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ABSTRACT 

 Atmospheric conditions during the dry season of the South American monsoon are 

instrumental in the initiation of convection during the wet season and are strongly correlated to 

SSTs within the Atlantic Warm Pool. Subsequently, accurate seasonal prediction of temperature 

and rainfall during the dry season has the potential to improve our understanding of and the 

predictability of these variables during future seasons. 

 In this study, we review the fidelity of South American dry season (June-July-August) 

reforecasts from one global climate model (GCM), and one downscaled regional climate model 

(RCM). Additionally, we evaluate a second integration of the RCM that uses a bias correction 

method called anomaly nesting, which is designed to remove the bias of the GCM before the 

downscaling process is performed. The models are integrated for seven dry seasons (2001–

2007), and each season consists of six ensemble members. For this study, we focus on two 

primary regions: the Amazon River Basin (ARB) and the subtropical region (ST). 

 There are three objectives of this research. The first is to locate regions of model bias for 

two-meter air temperature and for precipitation within the ARB and the ST using NCEP Climate 

Forecast System Reanalysis (CFSR) as a comparison dataset. The second is to evaluate the 

predictability of above normal, normal, and below normal occurrences of the two variables using 

potential predictability ratios and calculations of the area under the relative operative 

characteristic (ROC) curve (AUC). Through this analysis we should be able to determine 

whether downscaling or anomaly nesting improve upon the skill of the GCM. Lastly we wish to 

evaluate how the three models depict land-atmosphere interactions during the dry season and 

compare their results with results from CFSR. 

 The models produced the largest biases of both variables over elevated terrain and within 

the Intertropical Convergence Zone (ITCZ). However, neither of these locations significantly 

impacts the ARB or the ST. Signal-to-noise ratios show that the ARB exhibits more potential 

predictability than the ST and that temperature exhibits more potential predictability than 

precipitation. AUCs confirm that temperature is more skillfully predicted than precipitation and 

that the models exhibit more skill in the ARB than in the ST. AUCs show that the downscaled 

and the downscaled with anomaly nesting integrations display more skill than the GCM 

xii 
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integration, particularly in the ARB. Lastly, we find conflicting results between the models and 

CFSR regarding how the land and the atmosphere interact during the dry season. However, a full 

moisture budget analysis is needed to completely resolve land-atmosphere feedbacks and that is 

beyond the scope of this study.
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CHAPTER ONE 

INTRODUCTION 

 Seasonal climate prediction using global climate models (GCMs) is a growing trend in 

the fields of climate and atmospheric science. In the past, GCMs were limited to use within 

regions that exhibited teleconnections to global scale atmospheric phenomena because of their 

coarse resolution. Recently, seasonal climate prediction using higher-resolution regional climate 

models (RCMs) has been occurring with increasing regularity. Regional forecasts are frequently 

generated by dynamically or statistically downscaling the output generated by a GCM to finer 

resolutions using high-resolution RCMs. The downscaling model (i.e., the RCM) should, in 

theory, provide a more accurate representation of the finer scale physics, dynamics, and 

topography than the GCM does and thus provide a more skillful forecast.  

 This study investigates the implications of downscaling the National Centers for 

Environmental Prediction (NCEP) coupled Climate Forecast System (CFS) over South America 

(SA), using the NCEP-Scripps Regional Spectral Model (RSM). In this study, we also evaluate 

the effect of applying a bias correction process to the GCM before the downscaling is performed 

with the RCM. The bias correcting process used in this study is referred to as anomaly nesting. 

Hereafter, the RSM integration with the anomaly nested bias correction is referred to as RSM-

AN. In this study, we focus on verifying the reforecasts produced for June, July, and August 

(2001–2007) by three models (CFS, RSM, and RSM-AN). These data represent seven years of 

the South American monsoon (SAM) dry season.  

 

1.1 South American Climatology and the South American Monsoon 

 

 The SAM has been studied little compared to other monsoons around the world but is 

arguably the most important feature of the South American climate. In fact, it was not until Zhou 

and Lau (1998) analyzed the South American climate that SA was acknowledged as having a 

monsoon climate. Despite this, some scholars still debate whether or not South America’s 

monsoon meets the ―classic‖ (e.g., East Asian monsoon) definition of the word. Generally, a 

monsoon climate exhibits a distinct seasonal cycle in temperature and precipitation and seasonal 

reversal of lower tropospheric winds. Over SA, there is not an obvious reversal of the winds 
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because of the annual persistence of easterlies in the tropics. However, it is possible to produce a 

reversal in the winds when the annual mean is removed (Figure 1.1). Perhaps it is most accurate 

to state that the SAM is modulated by seasonal fluctuations of the persistent trade winds, rather 

than a seasonal reversal in the wind field.  

Although the SAM lacks a seasonal wind reversal, it does exhibit many of the other 

characteristics that define a classic monsoon. For example, indisputable evidence exists of a well 

defined annual cycle in precipitation. A wet phase occurs during austral summer [December–

February (DJF)] and a dry phase occurs during the winter [June–August (JJA)]. There is a rapid 

increase in precipitation during the spring [September–November (SON)] and a decrease during 

March–May (MAM) (Figure 1.2; Raia, 2008). Additionally, the SAM exhibits the following: a 

large-scale land-sea temperature difference, a large-scale thermally direct circulation with a 

continental rising branch and an oceanic sinking branch, land-atmosphere interactions associated 

with elevated terrain and land surface conditions, surface low pressure and upper level 

anticyclone, and intense low-level inflow of moisture to the continent (Vera et al. 2006). The 

SAM is unique in that much of the affected land mass is located in the tropics as opposed to the 

subtropics, which results in less distinct seasonal temperature fluctuations. 

Using a method developed for the Indian monsoon by Fasullo and Webster (2003), Raia 

(2008) identified the onset of the SAM for the majority of the monsoon region to be in mid-to-

late October and the demise to be in late March. The onset in the northwest regions of the 

continent occurs in mid-to-late August and moves toward the southwest over time (Vera et al. 

2006). The onset period is accompanied by a weakening and an eastward displacement of the 

South Atlantic subtropical high. As a result, the wind field over extreme southwestern Amazonia 

shifts from northerlies to northwesterlies, and over eastern Brazil the winds shift from easterlies 

to northeasterlies. These changes allow for enhanced moisture transport from Amazonia and the 

South Atlantic Ocean into the monsoon region (i.e., central SA).  

Moisture transport into parts of the monsoon region is further enhanced by the South 

American low-level jet (SALLJ), which flows southward along the eastward facing slopes of the 

Andes Mountains. The main depository for moisture flux associated with the SALLJ is the La 

Plata River Basin, a large area in central SA that encompasses parts of five countries (Argentina, 

Bolivia, Brazil, Paraguay, and Uruguay). The SALLJ is observed nearly all year long and exists 

without synoptic scale forcing because of the interaction between the continental mean westerly 
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flow and the Andes Mountains and because of enhanced heating over the Andes. However, 

synoptic scale changes modulate the strength of the jet, which, in turn, modulates precipitation 

intensity in central SA (Liebmann et al., 2004).   

The driving force behind the onset of the monsoon, and also the SALLJ, is enhanced 

heating in the elevated terrain of the Andes Mountains facilitated by the poleward migration of 

the sun. During the peak of austral summer (January), a major center of diabatic heating moves 

over the subtropical highlands (about 20°S), forcing the development of a heat low over Gran 

Chaco (Chaco low). This also results in a strong thermal gradient between the subtropical 

highlands and the surrounding oceans, forcing a shift in the wind regime to northwesterly and a 

maturation of the monsoon (Zhou and Lau, 1998). Additionally, low pressure systems 

propagating from east to west during the dry season occasionally contain precipitation, which 

increases the soil moisture and latent heat flux and decreases the sea level pressure (SLP; Raia, 

2008). These conditions (increased diabatic heating and low level moisture) destabilize the 

atmosphere and facilitate onset of the wet season. The demise period exhibits an increase in SLP 

over the continent, an easterly moisture flux toward the Amazon region, a reduction in the 

northerly flow east of the Andes, and a reduction in vertical motions. These features primarily 

result from the westward shift of the South Atlantic subtropical high (SASH), which is facilitated 

by the equatorward shift of the sun. As the sun shifts poleward, heating over the elevated terrain 

weakens, the Chaco low weakens, the thermal gradient between the land and the ocean is 

reduced, and the SASH shifts to the west (Zhou and Lau, 1998). Raia (2008) noted that during 

JJA, when many regions of SA experience a minimum in precipitation, there is southeasterly 

moisture transport over Northeast Brazil driven by the subtropical high. Additionally, there is 

intense westward moisture transport over the Amazon region, which, because it lacks a southerly 

component, reduces the moisture transport to regions that typically experience the monsoonal 

cycle of rainfall.  

 

1.2 Motivation 

 

 Although the SAM has only recently been acknowledged and the dry phase of the 

monsoon has received less attention than the wet phase, emerging research suggests that the dry 

phase may play a significant role in modulating the climate of SA and surrounding regions. 



4 

 

One source of motivation for this research is the important role that conditions in the 

Amazon rainforest during the dry season may play in initiating the wet phase of the SAM. 

Myneni et al. (2007) showed that changes in leaf area (LA) within the Amazon rainforest are 

strongly correlated with the seasonal cycle of precipitation and solar radiation. Unlike many 

other types of forests, which see an increase in LA during the wet season, the Amazon rainforest 

experiences a 25% increase in leaf area index (LAI) (relative to the wet season) over 60% of its 

area during the dry season. This increase in LAI is primarily driven by the increased amount of 

incoming solar radiation that accompanies the decrease in cloud-cover during the transition from 

the wet to the dry season. The authors suggested that the increase in leaf area during the dry 

season eventually leads to the initiation of the wet season; as leaf area increases, the amount of 

evapotranspiration and low-level moisture also increases. Increasing the amount of low-level 

moisture destabilizes the atmosphere and increases the probability of convection occurring 

toward the end of the dry season. Evidence of this forcing was observed in the 1980s, when 

many of the years with delayed wet season onset, had experienced slow increases in 

evapotranspiration at the end of the dry season. Because leaf area, and thus evapotranspiration, is 

modulated by agents other than the intensity of incoming solar radiation, such as water stress, 

being able to accurately forecast precipitation and temperature during the dry season may be 

beneficial. For example, by accurately forecasting precipitation during the dry season, we can 

estimate water stress and provide insight into the timing of the onset of the following wet season. 

A second source of motivation for studying the dry phase of the SAM comes from the 

relationship it may have with the size and intensity of the Atlantic Warm Pool (AWP). The AWP 

plays a significant role in controlling the occurrence and intensity of Northern Hemisphere 

phenomena such as Atlantic hurricanes, the Great Plains low-level jet (GPLLJ), and the 

Caribbean low-level jet (CLLJ). An anomalously large (small) AWP weakens (strengthens) the 

GPLLJ, weakens (strengthens) the CLLJ, and reduces (increases) the tropospheric wind shear in 

the maximum development region of Atlantic hurricanes, thereby increasing (decreasing) the 

likelihood of cyclone development (Wang et al. 2008). Correlations between dry season rainfall 

and the following wet season rainfall show a strong positive relationship (correlation coefficients 

greater than 0.5) between the two variables, particularly within the box over northeast Brazil 

(Figure 1.3). Correlation coefficients also indicate a negative relationship between wet season 

rainfall within the box positioned over northeast Brazil in Figure 1.3 and SSTs within the region 
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of the AWP (Figure 1.4). This relationship implies that above (below) normal rainfall during JJA 

is followed by above (below) normal rainfall during the following DJF, which is followed by 

below (above) normal SSTs in the AWP region during the following JJA.  

The primary motivation for this research is the analysis of the North American monsoon 

conducted by Chan and Misra (2009) in which they used the same three models that are used in 

this study. One motivating factor for their study, which also applies to the current research, is the 

results of Misra and Kanamitsu (2004). Misra and Kanamitsu (2004) showed success in seasonal 

prediction of the SAM using an anomaly nested RCM even when the GCM that was used to 

force the RCM was strongly biased. Chan and Misra (2009) found the major benefit of 

downscaling and anomaly nesting (AN) to be an improvement to certain dynamical fields such as 

winds, particularly those within low-level jets. This improvement can be at least partially 

attributed to the higher resolution of the RCM. They found that in topographically complex 

regions, such as the Gulf of California and the Sierra Madre Occidental (SMO) range the, CFS 

cannot be expected to accurately resolve small scale features. In fact, the CFS resolves the Gulf 

of California as a ―block‖ protruding from the mainland, which results in an erroneous 

representation of SSTs in that region. The SMO exhibits a much more gradual slope in the CFS 

than it does in the RSM and also reaches a lower height. This causes higher than observed land 

surface temperatures in the CFS and can result in a poor representation of the climatological 

wind field. The downscaling process in the current study will improve the topography of the 

Andes Mountains which should also improve the representation of the SALLJ. Additionally, it is 

expected that more accurate representation of topography and coastlines will result in more 

accurate land surface temperatures in the downscaled RCM.  

The goal of this research is to investigate the fidelity of SAM dry season reforecasts from 

the CFS and the RSM and to investigate the potential for using the downscaled runs for routine 

operational seasonal prediction.  Previous studies have shown that downscaling with RCMs 

provides more accurate results due to their higher resolution. However, the benefit of higher 

resolution can be offset by the errors accrued from ingesting the biases of the GCM into the 

RCM during the downscaling process. Additionally, we review the anomaly nesting process 

which can remove some of the GCM bias from the RCM and further increase the accuracy of the 

forecast. As previously mentioned, this study investigates SAM dry season (JJA) reforecasts for 

SA using six-ensemble-member integrations of the CFS, RSM and AN-RSM. Chapter 2 
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describes the data and methods used to investigate the fidelity of the reforecasts, and the 

implications of using the downscaling and anomaly nesting processes. In Chapter 3 we discuss 

the skill of the models and suggest that faulty land-atmosphere feedbacks could be the cause of 

imperfect model forecasts.  In Chapter 4 we summarize our results, provide conclusions, and 

suggest ideas for future work. 
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Figure 1. 1   From Zhou and Lau (1998) 900-hPa wind (m/s) for (a) annual mean, (b) January 

mean minus the annual mean, and (c) July mean minus annual mean. 
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Figure 1. 2   From Raia (2008) Mean monthly precipitation (mm/month) is plotted for each 

month of the year. Different colored lines represent the annual cycle of precipitation 

for several of the most prominent monsoons across the globe. The South American 

monsoon is represented by the blue line labeled SAMS. A distinct minimum in 

precipitation can be seen during austral winter (JJA) and a maximum can be seen 

during austral summer (DJF). 
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Figure 1. 3   Correlation of JJA rainfall with the following DJF rainfall. Only statistically 

significant values are shaded. The box represents the middle-lower reaches of the 

Amazon River. The boxed region is referenced in Figure 1.4. 
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Figure 1. 4   Correlation of JJA ERSSTv3 with DJF Climate Research Unit (CRU) Rainfall 

averaged over the box in Figure 1.3. Only statistically significant values are plotted.  
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CHAPTER TWO 

DATA AND METHODS 

 The model data used in this study are identical to those used by Chan and Misra (2009). 

Initial reforecasts are performed using the NCEP CFS. One downscaled reforecast is performed 

with the RSM using unmodified CFS data. A second downscaled run of the RSM is carried out 

after applying the anomaly nesting bias correction process to the CFS data. Model output is 

available at six hourly intervals. 

 

2.1 Model Data 

 

The three model integrations are conducted for June-September, 2001-2007. Model 

integrations are started at 0000Z 23 May 2001. Only data corresponding to the South American 

dry season (June, July, and August) are used in this study.  

2.1.1 NOAA-NCEP CFS  

 The CFS is a fully coupled land-ocean-atmosphere dynamical seasonal weather 

prediction model. At the time of its release, the CFS provided a significant improvement over 

previous dynamical models. It also represented the first time in the history of the United States 

that a dynamical model was capable of achieving a level of skill (for temperature and 

precipitation predictions) that was comparable to the skill of statistical models used at the NCEP 

Climate Prediction Center (CPC; Saha et al. 2006). 

 The version of the CFS used in this study has 64 vertical sigma levels and is run at a 

triangular spectral truncation of T62 (~200-km Gaussian grid). It uses the Simplified 1   

Arakawa-Schubert cumulus convection (SAS; Hong and Pan 1998), the NCEP Medium Range 

Forecast (MRF) planetary boundary layer (PBL) scheme (Hong and Pan 1996), and the Oregon 

State University land surface scheme (Mahrt and Pan 1987). 

 The CFS uses six ensemble members, each integrated for JJAS 2001-2007. This provides 

a total of forty-two simulations (six ensembles for each of the seven seasons). The ensemble 

members are generated by slightly perturbing the initial state of the atmosphere, accomplished by 

resetting the initial date of the atmospheric restart file after integrating the CFS for one week. 

This process is carried out six times to achieve the desired number of ensemble members. The 
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initial atmospheric conditions are acquired from the NCEP NCAR Reanalysis. Ocean initial 

conditions are obtained from the Global Ocean Data Assimilation System (GODAS; Behringer 

and Xue 2004). The initial land surface conditions are from the NCEP-DOE Reanalysis II 

(Kanamitsu et al. 2002). The initial ocean and land states are unchanged between ensemble 

members.  

 Additionally, we use separate CFS output that is identical to the output described in Saha 

et al. (2006). This version of the CFS has 15 ensemble members and was integrated from 1981-

2003 (23 years). The CFS was initiated at the beginning of each calendar month and integrated 

for nine months. Each of the 15 ensemble members generated each month is initiated with 

different initial conditions acquired from 15 days in each month. A full description of how the 

days were chosen can be found in Saha et al. (2006). In this study we only use the JJA output 

from the integration that was initiated in June of each calendar year. This data is used to conduct 

a sensitivity experiment, the purpose of which is to determine whether we are underestimating or 

overestimating the potential skill of the CFS by limiting the number of years in our dataset to 

seven and by using only six ensemble members.  

2.1.2 NCEP Scripps RSM 

 The NCEP-Scripps RSM, introduced in 1994, was initially designed to run with a high-

resolution regional spectral model nested inside a coarse-resolution global spectral model of 

identical vertical levels (so as to avoid vertical interpolation) and identical model physics. At the 

time of its release, the RSM used a perturbation method of nesting. Juang and Kanamitsu (1994) 

also determined that nesting periods of three to six hours produced less noise than periods of one 

hour and that blending at the boundaries was not necessary.  

 Since its release, numerous changes have been made to the RSM. The most pertinent to 

this study are the updates to the model physics, including scale selective bias correction (SSBC; 

Kanamaru and Kanamitsu 2007). SSBC reduces the drift in the RCM and eliminates the need for 

multiple nesting to downscale from a coarse grid to a very fine grid (Chan and Misra 2009).  

 The RSM used in this study has 28 pressure sigma vertical levels and a 60-km horizontal 

resolution. This RSM has a lower resolution than is normally used because the model was run 

over a very large domain. The RSM was integrated over a significant portion of the North 

American and South American continents so that both the North American monsoon wet season 

and the South American monsoon dry season could by analyzed. The RSM uses the same 
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cumulus (SAS) and PBL (MRF) parameterizations that are used in the CFS. It also uses a 

different land surface scheme, the NCEP-Ohio State-US Air Force-NWS Hydrology Laboratory 

(NOAH) land scheme (Ek et al. 2003).   

  There are two RSM simulations used in this study. Both sets of integrations are run over 

the same time period as the CFS integration. The first integration, referred to as the RSM, is 

directly downscaled from the CFS and uses SSTs prescribed from the individual CFS ensemble 

integrations. The second integration, referred to as the RSM-AN, downscales after bias 

correcting the CFS integration.  

2.1.3 Anomaly Nesting 

 The process of anomaly nesting (Misra and Kanamitsu 2004) refers to the concept of 

removing the bias of the GCM before the downscaling process. This concept was inspired by 

previous studies, which showed that RCM simulations did not show significant advantages over 

the GCM simulations from which they were downscaled (Roads and Chen 2000), except in 

regions of complex topography (Roads and Kanamitsu. 2003). However, it has been shown that 

these errors associated with the RCM can be partially attributed to the systematic errors 

associated with the GCM (Pan et al. 2001, Noguer et al. 1998, and Druyan et al. 2002). The 

anomaly nesting process attempts to reduce the systematic errors of the GCM by replacing the 

model climatology with reanalysis climatology. This process reduces the drift of the GCM being 

used to feed the lateral boundary conditions of the RCM, thus reducing the errors in the RCM 

(Misra and Kanamitsu 2004).  

 For this study, the CFS JJA climatology is replaced with the climatology from the NCEP-

NCAR Reanalysis I (atmosphere) and ERSSTv2 (SST) from the period 1950-1995. The CFS 

climatology is derived from the T62 33-year multidecadal coupled simulation (available from the 

CFS website, see: http://cfs.ncep.noaa.gov/). Bias corrections are applied to humidity, 

divergence, vorticity, and temperature at all verticals levels of the RSM (Chan and Misra 2009). 

 

2.2 Comparison Data 

 

 The primary data used in this study are acquired from the Climate Forecast System 

Reanalysis (CFSR; Saha et al. 2010). CFSR is used to locate areas of significant model biases in 

precipitation and temperature. CFSR is also used to analyze model skill at predicting           

http://cfs.ncep.noaa.gov/
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above normal, normal, and below normal precipitation rates and temperatures. Finally, CFSR-

derived correlation coefficients for three pairs of atmospheric variables are compared to model-

derived correlation coefficients for the same three pairs of variables. Additionally, the TRMM 

and CMAP precipitation datasets are used to evaluate model skill at predicting precipitation 

rates.  

2.2.1 Tropical Rainfall Measuring Mission (TRMM) 3B-43 Algorithm 

 The TRMM satellite was introduced in 2000 to help solve the problem of a largely under 

sampled tropical precipitation distribution. TRMM is focused on improving the understanding of 

the temporal and spatial distribution of tropical rainfall and latent heating 

(http://trmm.gsfc.nasa.gov/). The TRMM 3B-43 algorithm was designed to produce the Tropical 

Rainfall Measuring Mission (TRMM) and Other Data best-estimate precipitation rate and     

root-mean-square precipitation-error estimates. TRMM data are available as monthly averages 

on a 0.25° by 0.25° grid from 50°S to 50°N. Data are produced by combining the three-hourly 

merged high-quality/IR estimates with the monthly accumulated Climate Assessment and 

Monitoring System (CAMS) or Global Precipitation Climatology Centre (GPCC) rain gauge 

analysis (3A-45). The three-hourly merged data are summed for the calendar month, and then 

rain gauge data are used to apply a large-scale bias adjustment to the 3B-42 estimates over land 

(http://trmm.gsfc.nasa.gov/3b43.html). 

2.2.2 CPC Merged Analysis of Precipitation (CMAP) 

CMAP (Xie and Arkin, 1997) data are available globally in the form of monthly 

averages. CMAP is produced by merging precipitation estimates from microwave and infrared 

satellite algorithms, from rain gauges, and from model data. By merging the three data sources a 

more accurate representation of precipitation can be acquired than if any of the three sources 

were used individually. CMAP is available from 1979 onward though it is on a coarser grid (2.5° 

by 2.5°) than are the TRMM 3B-43 data 

(http://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html).  

2.2.3 Climate Forecast System Reanalysis (CFSR) 

 CFSR (http://cfs.ncep.noaa.gov/cfsr/) is a state-of-the-art high spatial and temporal 

resolution reanalysis data product. CFSR is available over the 31-year period between 1979 and 

2009 in the form of hourly files and is available on a 0.5° by 0.5° horizontal grid with 37 vertical 

pressure levels for the atmosphere and 40 levels for the ocean (Saha et al. 2010). Aside from 

http://trmm.gsfc.nasa.gov/
http://trmm.gsfc.nasa.gov/3b43.html
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higher spatial and temporal resolution, CFSR has three primary benefits over previous reanalysis, 

namely NCEP-NCAR R1 and R2: (1) coupling to the ocean during the creation of the six-hour 

guess field, (2) an interactive sea ice model, and (3) assimilation of satellite radiances for the 

entire period.   

 In this study, the primary variables acquired from CFSR are precipitation and two-meter 

temperatures. These variables are used to analyze the model skill during the dry season. 

Additionally, evaporation and incoming solar radiation are used to compare the correlations 

between the aforementioned three pairs of variables (correlations are described in Section 2.3.4).  

 

2.3 Methods 

 

 The large-scale area of interest for this study is the South American continent and 

surrounding regions between 15°N and 40°S (RSM data is unavailable below 40°S) and between 

30°W and 90°W. Two regions are of particular interest: the Amazon River Basin (ARB) and the 

subtropical region (ST) (Figure 2.1). The ARB is defined as the region between 4°N–17°S and 

between 45°W–75°W. The ST is defined as the region between 17°S–36°S and between    

56°W–68°W.  

2.3.1 Model Bias 

 The JJA, 2001–2007 climatological means of temperature (ºC) and precipitation 

(mm/day) are calculated for the three models and for the three comparison datasets. Models are 

compared to observations using percentage difference (Diff) calculations to isolate regions of 

significant bias. 
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CFSR is used for precipitation and temperature comparisons, and TRMM and CMAP are used 

for precipitation comparisons only. Because this study uses a small sample size, statistical 

significance tests are applied to the differences. When these comparisons are conducted the 

comparison products are interpolated to the native grid of the model that they are being 

compared with. Statistical significance of the differences between datasets is tested using the 

student t test. Only values with greater than 90% significance are shown in this study.  

2.3.2 Potential Predictability  

 In this study we will calculate the ratio of signal to total variance (the total variance 

equals the signal plus the noise) for two-meter air temperature and precipitation following 

Kumar and Hoerling (1995). For this study there will be M=6 ensemble members with N=7 

years where the ensemble member is represented by j and the year is represented by i. The 

ensemble mean for a given climate variable for one model and for one year is then  
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However, the spread can be dependent on the choice of year so we average the internal variance 

over all possible years and the result is referred to as noise. 
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The external variance, or the signal, is an estimate of the degree to which the difference between 

the ensemble mean forecast or different years is due to boundary conditions rather than to chance 

(Stefanova et al. 2010). The climatological ensemble mean for the particular variable is  
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Finally, the total variance of the system is given by  



t o t a l
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By comparing the ratio of 



s i gnal

2  to 

 

t o t a l

2  it can be determined which part of the observed signal is 

due to boundary conditions and which part is due to the uncertainty of the initial conditions. 

Larger ratios indicate more potential predictability of the climate variable. Values near one mean 

that the boundary conditions are overwhelming the effect of the noise, i.e., uncertain initial 

conditions, and values near zero indicate that the model is not ―seeing‖ the boundary conditions, 

i.e., the entire signal is noise (Stefanova et al. 2010). However, large ratio values do not 

necessarily mean that forecasts will be skillful; thus, it is beneficial to examine the fidelity of the 

models further using a skill score such as the Relative Operative Characteristic (ROC) Curve.     

2.3.3 Relative Operative Characteristic Curves 

  In this study we use the ROC curve (Mason and Graham 1999) to evaluate the ability of 

the three models to predict above normal, normal, and below normal precipitation and 

temperature. The ROC curve is developed using ratios that measure the proportion of events and 

nonevents for which warnings are issued or not issued. If we evaluate the model forecast as a 

probabilistic system (model forecast is either ―yes‖ an event will occur or ―no‖ an event will not 

occur, depending on the number of ensemble members that forecast an event to occur or not 

occur), we can construct a contingency table (see Table 2.1 adopted from Mason and Graham 

(1999)). From the contingency table we can acquire the aforementioned ratios, referred to as hit 

rate (ratio of hits to hits plus misses) and false alarm rate (ratio of false alarms to false alarms 

plus correct rejections). A hit can be described as follows: the model forecasts a ―yes‖ and the 

observed is a ―yes.‖ A false alarm can be described as follows: the model forecasts a ―yes‖ and 

the observed is a ―no.‖ A miss occurs when the model forecasts a ―no‖ but the event actually 

occurs, and a correct rejection occurs when the model forecasts a ―no‖ and the event does not 

occur. The ROC curve is constructed by plotting the scatter plot of hit rate vs. false alarm rate for 

each of the thresholds.  
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In our system, we have six ensemble members; thus, we have six thresholds. The threshold 

number (1-6) is the minimum number of ensemble members required to forecast a ―yes‖ in order 

for the forecast system to declare a ―yes.‖ If the minimum number is not met then a ―no‖ is 

declared.  

 The calculation of the area under the ROC curve (AUC) can be used as a measure of the 

skill of the model at forecasting an event. A more skillful model (a model has at least some skill 

if the AUC is > 0.5) will have the majority of the points on the curve clustered near the top left 

corner of the plot, where HR is close to 1 and FAR is close to zero. Therefore, a less skillful 

model will have more points clustered toward the bottom right corner of the plot and will have 

an AUC ≤ 0.5.  

 In this study, we evaluate the ability of the model to predict above normal, normal, and 

below normal precipitation rates (using TRMM, CMAP, and CFSR as observations) and 

temperatures (using CFSR as observations) over the ARB and over the ST (see Figure 2.1) 

independently. To accomplish this, we rank the area-averaged seasonal-mean precipitation or 

temperature into unequal terciles. The upper two (25%) years are labeled A, whereas the middle 

four years (50%) are labeled N and the lowest two years (25%) are labeled B. We perform the 

same unequal tercile ranking independently for the three models and include all six ensemble 

members. This means that there were 48 total cases for each model per region, resulting in 12 

As, 24 Ns, and 12 Bs. Here we evaluate each model’s predictability at varying sensitivities. 

Within the scope of this research, sensitivity can be defined as the minimum number of ensemble 

members in a given year that are required to correctly predict an event (either A, N, or B) in 

order for the model to forecast ―yes.‖ For precipitation we have three models, three observational 

datasets, two regions, and three events. This produces a total of fifty-four ROC curves. For 

temperature we produce a total of eighteen ROC curves. Additionally, we conduct a sensitivity 

experiment using a temporally longer integration of the CFS model. This integration consists of 

data from JJA between 1981 and 2003 and uses 15 ensemble members rather than 6. To test 

whether our model skill is reduced because we use only seven years and only six ensemble 

members we calculate ROC curves for temperature and for precipitation for the full 15-member 

integration and compare those results to the results from ROC curves calculated from a 

randomly-chosen group of six ensemble members. We also calculate ROC scores for a 

randomly-chosen group of seven consecutive years and compare those results to the results from 
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the ROC curves calculated with the full dataset. Temperature is evaluated against CFSR, and 

precipitation is evaluated against CFSR and CMAP. 

2.3.4 Land-Atmosphere Feedback  

 We begin a cursory investigation into the land-atmosphere feedback in the models and 

compare these results with CFSR. Koster et al. (2003) split the land–atmosphere feedback into 

three parts (described in terms of wet anomalies): (1) wetting of soil by precipitation; (2) 

enhancement of evaporation by the wet soil; and (3) enhancement of precipitation by 

evaporation. Part one is obvious, and it cannot be denied that this interaction happens in nature. 

Part two can be supported by contemporaneous correlations of temperature and precipitation, 

which, in terms of wet anomalies, would be negative. The argument being that higher 

precipitation leads to more evapotranspiration and thus less sensible heat flux which in turn leads 

to lower temperatures (Koster et al. 2003). The third part of the feedback is more debatable, 

partly due to limited observations. Additionally, it is difficult to determine causality between a 

set of variables, which are highly interconnected (Misra and Dirmeyer, 2009). As a result, we 

can at best hope to offer a qualitative diagnostic of this part of the feedback cycle. To investigate 

this third part we follow Misra and Dirmeyer (2009) and calculate contemporaneous correlation 

coefficients between two pairs of variables: (1) evaporation and precipitation, and (2) 

downwelling shortwave flux and evaporation. Table 2.2 lists all three variable pairings we have 

just discussed and describes the information that can be inferred from the results. We conduct the 

three sets of correlations for each of the three models and compare the results with the same set 

of correlations from CFSR. When analyzing these results it is important to remember that 

correlations do not provide one with cause and effect, but merely suggest a relationship between 

two variables. 
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 Forecast 

Observations Event Forecast: ―yes‖ (W) Event Forecast: ―no‖ (W’) Total 

Event (E) Hit (h) Miss (m) e 

Nonevent (E’) False alarm (f) Correct Rejection (c) e’ 

Total w w’ n 

Variable Pair Purpose 

Temperature 

w/ 

Precipitation 

Negative correlations suggest that evaporative cooling due to 

precipitation reduces temperatures. Positive correlations suggest that 

evaporation is not contributing to precipitation (Koster et al. 2003). 

Evaporation 

w/ 

Precipitation 

Positive correlations indicate an arid climate regime, where precipitation 

is fed by local evaporative sources. Negative correlations indicate a non-

arid regime (Misra and Dirmeyer, 2009). 

Downwelling 

Short Wave 

Flux w/ 

Evaporation 

Positive correlations indicate an energy limited regime. An energy 

limited regime is one in which plentiful moisture exists at the surface to 

fuel evaporation and evaporation is limited by the amount of radiation 

that reaches the surface. Negative correlations indicate a moisture 

limited regime, a regime in which evaporation rates are limited by the 

amount of moisture available at the surface rather than the amount of 

incoming solar radiation (Misra and Drimeyer, 2009). 

Table 2.1   Adopted from Mason and Graham (1999). Two-by-two contingency table      

for a binary forecast system 

Table 2. 2   Lists of the pairs of variables between which correlation coefficients 

were calculated. The right column contains the intended purpose for 

conducting the correlation and the information that can be acquired from 

the test. 
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Figure 2. 1.  The land area (shaded) and topography (GPM) for the NCEP CFS (left) and the 

NCEP Scripps RSM (right; and RSM-AN). The blue box represents the Amazon 

River Basin (ARB), and the red box represents the subtropical region (ST).   
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CHAPTER THREE 

RESULTS 

3.1 Dataset Comparison 

 

 In this study we primarily use CFSR for its long temporal range, its high resolution, and 

its large array of available variables. However, CFSR is produced with model influence, and thus 

is not free of error and bias. Hence, we compare CFSR with more widely used datasets, such as 

TRMM, CMAP, and CRU, to determine the location, magnitude, and sign of possible errors in 

the precipitation and temperature fields. 

3.1.1 CFSR Two-Meter Temperature 

 Here, we compare CFSR two-meter temperatures averaged over JJA 2001–2005 with 

Climate Research Unit (CRU; http://badc.nerc.ac.uk/data/cru) two-meter temperatures averaged 

over the same time period. We cannot extend our temporal range through 2007 because CRU 

data are not available past 2006, which is also why we do not use CRU as a comparison dataset 

for our models. If we assume that CRU’s temperatures are correct, we can use them to locate 

regions of error in CFSR. For this comparison, the CRU two-meter temperature field is bilinearly 

interpolated to the higher-resolution grid of CFSR.  

 CFSR and CRU temperatures are relatively similar over most of SA during the dry 

season. Differences between the two datasets are generally 1°C–2°C (Figure 3.1). Large 

differences occur over the elevated terrain of the Andes Mountains and the Guiana Highlands, 

where CFSR is approximately 4°C colder than CRU. The largest differences occur on the 

westward-facing slopes of the Andes Mountains. For most of the ARB, CFSR features colder 

temperatures than CRU does, except for the region around the Mato Grasso Plateau in Brazil and 

eastern Bolivia. CFSR is too warm throughout most of the ST, except for the region occupied by 

the Andes Mountains. Generally, CFSR has a cold bias over elevated terrain and a warm bias at 

lower elevations in the ST. 

3.1.2 CFSR Precipitation Rate 

We compare CFSR daily precipitation rates averaged over JJA 2001–2007 with CMAP 

and TRMM daily precipitation rates averaged over the same period. For this comparison, CMAP 

and TRMM are bilinearly interpolated to the higher-resolution grid of CFSR.  CMAP and 



23 

 

TRMM are also both used as comparison datasets for the models. All three datasets have similar 

patterns of precipitation. Each shows distinct precipitation maxima within the ITCZ, and around 

35°S (Figure 3.2). Precipitation rates drop off quickly south of the Guiana Highlands and are less 

than 1mm/day throughout most of the ARB and the ST in all datasets.  

Differences between CFSR and CMAP (Figure 3.3; top), and between CFSR and TRMM 

(Figure 3.3; bottom) are nearly identical. Compared with CMAP and with TRMM, CFSR is 

wetter over the oceans, except immediately offshore. This negative tendency is slightly more 

pronounced when comparing CFSR with CMAP rather than with TRMM. CFSR appears to be 

drier within the ARB and wetter within the ST when compared to both CMAP and TRMM. The 

most striking difference between CFSR and the other two datasets lies within the ITCZ. In this 

region, CFSR has the tendency to produce greater than 6mm/day more precipitation than CMAP 

or TRMM. The ITCZ, however, does not impact either area of interest for this study, so we do 

not expect this large bias to affect our results.  

Generally, CFSR accurately represents patterns and magnitudes of precipitation and 

temperature within the ARB and the ST when compared to TRMM, CMAP, and CRU. The 

largest temperature errors occur over mountainous terrain and the largest precipitation errors 

occur within the ITCZ. Although we cannot rectify these differences we must keep them in mind 

when we compare CFSR to the CFS, the RSM, and the RSM-AN. For completeness, we will also 

compare the models to CMAP and TRMM. Since CRU does not cover the entire temporal range 

of our model dataset, and since CFSR and CRU temperature fields are similar, we will not 

compare the models to CRU.  

 

3.2 Model Comparison 

 

3.2.1 Model Climatology 

 Figure 3.4 shows the JJA 2001–2007 average daily precipitation rates for the three 

models. The RSM and the RSM-AN produce distinct ITCZs and show precipitation rates 

increased over the northwest corner of the ARB. Additionally, both have precipitation maxima in 

the southeast corner of the ST and lower precipitation rates in the northwest corner. The CFS has 

a distinct ITCZ; however, there is almost no maximum in precipitation over the northwest corner 
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of the ARB and no distinguishable precipitation maximum in the southeast corner of the ST. The 

RSM is clearly producing the most precipitation, whereas the CFS is clearly producing the least. 

 Figure 3.5 shows the JJA 2001–2007 averaged two-meter air temperature for the three 

models. As was the case with the precipitation plots, the RSM and RSM-AN are spatially 

similar, whereas the CFS is drastically different. The RSM and RSM-AN both display 

temperature maxima just south of the equator near the center of the ARB. The RSM-AN 

maximum (~29°C) appears to be about 2°C warmer than the RSM maximum. The CFS, 

however, is warmer than both the RSM and RSM-AN. Much of the ARB in the CFS is occupied 

by >29°C temperatures. If precipitation and temperature are strongly linked through evaporative 

cooling then this phenomenon is understandable (i.e., the CFS produces the least precipitation 

and thus has the highest temperatures, whereas the RSM produces the most precipitation and has 

the lowest temperatures). In the ST, all three models display temperature minima of <11°C in the 

western and southwestern regions where there is elevated terrain, as well as decreasing 

temperatures from north (~22°C in southern Bolivia) to south (<11°C in central Argentina).  

3.2.2 Model Bias 

 In this section, we compare the models’ JJA 2001–2007 average precipitation rates to 

CFSR, TRMM, and CMAP precipitation rates, and we compare the model’s JJA 2001–2007 

two-meter air temperatures to those of CFSR. 

When compared to CFSR precipitation rates (Figure 3.6), the CFS and RSM-AN 

precipitation rates are primarily negatively biased within the ARB, except over elevated terrain. 

The CFS’s area-averaged bias is ~-1.1mm/day and the RSM-AN’s area-averaged bias is               

~-0.7mm/day. The RSM exhibits a positive bias (~0.9mm/day) in all areas except for 

northeastern Brazil. In the ST, the CFS and the RSM-AN display similar patterns of bias: 

negative bias in the eastern half of the box over the lowlands of Argentina, and positive bias in 

the western half of the box over the Andes Mountains (CFS~-0.4mm/day, RSM-AN~-

0.1mm/day). The RSM is mostly positively biased and has an area-averaged bias of 

~0.2mm/day. The fact that the RSM-AN precipitation more closely resembles the precipitation 

produced by the CFS than that produced by the RSM is a puzzling result. Our results suggest that 

the RSM-AN potentially retains more of the CFS’s bias than the RSM does, particularly over the 

ARB. Although it is beyond the scope of this research to do so, it is suggested that this result be 

investigated further. 
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A similar pattern of bias is observed when the three models are compared to TRMM 

(Figure 3.7) and CMAP (Figure 3.8). In both cases, the CFS and RSM-AN are negatively biased 

over the ARB and ST. When compared to both TRMM and CMAP, the RSM display similar 

patterns of positive and negative bias in the ARB and the ST. The results of the comparisons 

with CFSR, TRMM, and CMAP indicate that the models are generally negatively biased in the 

ARB, with the RSM having the smallest bias of the three models and in some instances actually 

exhibiting a positive bias. In the ST, all three models are positively biased over the Andes 

Mountains and negatively biased over the lower terrain of Argentina. 

The models’ JJA 2001–2007 two-meter temperature field is compared to the same field 

from CFSR only. However, as discussed in Section 3.1.1, CFSR and CRU temperatures are 

fairly similar, with most points inside the ARB and ST exhibiting mean temperature differences 

of less than ± 2°C. Figure 3.9 shows that the RSM temperature field is most similar to CFSR 

temperature field. In the ARB, the RSM has a bias of  ~0.01°C, whereas the CFS and RSM-AN 

exhibit positive biases of 3.5°C and 0.9°C, respectively. In the ST, the CFS and RSM-AN no 

longer exhibit the same pattern. Here, the CFS is negatively biased (~-1.5°C), whereas the RSM 

(~0.6°C) and RSM-AN (2.1°C) are both mostly positively biased. As we can see, the RSM, 

again, has the smallest bias. 

 

3.3 Signal-to-Noise Ratio 

 

The potential predictability of dynamical seasonal ensemble forecasting is based on the 

premise that long-term predictability is associated with slowly varying surface boundary 

conditions (primarily SSTs) that remain nearly constant between ensemble members. The 

potential predictability stems from the fact that atmospheric anomalies are largely governed by 

boundary condition/SST anomalies (Stefanova et al. 2010). By comparing the ratio of the 

variance of the external forcing (i.e., the boundary conditions or SSTs) to the total variance, we 

can arrive at the potential of predictability within the modeling system. Larger ratios mean that 

the system is more easily distinguishing between different regimes associated with different 

boundary conditions. Smaller ratios mean that the internal variance is overwhelming the signal of 

the boundary conditions and that the model has more difficulty distinguishing between different 

regimes. It is important to point out that despite its name, potential predictability ratio, a larger 
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ratio value in a particular location does not necessarily mean that the model will have more skill 

in that region over another. 

Figure 3.10 shows the ratio of the signal to the total variance of precipitation for the three 

models. At best, the models display scattered regions of ratio values greater than the threshold of 

0.5 in the ARB and the ST. However, the CFS and the RSM display some patchy areas of larger 

ratio values in the northern and eastern portions of the ARB, whereas the RSM-AN displays 

some higher values in the northern portion only. There are almost no values greater than 0.5 in 

the ST in any of the models. The spotty areas of higher potential predictability observed in the 

ARB seem to coincide with more seasonal precipitation (see Figure 3.4) over higher topography 

or within the ITCZ. Although most of the precipitation that falls in the ARB is convective, and is 

thus generally considered ―noisy,‖ areas with persistent convective precipitation can still produce 

a high signal. Most likely, this is what causes the spotty areas of high potential predictability in 

the ARB. 

All of the models display larger ratios in the ARB for two-meter temperature than they do 

for precipitation (Figure 3.11). However, there is still little potential predictability in the ST in 

any of the models. The RSM and the RSM-AN display larger ratios than the CFS in both the 

ARB and the ST. In the ST, the CFS does not display any values greater than 0.5, whereas the 

RSM and RSM-AN have several small regions where the ratio is greater than 0.5. As discussed 

in Section 3.2.2, the CFS two-meter air temperature field also exhibits the largest bias when 

compared to CFSR’s temperatures. Although large bias does not necessarily mean low potential 

predictability or low ensemble forecast skill, it could be an early indicator of such a problem. 

The fact that temperature has a greater potential predictability than precipitation is not surprising, 

as temperature is generally a much less ―noisy‖ field. The only way to get an exact measure of 

the model’s ensemble forecasting skill is to calculate the area under the ROC curve, which will 

be discussed in the Section 3.4. 

 

3.4 Model Skill 

 

 The calculation of the AUC is our chosen measure of model skill because it is an efficient 

way of evaluating ensemble forecasts. In this study, we use ensemble forecasting to predict 

positive and negative anomalies, as well as neutral conditions, of temperature and precipitation. 
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As was discussed in Section 2.3.3, ensemble forecasting requires a critical number of ensemble 

members to agree on a solution before it can be declared that such a solution will or will not 

happen. There are three primary objectives we hope to achieve through our ROC curve analysis. 

First, we would like to know if any of the three models possess some skill (i.e., AUC > 0.5) in 

predicting below normal, normal, and/or above normal temperatures and precipitation. The three 

aforementioned conditions are referred to as events throughout this study. Second, we wish to 

determine if either the downscaling process or the anomaly nesting process improves the skill of 

the forecasts. The first two objectives will be discussed in Section 3.4.1 (precipitation) and in 

Section 3.4.2 (two-meter air temperature). Lastly, using a longer integration of the CFS (1981–

2003) consisting of 15 ensemble members, we seek to determine whether using only six 

ensemble members and/or only seven years causes us to underestimate or overestimate the skill 

of the models. 

 The results of the AUC calculations are illustrated in Figures 3.12–3.19. Generally, the 

models display higher forecast skill in the ARB than they do in the ST, and temperature forecasts 

are more accurate than precipitation forecasts. This corresponds well with the results from 

Section 3.3; recall that temperature had more potential predictability than precipitation and that 

the ARB had more potential predictability than the ST.  

3.4.1 Precipitation 

 Using CFSR as the comparison dataset, the RSM-AN has the highest skill of the three 

models for all events in the ARB (Figure 3.12). The RSM has the same skill as the CFS when 

predicting below normal and normal precipitation, but has zero skill predicting above normal 

precipitation, whereas the CFS has some skill for this event. In the ST, all three models exhibit 

little skill (Figure 3.13). The CFS has zero skill predicting any of the three events, whereas the 

RSM has some skill predicting normal and above normal events and the RSM-AN has some skill 

predicting normal events only. These results lead us to believe that in the ARB there is little 

benefit to the downscaling process alone, but when it is coupled with the anomaly nesting 

process there is a distinct improvement in forecast skill over the CFS. In the ST, there is some 

benefit to the downscaling process but no added benefit from the anomaly nesting process.  

 We see slightly different results when we do the same ROC curve analysis using CMAP 

as our comparison dataset. The most glaring feature is the poor consistency between the AUC 

scores achieved using CFSR and the scores achieved using CMAP. Although slight differences 
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in the ROC curves were expected to occur as a result of inherent differences in the datasets, the 

magnitude of the differences and the impact these differences could have on future uses of the 

models is striking.  For example, when we compare the models to CFSR, only the RSM fails to 

achieve some skill at predicting all three events in the ARB. However, when compared to 

CMAP, none of the three models are able to achieve skill with all three events combined (Figure 

3.14). In fact, only the RSM-AN achieves some skill predicting more than one event (it achieves 

skill forecasting above normal and below normal events). Despite this dissimilarity, when we use 

CMAP as our comparison dataset, we still find the RSM-AN to possess the highest skill.  

A similar scenario appears in the ST when we use CMAP as our comparison dataset; the 

AUC scores are not similar between CFSR and CMAP. However, the RSM still possesses the 

most skill (Figure 3.15). An additional difference is that rather than predicting normal and below 

normal events with some skill, as it did with CFSR, the RSM predicts only below normal events 

best with CMAP.  

The fact that we see slightly different results when we use different comparison datasets 

shows us how sensitive skill score tests can be. Of course, the model data used in the ROC curve 

calculation is not changing when we use a different comparison dataset; thus, changes in the 

results are due to differences in the comparison data. In the case of ROC curves, the exact value 

forecast by the model for a particular year is not of upmost importance. Rather, whether that 

value is above or below normal relative to other years in the model and whether that ranking 

matches the ranking given to that same year by the comparison dataset takes precedence.   

 The results of the ROC curves using TRMM are, in some respects, more similar to the 

results of CFSR than to those of CMAP. As is the case with CFSR, the only event in any of the 

models that does not show signs of being skillfully predicted is above normal precipitation using 

the RSM (Figure 3.16). Unlike CFSR and CMAP, TRMM leads us to believe that there is no 

benefit to the downscaling or anomaly nesting processes in the ARB. In this comparison, the 

CFS has the most skill predicting below normal precipitation and has the same amount of skill as 

the RSM-AN predicting normal and above normal precipitation. Interestingly, the RSM-AN has 

much less skill predicting below normal precipitation and more skill predicting normal 

precipitation when TRMM is used as the comparison dataset rather than CFSR or CMAP. Again, 

this is an artifact of the ranking given to the years used in the observational datasets (2001–

2007), in terms of their mean seasonal precipitation rates. The ranking of particular years in the 
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different datasets can be found in Appendix A. Appendix A shows that the rankings in different 

comparison datasets are similar. Finally, in the ST, when TRMM is used for comparison data, 

the RSM displays the most skill (Figure 3.17). Therefore we are again concluding that there is a 

benefit to downscaling in the ST but no added benefit from the anomaly nesting process. 

3.4.2 Two-Meter Temperature 

  To estimate the model skill for above normal, normal, and below normal temperature 

events, we calculate ROC curves using CFSR only. In the ARB, the RSM-AN has the most skill 

predicting all three events (Figure 3.18). The RSM has the next highest skill for normal and 

above normal temperature events, though it has no skill predicting below normal events. The 

CFS has the least skill predicting normal and above normal events, but unlike the RSM it 

exhibits some skill predicting below normal events. In this case, it is evident that by applying the 

downscaling and anomaly nesting processes we will achieve greater predictability. If we apply 

the downscaling only, we can improve the forecasts of normal and above normal events but not 

below normal events.  

 In the ST, the results are far less definitive. The CFS displays some skill forecasting 

above normal events only, the RSM-AN displays significant skill forecasting below normal 

events only, and the RSM displays no skill with any of the events (Figure 3.19). In this situation, 

we do not believe that there is enough information to make conclusions regarding how 

downscaling and anomaly nesting affect our results.  

3.4.3 Sensitivity Experiment 

 Here we examine the third objective of our ROC curve analysis, which is to show 

whether the models are limited by their small temporal range and few ensemble members, by 

using a longer integration of the CFS (1981–2003) with more ensemble members (15 instead of 

6). We can conclude whether the low number of ensemble members has an effect on our results 

by calculating ROC curves for the full 15-member CFS and then by conducting a second set of 

curves for which we use only 6 randomly selected ensemble members. To determine whether the 

small number of years is impacting our results, we conduct a similar experiment. Here we 

compare the 23-year, 15-member CFS with the same 15-member CFS consisting of a      

randomly chosen seven consecutive years. The major limiting factor in this experiment is that it 

is difficult to determine if the random selection is representative of the dataset as a whole. We 

exclude TRMM from this comparison because it does not offer data for all 23 years. 
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When we use CFSR to evaluate precipitation in the ARB, we see that the skill for all 

three events changes little when we reduce the number of ensemble members (Figure 3.12). The 

skill for normal and above normal precipitation events increases slightly, while the skill for 

below normal events decreases slightly. A similar pattern is observed in the ST, as little change 

in skill is observed between the 15-member CFS and the randomly chosen 6-member CFS 

(Figure 3.13). In the ST the skill of above normal and below normal precipitation decreases, 

whereas the skill for normal precipitation increases. As is the case with the primary three models, 

there is generally higher predictability of events in the ARB than in the ST. 

As was the case when we used CFSR, when we use CMAP as our comparison dataset 

little changes when we reduce the number of ensemble members. In the ARB, when we decrease 

the number of ensemble members, the skill of all three events decreases slightly (Figure 3.14). In 

the ST, there is little skill possessed by either the 15-member CFS or the random-6-member CFS 

(Figure 3.15). The 15-member CFS has some skill predicting below normal events only and the 

random-6-member CFS has some skill predicting above normal events only.  

Overall, it appears that when we limit the number of ensemble members we do not 

necessarily limit, or artificially inflate the skill of the model when predicting precipitation. 

 When we limit the number of ensemble members used to predict two-meter air 

temperature we see slightly larger changes than we did for precipitation. In the ARB, it does 

appear that when we limit the number of ensemble members we may be limiting the potential 

skill of the model. Here, the skill of all three events drops and the skill of the normal temperature 

event actually falls below the threshold of 0.5 (Figure 3.18). There also appears to be a slight loss 

of skill in the ST when we reduce the number of ensemble members. Here, the normal events 

had no skill in either the 15-member or the 6-member CFS, the skill of the above normal events 

did not change, and the skill of the below normal events dropped significantly (Figure 3.19). 

 For both two-meter air temperature and precipitation we see obvious changes in the 

results of our ROC curves between the 15-member CFS with 23 years and the 15-member CFS 

with only 7 years (Figures 3.12, 3.13, 3.18. and 3.19). This result tells us that we may be 

overestimating or underestimating the skill of the primary three models by using only seven 

years. It is impossible to know whether we are overestimating or underestimating simply by 

conducting one test. A more thorough investigation would be needed. As is often the case with 
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statistical skill scores, using a longer dataset could yield a more significant representation of the 

models’ skill.  

 

3.5 Land-Atmosphere Feedbacks 

 

 The final aspect of this project is to determine how the land and the atmosphere interact 

in the three models, and then to determine if those results match the results from CFSR. The 

purpose of this investigation is to provide a potential reason why the models are less than perfect 

per the results of Section 3.4.  

3.5.1 Models 

 As discussed in Section 2.3.4, the second part of the land-atmosphere feedback can be 

illustrated with contemporaneous correlations between precipitation and temperature. The results 

of this test in all three models are similar. In the ARB, the northern portion of the box is mostly 

negative, whereas the southern portion is weakly positive (left panel of Figures 3.20, 3.21, and 

3.22). This implies that in the northern portion of the box, precipitation is wetting the soil and 

then being evaporated, reducing the sensible heat flux and cooling the air through the 

evaporative cooling process, and possibly leading to future precipitation. In the RSM, the 

negative correlations occupy a slightly larger portion of the box than they do in the RSM-AN and 

CFS. In the southern portion, the results suggest that surface evaporation is not leading to 

precipitation; otherwise, we would have negative correlations (Koster et al. 2003). In the ST, 

correlations are very weakly positive or negative and no distinct spatial pattern exists.  

 The third part of the cycle, the enhancement of precipitation by evaporation, is explained 

by the last two sets of correlations. All three models exhibit positive correlations between flux 

and evaporation in both the ARB and the ST (middle panel of Figures 3.20, 3.21, and 3.22). This 

indicates that in SA during the dry season evaporation is energy limited (Misra and Dirmeyer 

2009). The term energy limited implies that there was not enough incoming solar radiation to 

evaporate all of the moisture at the surface. This result agrees well with what we see in the 

correlation plots between evaporation and precipitation.  

 Spatially the correlations of evaporation with precipitation are similar to correlations of 

temperature with precipitation. Most areas display negative correlations except for the southern 

portion of the ARB where values are weakly positive (right panel of Figures 3.20, 3.21, and 
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3.22). Negative values are a mark of aridity, which means that there is significant evaporation 

but little precipitation. Because evaporation has been limited by the lack of radiation, the 

atmosphere is not absorbing enough moisture to support precipitation. It is likely that too much 

of the model domain is in an arid regime as a result of the models producing less precipitation 

than is actually observed (Figures 3.6, 3.7, and 3.8). This result, however, conflicts with our 

interpretation of the correlations between temperature and precipitation. From that plot, we 

concluded that evaporation results in precipitation and thus evaporative cooling, because we saw 

that when precipitation increased, temperature decreased. We now show that evaporation does 

not always lead to precipitation. Without conducting a full moisture budget, we cannot determine 

exactly why we see this result. One hypothesis is that local recycling is not important during the 

dry season in the models. The model is evaporating a significant amount of moisture and the 

evaporation process is acting to cool the near-surface air. However, the amount of evaporation is 

not enough to produce precipitation. Instead, precipitation is fed by moisture that is advected 

from remote locations.   

3.5.2   CFSR 

 When the same sets of correlations are performed with CFSR, the results are similar to 

those obtained from the suite of models. Figure 3.23 (left panel) shows that the correlation 

pattern between evaporation and precipitation is spatially similar to the pattern produced by the 

models. It shows negative correlations in the northern portion of the ARB and weak positive 

values in the southern portion. These results indicate that evaporation probably fuels 

precipitation in the northern part of the ARB, but not in the southern portion. Correlation 

coefficients in the ST region are a mix between weak positive and weak negative values. As was 

the case in the models, CFSR shows mostly positive correlations between downwelling 

shortwave flux and evaporation in the ARB, meaning evaporation is energy limited (Figure 3.23, 

middle panel). In the ST, however, there is a small region where correlations are negative; thus 

evaporation is moisture limited. The largest differences between the models and CFSR occur in 

the correlations of evaporation and precipitation. Unlike the models, CFSR shows primarily 

positive correlations between these variables in both the ARB and the ST. This means that CFSR 

is indicating that SA is a nonarid regime during the dry season, whereas the models are saying 

SA was an arid regime. Additionally, it means that evaporation is leading to precipitation, which, 
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unlike the results seen in the models, is in agreement with the correlations of precipitation and 

temperature. 

 As discussed in Section 3.5.2, explaining why the models suggest that evaporation leads 

to precipitation in one plot and contradicting that statement with another plot would require a full 

moisture budget analysis and is beyond the scope of this research. We would also need a 

moisture budget analysis to determine why evaporation seems to play more of a role in 

precipitation in CFSR than in the models. It is important to remember that correlations due not 

necessarily imply cause and effect and that our interpretations of the correlations we have 

presented are based on previous studies. 
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Figure 3.1   The difference in two-meter air temperature between CFSR and CRU in degrees 

Celsius. Temperatures are an average over JJA from 2001 through 2005. As in 

Figure 2.1 the blue box represents the ARB and the red box represents the ST. 

Values over bodies of water are masked out. The statistical significance test was not 

applied to this image. 
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Figure 3.2   Precipitation rate averaged over JJA 2001–2007 for CFSR (left), TRMM (middle), 

and CMAP (right). Units are in mm/day.  
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Figure 3.3   Difference between the 2001–2007 JJA averaged precipitation for CFSR minus 

CMAP (top) and CFSR minus TRMM (bottom). Units are in mm/day. The statistical 

significance test was not applied to these differences. 
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Figure 3.4   Precipitation rate averaged over JJA 2001–2007 for CFS (left), RSM   (middle) and 

RSM-AN (right). Units are in mm/day. 
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Figure 3.5   Same as Figure 3.4 except for two-meter air temperature and units are in degrees 

Celsius.  
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Figure 3.6   Difference between the JJA 2001–2007 average precipitation rates for the models 

and CFSR. CFS minus CFSR is on the left, RSM minus CFSR is in the middle, and 

RSM-AN minus CFSR is on the right. To conduct grid-point to grid-point 

differences the models are interpolated to the higher-resolution grid of CFSR. Units 

are in mm/day. Positive differences indicate that the model rains more than CFSR 

and negative differences mean the model rains less than CFSR. Regions that do not 

meet the 90% confidence level of the student t-test are masked out in white.  
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Figure 3.7   Same as Figure 3.6 except for the differences are now between the models and 

TRMM. 
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Figure 3.8   Same as Figure 3.7 except differences are now between CMAP and the models. 
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Figure 3.9   Same as Figure 3.6 except the differences are now for two-meter air temperature. 

Grid boxes over water are masked out and are not necessarily insignificant. 
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Figure 3.10   The ratio of the signal to the total variance or, potential predictability, for the six 

ensemble members from 2001–2007. CFS is on the left, the RSM is in the middle, 

and the RSM-AN is on the right. Where larger values are observed, the model 

should exhibit more skill in forecasting precipitation events. In the RSM and RSM-

AN, regions in the western Pacific Ocean that show up in white are areas where the 

model did not produce any precipitation and the calculation of the potential 

predictability was undefined (i.e., division by zero occurred).  
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Figure 3.11   Same as Figure 3.10 except showing the potential predictability of two-meter air 

temperature. 
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Figure 3.12   Bar graph depicting the area under the ROC curves calculated for above normal 

(red), normal (green), and below normal (blue) precipitation events using CFSR as 

the comparison dataset for the ARB region. The three primary models (CFS, RSM, 

and RSM-AN) are shown along with the CFS integration including 23 years and 15 

ensemble members (CFS Long), the same 23 year integration consisting of a 

randomly chosen 6 ensemble members (CFS Random Ens), and the same CFS 

integration with 15 ensemble members but consisting of only 7 randomly chosen 

(1997 through 2002) consecutive years (CFS Random Yr). Only AUCs greater than 

0.5 are shown because values less than that indicate that the model has no skill. 
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Figure 3.13   Same as Figure 3.12 except the region has changed to the ST. 
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Figure 3.14   Same as Figure 3.12 except using CMAP as a comparison dataset and the CFS 

integration with 15 ensemble members and a randomly chosen 7 years is no longer 

displayed. 
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Figure 3.15   Same as Figure 3.14 except the region has changed to the ST. 

 

 

 

 

 

 

 

 

 

 

 

 



49 

 

 

Figure 3.16   Same as Figure 3.14 except TRMM is now the comparison dataset and none of the 

supplementary CFS integrations are included (i.e., only the three primary model 

runs are shown). 
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Figure 3.17   Same as Figure 3.16 except the region has now changed to the ST. 
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Figure 3.18   Same as Figure 3.12 except the variable is two-meter air temperature. 
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Figure 3.19   Same as Figure 3.18 except the region has changed to the ST. 
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Figure 3.20   Contemporaneous correlations between temperature and precipitation (left), 

downwelling shortwave flux and evaporation (middle), and evaporation and 

precipitation (right) in the CFS model. Correlations are calculated using the model 

six-hourly data from JJA for the years 2001–2007. 
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Figure 3.21   Same as Figure 3.20 except the model is the RSM. 
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Figure 3.22   Same as Figure 3.20 except the model is the RSM-AN. 
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Figure 3.23   Same as Figure 3.20 except for CFSR is now being shown. 
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CHAPTER FOUR 

CONCLUSIONS 

In this study, we analyzed the output of three climate model integrations, the NCEP CFS, 

the NCEP Scripps RSM with unmodified CFS data, and the NCEP Scripps RSM with bias 

correction applied to the CFS data, for seven dry seasons of the South American monsoon. The 

three primary objectives of this research were to analyze the biases of precipitation and of two-

meter air temperature in the models, to investigate the models’ skill in predicting those two 

variables, and to identify a possible reason for the model solutions differing from the reanalysis 

data by undertaking an investigation of land-atmosphere feedbacks within the models and the 

reanalysis. In this study, we focused on two primary regions: the Amazon River Basin and the 

subtropical region.  

The primary comparison dataset used in this study was NCEP CFSR. However, since 

some CFSR variables are produced using a model, we also compared CFSR to other, more 

widely used datasets. For example, CFSR two-meter air temperature was compared with CRU 

two-meter air temperature. We found that most areas exhibited five-year (2001-2005) dry season 

average differences of less than 1-2°C. The exception to this was over elevated terrain, where 

differences occasionally exceeded 3°C. As a result, CFSR was considered a reasonable 

representation of two-meter air temperature over SA. Additionally, CFSR precipitation was 

compared to CMAP and TRMM precipitation. CFSR was negatively biased in the ARB and 

positively biased in the ST, although biases were generally low. As a result, CFSR was also 

considered a reasonable representation of precipitation during the dry season. 

We found that all three models, when compared to CFSR, exhibited positive biases of 

two-meter air temperature in the ARB, where the CFS possessed the largest bias. In the ST, the 

CFS was negatively biased, whereas the RSM and the RSM-AN were positively biased. When 

we compared the models’ precipitation to CFSR’s precipitation we found that the CFS and the 

RSM-AN were both negatively biased in each region and that the RSM was positively biased in 

each region. The differences between precipitation in CFSR and TRMM and between 

precipitation in CFSR and CMAP were small enough that we did not expect any drastic 

differences between our comparison of the models with CFSR or with those two datasets. When 
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we analyzed the results from all three comparisons (i.e., models compared to CFSR, TRMM, and 

CMAP) we found that although the sign of the bias for a particular model and region did not 

always remain the same, the magnitude of the bias usually did.   

Differences were found between potential predictability ratios in the ARB and in the ST. 

For both precipitation and two-meter air temperature and for all models, the ARB exhibited 

larger ratios than did the ST, which indicated that the models more easily ―saw‖ the boundary 

conditions in the ARB. The potential predictability ratios also indicated that the models better 

differentiated between different temperature regimes than between different precipitation 

regimes, particularly in the ARB. Potential predictability ratios are not necessarily indicative of a 

model’s skill. However, in this study, where the differences between ratios from different regions 

or from different variables are large (no specific value has been defined), the potential 

predictability was a fair first-approximation of model skill. 

ROC curve analysis for precipitation using CFSR as a comparison dataset indicated that 

applying the downscaling and anomaly nesting processes yielded the most skill in the ARB, 

whereas applying only downscaling yielded the most skill in the ST. When analyzing two-meter 

air temperature, we found it most beneficial to apply the downscaling and anomaly nesting 

processes in both regions. The same conclusions were reached using CMAP as a comparison 

dataset. Interestingly, when using TRMM as our comparison dataset, we found no added benefit 

to applying either the downscaling or the anomaly nesting methods in the ARB, but our 

conclusions for the ST were identical to those reached when we used CFSR and CMAP.  

The difference between the results achieved by using different datasets is evidence of one 

limitation of this study. We used only seven years and six ensemble members in our model 

integrations. As a result, small differences between comparison datasets (i.e., CFSR, TRMM, 

and CMAP) can have large impacts on the results of our ROC curve analysis. However, CFSR’s 

and CMAP’s providing identical conclusions, and TRMM’s providing similar conclusions, 

suggests that we have acquired an adequate representation of the models’ skill. It is promising 

that the primary differences we observed between different observational datasets were between 

the specific scores achieved by different models in different regions, and not with our larger 

scale conclusions. Additionally, using a longer integration of the CFS (23 years), with more 

ensemble members, we determined that reducing the number of ensemble members did not 

largely change the results of the ROC analysis. However, when we reduced the number of years 
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in the longer CFS integration from 23 to 7, some differences arose in the results of the ROC 

curve analysis. In the future, if it becomes computationally feasible, we would like to add more 

years to all three model integrations (CFS, RSM, and RSM-AN) and repeat the process.  

The investigation into land-atmosphere interactions within the models and within CFSR 

provided a possible reason for the models exhibiting less-than-perfect skill in our ROC curve 

analysis. According to Koster et al. (2003) in the models, correlations of temperature and 

precipitation indicated that evaporation was leading to precipitation. However, negative 

correlations of precipitation with evaporation indicated that evaporation was not leading to 

precipitation over much of SA. Additionally, mostly positive correlations of evaporation and 

downwelling flux suggested that evaporation was energy limited in the models. Therefore, the 

models have indicated that, during the dry season, SA has an arid climate in which evaporation is 

energy limited and is not sufficient to fuel precipitation. This implies that additional moisture 

must be advected from remote locations. CFSR exhibited mostly positive correlations between 

evaporation and precipitation, which suggested that local evaporation, rather than remote 

advection of moisture, contributed most significantly to precipitation over SA. The difference 

between the models and CFSR is potentially a consequence of the models producing less 

precipitation than CFSR and thus being more arid than CFSR.  

Our results have indicated that downscaling and anomaly nesting could be beneficial to 

forecasts for the South American dry season. However, we must remember that the ROC scores 

are also dependent on the dataset that we choose to compare the models to, as well as the years 

that we choose to analyze. We have suggested that incorrect land-atmosphere feedbacks in the 

models could account for differences between the models and CFSR which could, in turn, lead to 

imperfect ROC scores. To completely resolve land-atmosphere feedbacks in the models and in 

CFSR, a full moisture budget analysis is needed. Unfortunately, a full moisture budget is beyond 

the scope of this research. A similar modeling study including more, or different, years and more 

ensemble members is recommended.  
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APPENDIX A 

RANKING OF THE YEARS IN PRIMAR Y DATASET 

Table A.1   Shows the years ranked from highest to lowest for two-meter air temperatures in the ST 

for our different datasets. The years correspond to values that are calculated by finding the JJA 

average for all grid points and then area averaging over all grid points in the ST. For the models the 

ensemble mean is used. 

2m T in ST CMAP  TRMM  CFSR  CFS  RSM  RSM-AN  

1. Wettest 2005 2005 2005 2003 2002 2002 

2 2006 2001 2004 2002 2001 2001 

3 2002 2002 2006 2001 2005 2007 

4 2004 2004 2002 2004 2007 2006 

5 2001 2006 2003 2005 2003 2003 

6 2003 2003 2001 2007 2006 2005 

7. Driest 2007 2007 2007 2006 2004 2004 

 

Table A.2   Same as Table A-1 except for ARB. 

2m T in ARB CMAP  TRMM  CFSR  CFS  RSM  RSM-AN  

1. Wettest 2006 2003 2007 2001 2001 2003 

2 2007 2004 2003 2003 2006 2007 

3 2004 2002 2006 2002 2002 2001 

4 2003 2006 2004 2006 2003 2006 

5 2002 2001 2001 2004 2007 2005 

6 2005 2007 2005 2007 2005 2002 

7. Driest 2001 2005 2002 2005 2004 2004 

 

Table A.3   Same as Table A-1 except for precipitation rate. 

Precip in ST CFSR  CFS  RSM  RSM-AN  

1. Warmest 2006 2001 2005 2005 

2 2001 2007 2004 2004 

3 2005 2005 2007 2001 

4 2004 2004 2001 2006 

5 2003 2002 2006 2002 

6 2002 2006 2003 2007 

7. Coldest 2007 2003 2002 2003 
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Table A.4   Same as Table A-3 except for the ARB. 

Precip in ARB CFSR  CFS  RSM  RSM-AN  

1. Warmest 2002 2005 2005 2005 

2 2005 2004 2004 2004 

3 2006 2002 2002 2002 

4 2001 2007 2007 2001 

5 2007 2006 2003 2007 

6 2003 2001 2001 2006 

7. Coldest 2004 2003 2006 2003 
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