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Abstract

A variety of practical applications, such as hydrological and ecological modeling, require high-
resolution meteorological data sets. A crucial, yet notoriously difficult to model, component of such data
sets is precipitation. Here, we present an analysis of the seasonal, subseasonal, and diurnal variability of
rainfall from the COAPS Land-Atmosphere Regional Reanalysis for the Southeast at 10-km resolution
(CLARReS10). Most of our analysis focuses on the representation of summertime subseasonal and
diurnal variability. Summer precipitation in the Southeast is a particularly challenging modeling problem
because of the variety of regional-scale phenomena, such as sea breeze, thunderstorms and squall lines,
which are not adequately resolved in coarse atmospheric reanalyses, but which contribute significantly

to the hydrological budget over the region.

We dynamically downscaled the National Centers for Environmental Prediction (NCEP) —
Department of Energy (DOE) Reanalysis Il (R2) and the European Centre for Medium-Range Weather
Forecast (ECMWF) 40-year Reanalysis (ERA40) with the NCEP/Experimental Climate Prediction Center
(ECPC) Regional Spectral Model (RSM). This downscaling was performed over the Southeast United
States at a horizontal resolution of 10 km for the period 1979-2001. We compared the resulting regional

reanalyses to gridded observations and station data.

We find that the downscaled reanalyses show good agreement with observations in terms of
both the relative seasonal distribution and the diurnal structure of precipitation, although precipitation
amounts tend to be systematically overestimated. Given the degree of success in simulation of the
characteristics of regional precipitation by the dynamic downscaling of global reanalyses over the
Southeast United States and the cost-effectiveness of such downscaling, we conclude that this approach

to regional reanalysis is a viable proxy for conventional reanalysis.



1. Introduction

The scientific community involved with the hydrological, ecological and biological modeling of
the Earth system is showing a growing demand for reliable high-resolution meteorological data
sets that provide fine spatial and temporal detail of near-surface variables (e.g Clark et al 2001,
Rahbek and Graves 2001, Shukla et al 2009). A conventional global or regional reanalysis is very
resource-intensive. Furthermore, the degree to which the assimilation of observations, such as
radiosondes, which are sparse in space and time — there are about 90 upper air observation
stations over North America, taking measurements once or twice each day

(http://www.ua.nws.noaa.gov/) — would be beneficial when reanalysis grids are approaching

10-km or higher resolutions is unclear.

This paper is devoted to examining the seasonal and boreal summer diurnal variability
of precipitation in two regionally downscaled dynamical model integrations over the Southeast
United States. The Southeast United States are of particular interest for such downscaling,
given the large proportion of agricultural lands, endangered habitats, and large cities with
water management concerns in the region. Precipitation, especially of convective nature, is one
of the most challenging variables for any reanalysis. A high-resolution model is a necessary
prerequisite for the accurate representation of convective precipitation in a region with

complex coastal geometry.

The present work is motivated by a similar kind of model integration over California
(Kanamitsu and Kanamaru 2007; Kanamaru and Kanamitsu 2007b), wherein it was shown that

high-resolution downscaling from a coarse-resolution reanalysis produces regional features that



are in encouraging agreement with station observations. Such dynamical downscaling is made
viable by assuming that small scales are governed by the large-scale forcing and any feedback
from the small to the large scales is insignificant. In fact, Kanamaru and Kanamitsu (2007b)
showed that a regional model with high spatial resolution forced at the lateral boundaries by a
realistic large-scale forcing is capable of generating features that are comparable, and in some
instances an improvement, to the much more resource-intensive North American Regional
Reanalysis (NARR; Mesinger et al. 2006). Von Storch et al. (2000) claimed that such dynamical
downscaling analysis from a coarser reanalysis may be considered “a poor person’s data

assimilation technique”, since it doesn’t require the direct assimilation of observations.

There has been a growing recognition that nudging the state variables toward the large-
scale forcing can significantly reduce regional climate model drift in the interior of the regional
domain (von Storch et al. 2000; Castro et al. 2005; Kanamaru and Kanamitsu 2007a). As a result,
the large-scale analyses, such as the NCEP-NCAR reanalysis (Kalnay et al. 1996), the NCEP-DOE
reanalysis Il (hereafter R2; Kanamitsu et al. 2002) or the ECMWF’s ERA40 (hereafter ERA40;
Uppala et al. 2006), can be downscaled continuously in time for the period of the available
reanalysis without periodically reinitializing the regional model. This continuous dynamic
downscaling from reanalysis is far less expensive than conventional data assimilation and
provides meteorological data sets that are self-consistent (i.e., whose energy and water

budgets are completely accountable; Kanamitsu and Kanamaru 2007).

Seasonal forecasts for the summer season in the Southeast United States present a

significant challenge. Many of the seasonal prediction models exhibit extremely poor skill in



precipitation and surface temperature forecasts over the region (Stefanova et al. 2011). A high-
resolution model is essential in capturing the spatial and temporal distribution of rainfall in the
region. Lim et al. (2010) showed that the downscaling of R2 with RSM at 20 km over the
Southeast results in a reduced wet bias and a more realistic spatial pattern of summer
precipitation, with improved spatial and temporal (interannual) correlation and reduced mean
square error of summer rainfall totals. While Lim et al. (2010) was limited to summer
precipitation totals from separate summertime initializations of the regional model, here we
present a detailed analysis of the seasonal, subseasonal, and diurnal variability of rainfall from a
continuous twenty-two-year-long integration that we call the COAPS Land-Atmosphere
Regional Reanalysis for the Southeast at 10-km resolution (hereafter CLARReS10). The global
reanalyses, R2 (with a native grid resolution of approximately 1.875 degrees latitude and
longitude) and ERA40 (with a native grid resolution of approximately 1.1 degrees latitude and
longitude), have been dynamically downscaled with the RSM, resulting, respectively, in the
CLARReS10-R2 and CLARReS10-ERA40 data sets. The downscaling has been performed over the
Southeast United States at a horizontal resolution of 10 km and is continuous for the period
1979-2001. The two downscaled reanalyses are compared to gridded observations and station
data. Specifically, this paper analyzes the ability of such continuous dynamical downscaling over
the Southeast United States to create a realistic temporal structure of precipitation. In addition
to addressing the average annual cycle, the paper focuses on the summertime precipitation
variability. The summer season in the Southeast United States supports a variety of pertinent
small-scale features (such as sea breeze, thunderstorms, squall lines, tropical and extratropical

cyclones) that are not adequately resolved in many of the existing atmospheric reanalyses.



These phenomena do, however, contribute significantly to the hydrological budget over the

region (e.g. Winsberg 2003; Misra et al. 2011).

The remainder of this paper is structured as follows: section 2 provides details about the
regional model, domain, and initial and boundary conditions; section 3 describes the validation
data sets; section 4 presents the study results; and finally, section 5 briefly summarizes the

study findings.

2. Model description and forcing

This study uses the RSM model originally developed at NCEP (Juang and Kanamitsu 1994) and
now maintained at the Experimental Climate Prediction Center at the University of California at
San Diego (UCSD) (Kanamitsu and Kanamaru 2007). An attractive feature of the RSM is the
scale-selective bias correction (SSBC). It allows the downscaling (or nesting) ratio to be much
greater than 1:3 (used typically in other regional models; Warner et al 1997); Kanamaru and
Kanamitsu (2007a) show that SSBC makes the solution from the RSM relatively insensitive to
the size of the regional domain and the location of the lateral boundaries. In independent
regional modeling studies with other regional climate models, it has been shown that spectral
nudging of the smallest wave numbers (or largest wavelengths of the regional domain) toward
the large-scale forcing is necessary to avoid unrealistic regional climate model drift (von Storch

et al. 2000; Castro et al. 2005).

The regional model domain extends from 24°N to 36°N and from 90°W to 76°W (Fig. 1).
RSM uses the winds, temperature, humidity, and surface pressure of the global reanalyses

(either R2 or ERA40) at six-hourly intervals as lateral boundary conditions. In the interior of the



domain, RSM uses SSBC with a damping scale of 1000 km, which nudges the large-scale
features within the regional domain toward the global reanalysis. The nudging is performed
uniformly at all vertical levels. The RSM model configuration used here is shown in Table 1. For
this study, the most important change to the RSM version used by Kanamitsu and Kanamaru
(2007b) and Kanamaru and Kanamitsu (2007) is the replacement of the Oregon State University
land surface scheme (Pan and Mahrt 1987) with the more recently developed NOAH land
surface scheme (Ek et al. 2003). The sea surface temperatures for these integrations are from
the National Oceanic and Atmospheric Administration (NOAA) Extended Reconstruction Sea
Surface Temperature analysis version 3 (ERSSTV3; Smith et al. 2008). The model deep
convection is parameterized using the simplified Arakawa-Schubert scheme (SAS; Pan and Wu

1995), and shallow convection is parameterized following Slingo (1987).

3. Validation data sets

We use the following observational station and gridded data sets for model validation:

a) Monthly: PRISM gridded precipitation at 4-km resolution (Daly et al. 1994) and National
Climate Data Center (NCDC) monthly station climatology for the period 1971-2000
available online from

http://www.ncdc.noaa.gov/oa/documentlibrary/pdf/eis/clim20eis.pdf

b) Daily: NOAA Climate Prediction Center (CPC) Daily US Unified Precipitation at 0.25°

(1979-1998) (Higgins et al. 1996)



c) Hourly: Automated Surface Observing Stations (ASOS) and Automated Weather
Observing Stations (AWQS) observations from NCDC

(http://www.ncdc.noaa.gov/oa/climate/stationlocator.html). We also use two

additional data sets of remotely sensed precipitation observations with limited temporal
coverage: the Tropical Rainfall Measurement Mission (TRMM) 3B42 3-hourly multi-
satellite precipitation analysis (Huffman et al 2007), available since 1998 at a 0.25
degree resolution, and the NCEP/ Environmental Modeling Center (EMC) US gridded
multi-sensor estimated hourly precipitation analysis at 4 km for the period 2004-2009

(Lin and Mitchel 2005).

Additionally, we use the hourly precipitation from two new-generation reanalyses—NCEP’s
Climate Forecast System Reanalysis (CFSR; Saha et al. 2010) and NASA’s Modern Era
Retrospective Analysis for Research and Applications (MERRA; Bosilovich et al. 2008) for

comparison of the diurnal cycle of summer precipitation.

4. Results
4.1 Seasonal cycle

The seasonal cycle was calculated over nine broad subregions (north and south Alabama and
Georgia, South Carolina, the western and eastern Florida Panhandle, and central and south
Florida; red boxes in Fig. 1). The regions were selected to be of equal size (3°-by-2°) and roughly
fit within the geographical state boundaries. The average precipitation of each calendar month
is divided by the average annual total precipitation (Fig. 2; note the wet bias in both
CLARReS10-R2 and CLARReS10-ERA40) to give each month’s fractional contribution to the

annual average (Fig. 3). Here the observed values (PRISM, black dashed line) are compared to
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the global reanalyses (R2, blue dots; ERA40, red dots) and to the corresponding regional

reanalyses (CLARReS10-R2, blue line; CLARReS10-ERA4Q, red line).

In the majority of the subregions the observations indicate a primary annual peak of
rainfall in the boreal summer preceded by a secondary peak in the boreal spring months. North
Alabama is the only subregion without an observed summer precipitation peak. In south
Alabama and north Georgia the summer peak is present but secondary to the spring peak, and
in south Florida the spring peak is nearly absent. Overall, the large-scale reanalyses have a
tendency to underestimate the contribution of the spring precipitation peak to the annual total
and to overestimate the contribution of the summer precipitation peak. In the majority of
subregions the benefit of downscaling is a reduction of this bias. In both CLARReS10-R2 and
CLARReS10-ERA40 the relative dry bias in the spring months is reduced (especially in north
Florida and south Alabama). In the summer months the CLARReS10 data sets reduce the wet

biases of their respective global reanalyses.

For both the spring and summer seasons, the amount of bias reduction is larger for the
downscaling of R2 compared to the downscaling of ERA40 (not because the downscaled R2 is
much closer to observations than the downscaled ERA40, but rather because the global R2 is
further away to begin with). However, both the global and regional reanalyses incorrectly
generate a summer precipitation maximum over north Alabama and overestimate the summer
maxima for north Georgia and south Alabama, and, to a lesser extent, those for South Carolina
and south Georgia. Over Florida, however, the seasonal cycle of the regional reanalyses

matches well with observations.



A similar comparison of the two global and two regional reanalyses with observations
for a number of Florida stations (Fig. 4) highlights the potential benefit of reanalysis
downscaling for local applications. Here, instead of comparing area averages, station
observations are compared to the corresponding reanalysis grid point closest to the particular
station’s coordinates. These plots demonstrate that the regionally averaged results are similar
to those obtained at a single point: the global reanalyses tend to overestimate the contribution
of summer precipitation to the annual total and to underestimate the contribution of the spring
and winter precipitation. In contrast, both regionally downscaled reanalyses are relatively

closer to the observations of the seasonal cycle of precipitation.

4.2 Phenomenological comparison of coarse and fine-resolution precipitation

The reduction of bias of the regional reanalyses compared to their “parent” global
reanalyses is likely attributable to the regional model’s ability to resolve the precipitation
associated with finer-scale phenomena, such as frontal passages and sea breeze circulation
while remaining constrained to the reanalyses at the synoptic and regional scale by the SSBC.
For brevity, we restrict the following two demonstrations to a comparison between ERA40 to
CLARReS10-ERA40; the comparison between R2 and CLARReS10-R2 is no different in nature. Fig
5 illustrates one such example, the passage through the region of a strong frontal system on
March 13, 1993. This frontal system, dubbed “storm of the century”, was a large cyclonic storm
and was unique for its intensity with hurricane-strength winds, massive size and its wide
reaching effect (Kocin et al. 1995). There were torrential rains in central Florida with

measurable snowfall as far south as north Florida associated with this storm (Kocin et al 1995).
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In comparison with observations in Fig. 5f, the fine scale banded features of precipitation
absent in ERA40 (Fig. 5a) is reasonably well captured by CLARReS10-ERA40 (Fig. 5b). The
location and even the precipitation rates in Florida, Georgia, South Carolina, and Southern
Alabama are very well captured in CLARReS10-ERA40. However the MSLP in ERA40 (Fig. 5a) and
CLARReS10-ERA40 (Fig. 5b) are comparable to each other with the lowest pressure around 985
hPa while observations (Fig. 5e) indicate the lowest pressure of 972 hPa centered at the border
of Georgia and South Carolina. The convergence fields in Figs. 5c and d are quite consistent and
reflective of the precipitation field of ERA40 and CLARReS10-ERA40 respectively. The fine scale
features of convergence and their higher magnitudes in CLARReS10-ERA40 (Fig. 5d) are poorly

resolved in ERA40 (Fig. 5c).

The sea breeze representation in the global and regional models is illustrated on the
example of composite diurnal cycle for three consecutive summer days (28 July 2000 — 30 July
2000) from ERA40 (Fig 6), CLARReS-ERA4O0 (Fig. 7) and the Tropical Rainfall Measuring Mission
(TRMM) 3B42 observations (Huffman et al 2007) (Fig 8). These days were randomly picked from
the peak of the summer season and within the TRMM satellite’s observing period and have not
been selectively chosen beyond that. The composite surface convergence field of ERA40 (Fig 6)
has much smaller magnitudes than that of CLARReS10-ERA40 (Fig. 7). In CLARReS10-ERA40
there is a pronounced pattern of diurnally varying convergence/divergence parallel to the
coastline. By 18 GMT (2pm EDT), a convergence line forms on the inland side of the coast with a
corresponding divergence line over the water. As time progresses to 00 GMT (8pm EDT), the
convergence region broadens and spreads further inland, while the divergence broadens and

spreads further over the water. The converse process takes place between 06 and 12 GMT (2
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and 8am EDT) as the land-ocean temperature gradients switch sign, such that by 12 GMT (8am
EDT) the convergence is over water and divergence is over land. This dramatic diurnal variation
of low-level convergence is all but absent in ERA40. Although a direct validation of the diurnal
variability of convergence is not possible due to lack of data, the behavior of CLARReS10-ERA40
is in agreement with the conceptual understanding of sea breeze circulation (e.g. Abbs and
Physick 1992). The comparison of the convergence field with the 6-hourly accumulated
precipitation is also in conceptual agreement with sea-breeze circulation. The largest 6-hourly
mean precipitation rates in CLARReS10 (>32mm/day) are found over the areas of strongest
surface convergence (South Florida at 00 GMT (8pm EDT) and the Florida/Georgia border at 18
GMT (2pm EDT)). These validate remarkably well with the TRMM 3B42 observations (Fig 8).
ERA40, by contrast, has no precipitation rates exceeding 32 mm/day over Florida or Georgia,

and its timing and spatial structure of the sea-breeze precipitation is incorrect.

4.3 Summer mean and variance

We next examine the reanalyses’ climatological means and variances for the summer months,
June, July and August (JJA) (Fig. 9). The well-known overall wet bias of R2 (Kanamitsu et al.
2002) is apparent (Fig. 9a), as is the more realistic mean JJA precipitation from ERA40 (Betts et
al 2006) (Fig. 9b). CLARReS10 reduces the wet bias of R2 (Fig. 9c) but introduces a wet bias to
ERA40 (Fig. 9d). This seeming contradiction can be explained by the difference in convective
parameterization between the two global reanalyses, and by possible differences in the
boundary conditions provided by the two reanalyses to the regional model. Since, as we will

illustrate shortly, ERA40 contains more low-level moisture than R2, CLARReS10-ERA40 has more
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precipitation than CLARReS10-R2. However, despite the increased moisture in ERA40 compared
to R2, the physics package for R2 produces larger precipitation amounts. In both regional
downscalings the average summer precipitation rate is overestimated by about 2 to 3 mm/day
(or approximately 6 to 9 cm/month). However, the local maxima in south Florida, western
central Florida and the Florida Panhandle are present (if overestimated) in the CLARReS10 data

sets.

The interannual variance of JJA mean rainfall as illustrated by the standard deviation
shows that both R2 and ERA40 capture the high variance in the Florida Panhandle; however, R2
(unlike ERA40) underestimates the variance over southwest and central Florida. The
magnitudes and geographical distribution of interannual variance of summer precipitation are
simulated relatively well in the CLARReS10 data sets, with foci of variance around the central

Florida Panhandle and the western coast of central Florida.

4.4 Summer precipitation frequency

Is the excess of precipitation in the downscaled reanalyses, particularly outside Florida, the
result of an increased number of rainy days or an increased frequency of heavy precipitation
events? To address this question, we calculated the average percentage of days in JJA with
precipitation exceeding (a) 1 mm (Fig. 10) and (b) 20 mm (Fig 11) for the two CLARReS10
downscaled reanalyses and the CPC Daily US Unified Precipitation, as well as area averages
(over the boxes in Fig. 1) of the percentage of days in JIA exceeding a threshold of 0.5, 1, 5, 10,
15, 20, and 30 mm. The latter averages were calculated for the two global reanalyses, their

corresponding downscaled reanalyses, and CPC Daily US Unified Precipitation (Fig. 12).

13



Outside Florida, both regional reanalyses overestimate the overall frequency of rainy
days (daily precipitation exceeding 1 mm) by roughly 5 to 15 percentage points and the
standard deviation of that frequency by up to 25 percentage points. CLARReS-R2, with its
reduced frequency of rainy days outside Florida, conforms to the observations better than
CLARReS10-ERA40 does. In most of Florida, this frequency is underestimated, particularly by
CLARReS10-R2. In general, the average frequency of rainy days in summer is higher in the

CLARReS10-ERA40 downscaling than in CLARReS10-R2.

Both in Florida and in the remainder of the domain, days with heavy (>20 mm)
precipitation are also more frequent in CLARReS10-ERA40 compared to CLARReS10-R2. Over
Florida both downscaled reanalyses demonstrate a pattern similar to observations in terms of
the spatial distribution, with a broad maximum over peninsular Florida and the Gulf. The
percentage of heavy precipitation days in Florida in CLARReS10-R2 is in very good agreement
with the observations; however, in the southern part of the Florida peninsula, CLARReS10-
ERA40 overestimates the frequency of heavy precipitation days by up to 25 percentage points.
Outside Florida, heavy precipitation days are more frequent in the downscaled reanalyses than
they are in observations, especially in CLARReS10-ERA40. Both regional reanalyses correctly
identify a relatively high interannual variability of the number of heavy precipitation days in the

Florida panhandle.

For all nine subregions of the domain, R2 overestimates the probability of precipitation
exceeding any threshold (Fig. 12). At the same time, the frequency of relatively light (<5 mm)

precipitation days is somewhat underestimated. ERA40, on the other hand, overestimates the
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frequency of days with up to 10 mm of precipitation, and underestimates the frequency above
that threshold. Averaged over the subregions, both CLARReS10 data sets are very close in terms
of their probabilities of exceedance, with the exception of South Florida, where CLARReS10-
ERA40 strongly overestimates the frequency of precipitation days at all thresholds above 5mm,
while CLARReS10-R2 matches well with the observed frequencies. In the remainder of the
domain, both CLARReS10 generally underestimate the frequency of days with light precipitation

(<5mm), and slightly overestimate the frequency of days with precipitation greater than 5mm.

Comparison of the downscaled reanalyses with the corresponding observations (not
shown) demonstrates that, not surprisingly, rainy days are generally more frequently observed
in wet years than in dry years, and that this interannual variation of the frequency of rainy days
is relatively well captured by both regional reanalyses, especially over peninsular Florida and

east of the Appalachians.

What accounts for the drastic difference between the climatology of summer
precipitation in the two downscaled reanalyses in South Florida? A Hovmiiller diagram of the
difference in precipitation between CLARReS10-ERA40 and CLARReS10-R2 at 25.5N (Fig 13a)
demonstrates that the difference systematically manifests each summer, and therefore cannot
be attributed to a limited number of extreme events. Although it is impossible to definitively
identify the source of this difference it is likely a consequence of the increased low-level (1000-
850mb) moisture convergence to the east (i.e., generally upstream) of the precipitation excess
and increased low-level moisture (Fig 13b) and total column precipitable water (not shown) in

CLARReS10-ERA40 compared to CLARReS10-R2. The difference in low-level moisture content
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can be traced back to the “parent” reanalyses (Fig. 14). The global ERA40 reanalysis generally
contains more low-level moisture than R2 throughout the domain during the summer; this
difference increases towards the southern part of peninsular Florida. It is likely that at least
some of the discrepancy between the two reanalyses can be attributed to their different native
resolutions (1.1 degrees for ERA40, 1.875 degrees for R2) and the consequent discrepancy in
land-sea mask representation, and different formulations of convective precipitation, but

pinpointing its exact source is beyond the scope of the present paper.

We selected two years, 1992 and 1994, to illustrate the consequences of having large
(21992) vs. small (1994) difference of the low-level moisture fields between ERA40 and R2 over
south Florida (see Fig. 13). When the JJA low-level moisture in ERA40 is larger than that in R2,
as is the case for majority of years, the precipitation in CLARReS10-ERA40 far exceeds that in
CLARReS10-R2 over south Florida (Fig. 15a). In the case when the low-level moisture in ERA40 is
similar to that in R2, the precipitation amounts for south Florida in CLARReS10-ERA40 and
CLARReS10-R2 are much closer (Fig. 15b). The observed difference in precipitation between the
two years (Fig 15e, f) shows a wet anomaly extending from Florida’s panhandle through
southeastern Alabama and most of inland Georgia to western South and North Carolina. South
Florida, northwestern Alabama, western Mississippi, Tennessee and the coastal areas of
Georgia, North and South Carolina are dominated by a dry anomaly; of these, the largest
anomaly values are found in south Florida. Both CLARReS10-R2 and CLARReS10-ERA40 capture
the wet anomaly well, although both extend it further west than the observations. CLARReS10-
R2 fails to represent the dry anomaly of south Florida (Fig. 15c); CLARReS10-ERA40 (Fig. 15d),

on the other hand, captures it very well.
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4.5 Diurnal cycle

The diurnal cycle of summer precipitation in the coastal regions of the Southeast United States
is dominated by the sea breeze effects (Byers and Rodebush, 1948). The sea breeze circulation
is set into motion by the land-ocean temperature gradient. Along the Florida peninsula, on
average, the sea breeze peaks earlier at the east cost than at the west coast, and the timing of
the peak increases going from south to north; maximum sea breeze thunderstorm activity is
found in the southwest corner of the peninsula (Schwartz and Bosart 1979, Blanchard et al.

1985, Michaels et al. 1987).

The average time of diurnal summer rainfall maximum from CLARReS10-R2 and
CLARReS-ERA40 (Fig. 16) illustrates the diurnal evolution of model convection. Along the coast,
precipitation peaks in the late afternoon, between 20 and 22 GMT (4pm and 6pm EDT) in
CLARReS10-R2 and generally about an hour or two earlier in CLARReS10-ERA40. Inland maxima
are achieved in the early evening, between 22 and 24 GMT (6pm and 8pm EDT; CLARReS10-R2)
and between 21 and 23 GMT (5pm and 7pm EDT; CLARReS10-ERA40). The difference between
CLARReS10-R2 and CLARReS10-ERA40 is shown in Fig. 16, bottom left. Gridded hourly
observations are not available for the period 1979-2001. Instead, we compare the timing of
diurnal maximum of precipitation to that of the NCEP/ EMC US gridded multi-sensor estimated
hourly precipitation analysis for the period 2004-2009 (Fig. 16, bottom right). A qualitative
comparison between this analysis and the two CLARReS10 data sets, assuming that the

interannual variability of the timing of precipitation maximum is negligible, suggests that the
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CLARReS10-ERA40 is better at representing the diurnal cycle of Florida, while CLARReS10-R2 is

better at representing the diurnal cycle in the remainder of the domain.

The hourly evolution of the precipitation rate during an average summer day for several
stations throughout the region (Fig. 17) illustrates the skill of the CLARReS10 data set in
simulating the diurnal variability of rainfall. The results were also compared to the “parent”
global reanalyses and to the CFSR and MERRA reanalyses. The summertime diurnal cycle in
CLARReS10 is in very good agreement with station observations, particularly in Florida, and an
improvement over both R2 and ERA40 (Fig. 18). Both CLARReS10-R2 and CLARReS10-ERA40 are
also clearly superior to the new-generation global reanalyses, CFSR and MERRA. A likely
explanation for the early rainfall maximum and overestimated precipitation amounts by CFSR is

a possible bias in soil moisture and evapotranspiration during the wet season (Silva et al 2011).

5. Summary and conclusions

In this study we dynamically downscaled two large-scale global reanalyses to a high-resolution
10-km grid over the Southeast United States. The continuous downscaling was performed over
two decades of data. The resulting two data sets, which we call CLARReS10, show significant
improvement in their rendition of the means and variance of seasonal cycle and summer
season rainfall over most of the Southeast United States, and especially over Florida, as
evidenced by comparisons to gridded and station observations. This improvement can be
attributed to the ability of the regional model to create a more accurate representation of the
spatial and temporal structure of finer-scale phenomena, such as the precipitation associated

with cold season frontal passages and warm season sea breeze circulations, while remaining
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constrained to the reanalyses at synoptic scales by SSBC. An accumulation of multiple better-

resolved precipitation events would naturally result in an improved climatology.

Likewise, the simulation of the diurnal cycle of rainfall, particularly over Florida, is in
very good agreement with station observations and a clear improvement over the coarser
global reanalyses CFSR and MERRA. We believe that this is a consequence of the higher
resolution of CLARReS10, which results in a better resolution of the coastline and land-ocean
temperature contrast that can drive the mesoscale circulations associated with these gradients.
In addition to CLARReS10 having a slightly higher resolution than MERRA and CFSR, all three
reanalyses use different physics packages in their respective models. While we are not claiming
superiority of the physics used in RSM, we believe that the scale-selective bias correction and

higher resolution collectively contribute to the improvements seen in CLARReS10.

We show the presence of some systematic differences between the precipitation in
CLARReS10-ERA40 and CLARReS10-R2. This difference does not parallel the difference in
precipitation between the global reanalyses themselves: on average, the precipitation in ERA40
is less than that in R2, while the converse is true of CLARReS10-ERA40 and CLARReS10-R2. This
apparent paradox could be explained by the difference in convective parameterization between
the two global reanalyses and the difference in their low-level humidity fields. Since ERA40
contains more low-level moisture than R2, CLARReS10-ERA40 has more precipitation than
CLARReS10-R2. However, despite the increased moisture in ERA40 compared to R2, it has a less

efficient convective precipitation scheme and therefore rains less.
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Even though our results suggest a slight advantage of CLARReS10-ERA40 over
CLARReS10-R2 in their simulation of the spatial and temporal structure of precipitation, we
prefer to refrain from making a definitive recommendation for use of one over the other. We
feel that consideration of the range of regional model response to two different (yet arguably
“perfect”) boundary conditions provides an informative estimate of the regional level

uncertainty.

Downscaling can reduce bias by capturing details of mesoscale features that are absent
in the global reanalyses. However, it still suffers from weaknesses of the original reanalyses. We
have highlighted the dependence of the dynamically downscaled precipitation on the boundary

conditions.

We have demonstrated that the dynamical downscaling is capable of reducing
precipitation biases at all time scales by capturing details of mesoscale features that are absent
in the global reanalysis but are dictated by the large scale flow. However, an unavoidable
weakness of such downscaling is that it is sensitive to inaccuracies or uncertainties of the

original reanalysis

Given the degree of success in simulation of the characteristics of regional precipitation
by the dynamic downscaling of global reanalyses over the Southeast United States and the cost-
effectiveness of such downscaling, we strongly believe that this approach to regional reanalysis

is a viable proxy for conventional reanalysis.

Nonetheless, high quality conventional reanalyses remain essential for the initialization

of future extended re-forecasts.
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Fig. 13 Time-longitude cross-section from January 1990 through January 2001 at 25.5N of
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Fig. 17 JJA diurnal cycle of precipitation for several stations from the two global reanalyses (R2
and ERA40), their regionally downscaled counterparts (CLARReS10-R2 and CLARReS10-ERA40),
MERRA, CFSR, and station data, as a function of GMT; EDT=GMT-4. The stations, going from left
to right and from the top down are: Chattanooga TN, Augusta GA, Montgomery AL, Macon GA,
Savannah GA, Tallahassee FL, Daytona FL, Melbourne FL, Tampa FL, West Palm Beach FL, and
Miami FL
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Fig. 18 Correlation of the JJA average daily cycle with observed station data for CLARReS10-R2,
CLARReS10-ERA40, MERRA, and CFSR. The series have been sorted by descending value of the
correlation of CLARReS10-R2 with station observations. The station abbreviations on the
abscissa are as follows: ASH — Ashville, NC; AUG — Augusta, GA; CHAR — Charleston, SC; DAY —
Daytona, FL; MAC — Macon, GA; MEL — Melbourne, FL; MIA — Miami, FL; MON — Montgomery,
AL; TAM — Tampa, FL; WES — West Palm Beach; TAL — Tallahassee, FL; SAV — Savannah, GA. Note
that while at a number of stations the diurnal cycle of CFSR has correlations comparable to
CLARReS10, the actual precipitation amounts (Fig. 17) significantly exceed those observed
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Feature Reference
1 Dynamics: hydrostatic primitive equations with | Juang and Kanamitsu
spectrally transformed onto Fourier basis functions (1994)
2 10-km horizontal resolution; 28 vertical layers; 4-min | Kanamaru and
resolution orography Kanamitsu (2007)
3 Planetary boundary layer processes Hong and Pan (1996)
4 Shortwave and longwave radiation Chou and Lee (1996);
Chou and Suarez (1994)
3 Shallow convection Slingo (1987)
4 Deep convection: Simplified Arakawa-Schubert | Pan and Wu (1995)
Scheme
5 Boundary forcing: scale selective bias correction Kanamaru and
Kanamitsu (2007)
6 Land surface: Noah; 4 soil layers Ek et al. (2003)

Table 1 RSM configuration and main features

44




