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1. Introduction 

The potential predictability of the dry phase of South American 
monsoon (SAM) has been studied relatively little when compared to the 
wet phase. In fact it was not until Zhou and Lau (1998) that South 
America (SA) was recognized as having a monsoon climate. The SAM 
went unrecognized for such a long period due to the fact that it does not 
exhibit a distinct seasonal reversal of winds. It is not until the annual mean 
is removed from the seasonal mean that a wind reversal appears. Although 
the SAM does not exhibit a seasonal reversal in the wind field, it does 
exhibit a distinct seasonal cycle in precipitation; a wet phase occurs during 
Austral summer [December-February (DJF)] and a dry phase occurs 
during the winter [June-August (JJA)]. A rapid increase in precipitation 
occurs during the spring [September-November (SON)] and a decrease 
during March-May (MAM). Additionally, the SAM exhibits large-scale 
land-sea temperature differences, a large-scale thermally direct circulation 
with a continental rising branch and an oceanic sinking branch, land-
atmosphere interactions associate with elevated terrain and land surface 
conditions, surface low pressure and an upper level anticyclone, and 
intense low-level inflow of moisture to the continent (Vera et al. 2006). 

In this study we 
wish to investigate 
the predictability of 
the dry phase of the SAM (JJA) in two climate models 
and the potential improvement that dynamical 
downscaling and bias correction processes can have on 
forecasts. New research suggests that the dry phase of 
the SAM may be more significant than previously 
anticipated. Strong positive correlations exist between 
JJA rainfall and the following DJF rainfall particularly 
over north east Brazil (Figure 1). Additionally, strong 
negative correlations exist between DJF rainfall within 
the box in Figure 1 and JJA SSTs in the region of the 
Atlantic Warm Pool (AWP; Figure 2). This implies that 
higher than normal precipitation during JJA is followed 

by higher than normal precipitation during the following DJF and a cooler than normal AWP during the 
following JJA.  

Prior research has shown that dynamical downscaling can improve model output primarily through 
improved resolution and model physics (Chan and Misra 2009). Anomaly nesting (i.e. bias correction) should 

Fig. 1 Correlation of JJA rainfall 
with the following DJF
rainfall. Only statistically
significant values are shaded.
The box represents the
middle-lower reaches of the 
Amazon River.

Fig. 2  Correlation of JJA ERSSTv3 with DJF
Climate Research Unit (CRU) Rainfall. Only
statistically significant values are plotted. 
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also improve model output by reducing the bias of the global climate model (GCM) before the downscaling is 
performed with the regional climate model (RCM) (Misra and Kanimitsu 2004). 

2. Data and Methodology 

Model reforecasts from eight dry seasons (2000-2007) are analyzed in this study.  Reforecasts are 
performed using the NCEP Climate Forecast System (CFS) and the NCEP Scripps Regional Spectral Model 
(RSM). A second integration of the RSM (RSM-AN), which uses a bias correction process, is also used for 
comparison. The bias correction process used in this study is based on the Anomaly Nesting method from 
Misra and Kanamitsu (2004). This method replaces the GCM climatology with the climatology from 
reanalysis before the downscaling process is performed. In this study, CFS climatology is replaced with 
NCEP NCAR Reanalysis I (atmosphere) and ERSSTv2 (ocean). The CFS is run at triangular spectral 
truncation T62 and the RSM is run at a 60km resolution. Both models use six ensemble members which are 
generated by perturbing the initial atmospheric conditions. Atmospheric conditions are perturbed by resetting 
the initial date of the atmospheric restart file after integrating the model for a week. Land and ocean states 
remain unchanged between ensemble members. 

The fidelity of the three 
models’ reforecasts is 
investigated. Particular attention 
is paid to the two regions 
outlined in figure 3 (Amazon 
River Basin (ARB) and the 
subtropical region (ST)). Using 
CFSR (temperature and 
precipitation) and TRMM 3B-43 
(not shown) and CMAP (not 
shown) regions of significant 
model bias for the fields of 
temperature and precipitation are 
identified.  Fields are averaged 
over JJA, 2000-2007 so as to 
provide an eight-year seasonal 
average. Relative Operator 
Characteristic (ROC) curves 
plotted and the area under the curve (AUC) is calculated as a measure of the model’s skill at predicting an 
event (Mason and Graham, 1999). ROC curves are scatter plots of hit rate to false alarm rate for varying 
thresholds of accuracy. In this study, events are defined as above normal, normal, and below normal 
temperature and precipitation. The threshold used to determine whether or not a model will predict a “yes” or 
“no” occurrence of an event is the number of ensemble members required to have correctly identified an event. 
For example, if the threshold were “4 ensemble members” and observations identified a particular year to 
have had above average precipitation, we would require 4 or more members to predict above average 
precipitation in order to say that the model got a “hit”. A model can “perfectly” predict an event for a given 
threshold if it gets a “hit” for each of the 8 years in our study.  

3. Results 

a. Model Bias 
Precipitation patterns are realistic in all three models (Figure 4). Both the ITCZ and the SACZ are well 

defined. All models also show precipitation minima over a majority of the ARB and the ST regions as well as 
over the equatorial South Pacific Ocean.  

When compared to the CFSR, regions of significant model bias become evident (Figure 5). All three 
models show a significant positive bias over mountainous terrain and large negative biases over the tropical 
South Pacific Ocean. The CFS and the RSM-AN have similar patterns of bias. Both have large negative bias 

Fig. 3 Topography (gpm) is plotted with the land surface mask applied for
the CFS (left) and RSM (right). The blue box represents the Amazon
River Basin region and the red box represents the subtropical region. 
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in the northern SA, negative bias 
in the La Plata Basin, and weak 
positive bias over southeastern 
Brazil. The anomaly nesting 
process in the RSM-AN is 
potentially responsible for the 
observed reduction in the 
magnitude of positive and 
negative biases in the CFS in 
southeastern Brazil and points 
further south. The RSM has large 
positive bias over most of Brazil, 
with the exception of extreme 
northeastern coastal regions. At 
first glance, it appears that the 
bias in the models is very large, 
with many regions having over 
100% difference when compared 
to CFSR. However, it is 
important to remember that the 
precipitation rates in many of 
these regions are very small (i.e. 
<1mm/day) and a large 
percentage difference is easily 
achieved.  

Bias maps of temperature are 
much nosier than precipitation 
(Fig. 6). One similarity between 
all three models is positive biases 
in equatorial regions. Both the 
RSM and RSM-AN have less 
bias than the CFS in this region. 
Interestingly, the RSM reduces 
the bias more than the RSM-AN. 
All models also show small 
negative biases in southern Brazil. 
In subtropical regions the CFS 
has primarily negative biases 
while the RSM and RSM-AN 
have positive biases.  
b. Model Skill 

In this study the RCM shows 
some improvement over the 
GCM at forecasting temperature 
but not necessarily when 
forecasting precipitation. In the 
ARB the CFS predicts above average temperatures most skillfully (Table 1; AUC=0.667). While the RSM 
and RSM-AN also forecast above normal temperatures best, they improve upon the CFS with scores of 0.792 
and 1 respectively. In the ST region, the CFS has AUCs of 0.5 for all 3 events, which indicates no skill. The 
RSM and RSM-AN again improve upon the CFS; both have AUCs around 0.9 when predicting below normal 
temperatures. 

Fig. 4  Precipitation rate (mm/day) averaged over JJA and over all eight
years (2000-2007). Values less than 1mm/day are masked. CFS (left),
RSM (center) and RSM-AN (right). 

Fig. 5 Shows the percentage difference between the climatologically 
averaged JJA precipitation rate of the model (CFS[left], RSM[center], 
RSM-AN[right]) and CFSR averaged over the same period. Only 
significant values are plotted. Each plot is normalized using the CFSR. 

Fig. 6   Same as Figure 5 except for temperature (°C). 
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AUCs are generally much 
less when predicting precipitation 
due to the random nature of this 
field. This characteristic is 
replicated in our results. In the 
ARB the CFS predicts only 
below normal precipitation with 
some skill (AUC=0.792). It is 
interesting to see that the RSM 
shows very little skill in this 
region for any event while the 
RSM-AN improves upon the CFS 
significantly with an AUC of 
0.958 when forecasting above 
normal precipitation. In the ST, 
only the RSM achieves an AUC 
above 0.5, with a score of 0.67 
when forecasting above normal 
precipitation. The fact that no 
model has high AUCs in the ST 
is consistent with signal to noise 
ratio plots (not shown), which 
show significantly more signal in the ARB than the ST during the dry season. 
4. Concluding Remarks 

All 3 models produced realistic looking fields of temperature and precipitation. However, bias plots show 
that all models are strongly biased in particular regions when compared to CFSR. As expected, biases of 
precipitation were significantly larger than those of temperature. This is most likely due to two factors. 
Precipitation is a noisy field that is not resolved well, particularly in climate models. Additionally, values of 
rain rate during the dry season are low; therefore, large percentage differences between data sets are easily 
achieved.  

We have found that for both regions of interest, the downscaling process improves predictability of 
temperature, but not necessarily precipitation. In both the ARB and ST, AUCs for temperature increased from 
the CFS, to the RSM and RSM-AN. The anomaly nesting process improved upon the RSM, but only in the 
ST.  It was not as clear whether the downscaling and anomaly nesting processes significantly improve the 
predictability of precipitation. 
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Table 1 Shows the area under the ROC curves for the ARB (top) and ST 
(bottom). Areas are calculated by comparing models with CFSR. Areas 
are calculated for three events, above normal (A; orange), normal (N; 
white), and below normal (B; blue) and are calculated for temperature 
and precipitation. Values less than or equal to 0.5 indicate that the model 
has no skill at forecasting the variable for that particular event  and the 
user would be better off using climatology as a forecast. A value of 1 
means that the model is close to being perfect. 


