Ocean Modelling, 176, 102059. 767 



McPhee, M. G., 1999: Parameterization of mixing in the ocean boundary layer. Journal of 768 
Marine Systems, 21, 55-65. 769 

——, 2008: Air-ice-ocean interaction: Turbulent ocean boundary layer exchange processes.  770 
Springer. 771 

McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill 772 
Science & Technology Bulletin, 6, 225-237. 773 

McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J 774 
Fluid Mech, 334, 1-30. 775 

McWilliams, J. C., E. Huckle, J. H. Liang, and P. P. Sullivan, 2014: Langmuir Turbulence in 776 
Swell. Journal of Physical Oceanography, 44, 870-890. 777 

Merino, M., 1997: Upwelling on the Yucatan Shelf: hydrographic evidence. Journal of Marine 778 
systems, 13, 101-121. 779 

Noh, Y., H. Ok, E. Lee, T. Toyoda, and N. Hirose, 2016: Parameterization of Langmuir 780 
circulation in the ocean mixed layer model using LES and its application to the OGCM. 781 
Journal of Physical Oceanography, 46, 57-78. 782 

Ott, J., M. Pritchard, N. Best, E. Linstead, M. Curcic, and P. Baldi, 2020: A Fortran-Keras Deep 783 
Learning Bridge for Scientific Computing. Scientific Programming, 2020, 1-13. 784 

Pearson, B. C., A. L. M. Grant, J. A. Polton, and S. E. Belcher, 2015: Langmuir Turbulence and 785 
Surface Heating in the Ocean Surface Boundary Layer. Journal of Physical 786 
Oceanography, 45, 2897-2911. 787 

Qiao, F. L., Y. L. Yuan, Y. Z. Yang, Q. N. Zheng, C. S. Xia, and J. A. Ma, 2004: Wave-induced 788 
mixing in the upper ocean: Distribution and application to a global ocean circulation 789 
model. Geophysical Research Letters, 31, L11303. 790 

Rasp, S., 2020: Coupled online learning as a way to tackle instabilities and biases in neural 791 
network parameterizations: general algorithms and Lorenz 96 case study (v1.0). 792 
Geoscientific Model Development, 13, 2185-2196. 793 

Rasp, S., M. S. Pritchard, and P. Gentine, 2018: Deep learning to represent subgrid processes in 794 
climate models. Proceedings of the National Academy of Sciences, 115, 9684-9689. 795 

Reichl, B. G., and R. Hallberg, 2018: A simplified energetics based planetary boundary layer 796 
(ePBL) approach for ocean climate simulations. Ocean Modelling, 132, 112-129. 797 

Reichl, B. G., and Q. Li, 2019: A parameterization with a constrained potential energy 798 
conversion rate of vertical mixing due to Langmuir turbulence. Journal of Physical 799 
Oceanography, 49, 2935-2959. 800 

Reichl, B. G., D. Wang, T. Hara, I. Ginis, and T. Kukulka, 2016: Langmuir Turbulence 801 
Parameterization in Tropical Cyclone Conditions. Journal of Physical Oceanography, 46, 802 
863-886. 803 

Roemmich, D., and A. S. Team, 2009: Argo: the challenge of continuing 10 years of progress. 804 
Oceanography, 22, 46-55. 805 

Sane, A., B. G. Reichl, A. Adcroft, and L. Zanna, 2023: Parameterizing Vertical Mixing 806 
Coefficients in the Ocean Surface Boundary Layer Using Neural Networks. Journal of 807 
Advances in Modeling Earth Systems, 15, e2023MS003890. 808 

Sane, A., B. Reichl, A. Adcroft, and L. Zanna, 2025: Machine Learned Equations for Vertical 809 
Mixing in the Ocean Surface Boundary Layer. 810 

Schmittner, A., A. Oschlies, X. Giraud, M. Eby, and H. L. Simmons, 2005: A global model of the 811 
marine ecosystem for long‐term simulations: Sensitivity to ocean mixing, buoyancy 812 



forcing, particle sinking, and dissolved organic matter cycling. Global Biogeochemical 813 
Cycles, 19, GB3004 GB3004. 814 

Skyllingstad, E. D., T. Paluszkiewicz, D. W. Denbo, and W. D. Smyth, 1996: Nonlinear vertical 815 
mixing processes in the ocean: Modeling and parameterization. Physica D: Nonlinear 816 
Phenomena, 98, 574-593. 817 

Smith, K. M., P. E. Hamlington, K. E. Niemeyer, B. Fox‐Kemper, and N. S. Lovenduski, 2018: 818 
Effects of Langmuir turbulence on upper ocean carbonate chemistry. Journal of Advances 819 
in Modeling Earth Systems, 10, 3030-3048. 820 

Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of Winds and Currents Coupled to 821 
Surface Waves. Annual Review of Fluid Mechanics, 42, 19-42. 822 

Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. 823 
Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer 824 
instabilities from gliders. Journal of Physical Oceanography, 46, 1285-1307. 825 

Toole, J. M., 1998: Turbulent mixing in the ocean: Intensity, causes, and consequences. Ocean 826 
modeling and parameterization, Springer, 171-190. 827 

Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence 828 
models. Journal of Marine Research, 61, 235-265. 829 

Van Roekel, L. P., B. Fox‐Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The 830 
form and orientation of Langmuir cells for misaligned winds and waves. Journal of 831 
Geophysical Research: Oceans, 117, C05001. 832 

Wang, P., J. C. McWilliams, J. Yuan, and J. H. Liang, 2025: Langmuir mixing schemes based on 833 
a modified K‐profile parameterization. Journal of Advances in Modeling Earth Systems, 834 
17, e2024MS004729. 835 

Weller, R. A., and J. F. Price, 1988: Langmuir Circulation within the Oceanic Mixed Layer. 836 
Deep-Sea Research Part a-Oceanographic Research Papers, 35, 711-747. 837 

Wong, A. P., and Coauthors, 2020: Argo data 1999–2019: Two million temperature-salinity 838 
profiles and subsurface velocity observations from a global array of profiling floats. 839 
Frontiers in Marine Science, 7, 700. 840 

Yuan, J., and J. H. Liang, 2021: Wind- and Wave-Driven Ocean Surface Boundary Layer in a 841 
Frontal Zone: Roles of Submesoscale Eddies and Ekman-Stokes Transport. Journal of 842 
Physical Oceanography, 51, 2655-2680. 843 

Yuan, J., J. H. Liang, E. P. Chassignet, O. Zavala‐Romero, X. Wan, and M. F. Cronin, 2024: The 844 
K‐profile parameterization augmented by deep neural networks (KPP_DNN) in the 845 
general ocean turbulence model (GOTM). Journal of Advances in Modeling Earth 846 
Systems, 16, e2024MS004405. 847 

Zavala-Hidalgo, J., A. Gallegos-García, B. Martínez-López, S. L. Morey, and J. J. O’Brien, 848 
2006: Seasonal upwelling on the western and southern shelves of the Gulf of Mexico. 849 
Ocean dynamics, 56, 333-338. 850 

Zavala‐Hidalgo, J., S. L. Morey, and J. J. O'Brien, 2003: Seasonal circulation on the western 851 
shelf of the Gulf of Mexico using a high‐resolution numerical model. Journal of 852 
Geophysical Research: Oceans, 108, 3389. 853 

Zhu, Y., R.-H. Zhang, J. N. Moum, F. Wang, X. Li, and D. Li, 2022: Physics-informed deep-854 
learning parameterization of ocean vertical mixing improves climate simulations. 855 
National Science Review, 9, nwac044. 856 

 857 


	ABSTRACT

