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Review - Example

• There are several ways to go about this. 
• Compute the means of each series, and determine if the differences 

is statistically different from zero.
• Compute the differences and determine if the mean of the 

differences is statistically different from zero.
• What are the pros and cons of each approach?

• Statistics that might be useful for determining which approach to use:
• Lag 1 correlation is 0.52 for one city, and 0.61 for the other.
• Lag 1 correlation is 0.076 for the differences.
• Standard deviations are 7.71, 7.86, and 2.28°F.
• Difference in the means (and mean of the differences) is –1.9°F.

• Consider a time series of daily maximum temperatures for 
January 1987 from two cities that are close together.
• See table A.1 in Wilk’s Appendix A for the values.
• Answer the question ‘are the means significantly different?’
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Example Continued

• If we work with the mean of the paired differences, we use the same 
approach to determine the number of independent data points.
• 31 (1 − 0.076) / (1 + 0.076) = 26.6
• Substantially better than working with the individual cities.

• Recall that the difference in the means is the same in both approaches. 
The consideration that changes is the uncertainty, which is a function 
of the standard deviation (assuming a Gaussian distribution) and the 
number of independent data points.  

• Recall that the standard deviation in the differences is approximately 
one third the standard deviations for the non-differenced values.

• If we look at the difference in the means of each city, then we need to 
determine the number of independent data points for each city.
• For the first city this is 31 (1 – 0.52) / (1 + 0.52) = 9.8 days.
• For the 2nd city this is 31 (1 – 0.61) / (1 + 0.61) = 7.5 days.
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Example Concluded
The Test Statistics

• Consider the approach using the difference of the means.
• The difference in the means is –1.9°F
• The uncertainty is (7.712 / 9.8 + 7.862 / 7.5)1/2 = 3.78°F
• The z value is –0.502

• Why is the approach based on the ‘mean of the differences’ so much 
better than the other approach?
1) More independent points results in smaller uncertainty in the mean.
2) The cities are closely located, so there is a high correlation between 
the temperatures. The variability associated with this correlation is 
removed from the differences, resulting in less uncertainty. 

• Consider approach using the mean of the temperature differences.
• The difference in the means is –1.9°F
• The uncertainty is (2.282 / 26.6)1/2 = 0.442°F
• The z value is –4.29
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MET3220C & MET6480
Computational Statistics

Hypothesis Testing
Parametric tests:
Goodness of Fit

(Chapter 5.2.3 of Wilk’s book)

Key Points: 
1) χ2 Test

2) K-S Test
3) Filliben Q-Q Correlation test
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Goodness of Fit Tests
• In earlier lectures and assignments we discussed some simple tests.

• Compare the range of the data to the range of the parametric 
distribution.
• Are negative values found?

• Can they be explained by random noise?
• Are there other limiting values?

• Compare a histogram of the data to the theoretical parametric 
distribution.
• Use the data to determine the fitting parameters.

Distribution μ = E(X) σ2 = Var[X]

Binomial N p N p (1 − p)

Geometric 1/p (1 − p) / p2

Negative Binomial k (1 − p) / p K (1 − p) / p2

Poisson μ μ
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Objective Measures of Goodness of Fit

• Example of why we don’t base our tests solely on the range of the 
data.
• Scientists working with satellite observations of radar backscatter 

(the fraction of the radar signal that returns to the satellite), were 
greatly disturbed to find negative values. These values did not 
match modeled backscatter, which only allowed positive values.

• Some people were ready to totally reject the basis for these models, 
and come up with a new distribution.

• In reality, the negative values were consistent with very low 
signals and relatively large random error.

• It is better to focus on the distribution than subtle differences in 
acceptable bounds.

• Goodness of Fit tests are unusual because the goal is often to support 
the null hypothesis.
• Null Hypothesis: The data are consistent with the hypothesized 

distribution.
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χ2 Test

• This test involve partitioning the data into bins.
• Examples:

• Probability of wind speeds in 0.5m/s bins.
• Probability of an annual number of landfalling tropical storms.

• The χ2 test is much more natural for the second example, because the 
values are discrete, and easily binned. Rounding can be an issue when 
the technique is applied to continuous distributions.

• Continuous data should be integrated over each bin.

• The χ2 test is a relatively common and relatively simple test for 
goodness of fit. It compares values in an observed histogram to values 
from a theoretical distribution.



The Florida State University
Hypothesis Testing: 

Goodness of Fit 8
http://campus.fsu.edu/
bourassa@met.fsu.edu

χ2 Test Statistic

• The bins should span the entire range of the union of observations and 
theoretical values. 

• It must be complete. We can’t ignore the observations that don’t fit the 
model!

• The number of degrees of freedom (ν) is: 
ν = number of bins – number of fitting parameters − 1

• The test is always one sided.
• Likelihoods are given in Wilk’s Table B.3.

( )2
2 #observed #expected

#expectedbins

χ
−

=∑
{ }( )

{ }

2

2 #observed _ Pr data in bin
_ Pr data in binbins

nbin width
nbin width

χ
−

=∑

• If the model is a good fit to the data, then the χ2 value will be ‘small.’
• If the data is a poor fit, the χ2 value will be much larger.
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χ2 Table:Confidence Limits 
for Rejection of Null Hypothesis

• Wilk’s Table B.3
• The table gives the 

minimum χ2 values 
required to reject the 
null hypothesis, as a 
function of the 
confidence limit and the 
number of degrees of 
freedom.

• For large values of ν, 
the distribution is 
approximately Gaussian, 
with a mean of ν and a 
standard deviations of 
2ν.

Table adapted from Wilk’s Statistical Methods in the Atmospheric Sciences
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Example: Comparing Gaussian and Gamma 
Distributions to Data

• Determine the fitting parameters for each distribution:
• α = 3.76 and β = 0.52 for the Gamma distribution, and
• Mean of 1.96” and standard deviation of 1.12”

• Integrate PDFs over each bin, and multiply by 50 to get number of observations.

bins <1” 1−1.5” 1.5 − 2” 2 – 2.5” 2.5 − 3” ≥3”

Observed number 5 16 10 7 7 5

Gamma Distrib.:
Probability 0.161 0.215 0.210 0.161 0.108 0.145
Expected 8.05 10.75 10.50 8.05 5.4 7.25

Gaussian Distrib.:
Probability 0.195 0.146 0.173 0.173 0.132 0.176
Expected 9.75 7.30 8.65 8.90 6.60 8.80

• Consider 50 years of January precipitation in Ithica (Wilk’s example 5.3).
• Compare the fits based on Gamma and Gaussian distributions.
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Example: Comparing Gaussian and Gamma 
Distributions to Data

• χ2 values are:
• 5.05 for the Gamma distribution
• 14.96 for the Gaussian distribution

• The number of degrees of freedom:
• ν = number of bins – number of fitting parameters – 1
• ν = 6 – 2 – 1 = 3

• The null hypothesis would be
• Not rejected at the 90% confidence limit for the Gamma distribution,
• Rejected at the 99% limit, but not the 99.9% limit for the Gaussian 

distribution.

( )2
2 #observed #expected

#expectedbins

χ
−
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• Calculate the χ2 values for each distribution.
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Word of Caution

• The χ2 test does not consider the consequences of uncertainty (random 
errors) in the observations. If these errors are large compared to the bin 
width, the χ2 test could be very misleading!
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Kolmogorov-Smirnov and Lilliefores Tests

• Null hypothesis: the modeled data is a statistically good fit to the 
observed data.
• If our test statistic is too large, then the null hypothesis is rejected.

• Note that the K-S test is usually a more sensitive test than the χ2 test.
• Particularly so for continuous distributions.

• Note that the K-S test is not applicable when the fitting parameters are 
determined from the observations.
• Since fitting parameter are often determined in this fashion, this 

consideration is a very serious constraint!
• The modified K-S test, or Lilliefores test (Lilliefores 1967), can be 

(correctly) applied when the fitting parameters are determined from the 
observations.

• The K-S test is another commonly applied test for goodness of fit.
• Recall that the χ2 test compared the observed and modeled PDFs.
• In contrast, the K-S test examines the observed and modeled CDFs.
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Kolmogorov-Smirnov and Lilliefores Tests

• The test statistic can be written as D = max|CDFobs(xi) – CDFmodel (xi) |, 
• Where CDFobs(xi) = i / n
• Where xi is the ith smallest value. Think of the series x as sorted from 

smallest to largest values.

• The test statistic is the absolute value of the largest difference between 
the observed and modeled CDF.
• The differences are calculated only for the CDF values 

corresponding to each observation.
• Note that the data does not have to be binned

,For the K-S test only.
0.12 0.11

KC
n n

=
+ +

• The test statistics (D) is compared to a critical (C) value that is a 
function of the confidence limit and the number of observations (n).
• If D ≥ C then the null hypothesis is rejected.

• Where K = 1.224, 1.358, and 1.628 for α = 0.10, 0.05, and 0.01.
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Lilliefores Tests Critical Values
• The critical values for the Lilliefores test are dependent on the 

theoretical distribution.
• Critical values have been determined (Crutcher 1975) for Gamma 

distributions
• Recall that α is the shape parameter.

Table adapted from Wilk’s Statistical Methods in the Atmospheric Sciences

• For Gaussian distributions use the α = ∞ row.
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Lilliefores Test Example
• The Lilliefores test is applied to two fits to precipitation observations 

• Observations are from Ithica in January
• Theoretical distributions are Gamma and Gaussian.
• n = 50 (large n column on previous table)

Figure adapted from Wilk’s Statistical Methods in the Atmospheric Sciences

C
D

F

Gaussian: C(5%) = 0.886 / 501/2 = 0.125 and C(1%) = 1.031 / 501/2 =  0.146
Gamma: C(20%) = 0.75 /  501/2 = 0.106
Why is a 20% chance of false rejection better than a 5% chance?
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Review of Hypotheses
• The null hypothesis (H0).

• The null hypothesis is part of a logical structure which is used to 
examine the test statistic.

• The null hypothesis is often designed as the compliment to what 
we would like to test for.
• Example: student A is not statistically taller than student B.
• Example: Any rate of temperature change is either negative or 

‘positive and statistically indistinguishable from zero’.
• The alternative hypothesis (HA).

• This hypothesis is the compliment of the null hypothesis.
• Example: the null hypothesis in not true.

• A more complicated hypothesis is possible.
• Hint: think about whether it is easier to clearly state null 

hypothesis or an alternative hypothesis, then define the other 
hypothesis as the compliment of the one that is more easily 
defined.
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Graphical Example of Hypotheses
• The null hypothesis together with the alternative 

hypothesis describe all outcomes related to the 
question.

• The boxes to the left describe two possible 
states:
• The null hypothesis is correct, or
• The alternative hypothesis is correct.
• There is no alternative outcome, and both 

hypotheses cannot be correct.
• Data analysis (AKA statistics) can be used to try 

to determine which of the hypotheses is true.

Reality

Null 
Hypothesis

Alternative 
Hypothesis
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Graphical Example of Perception
or example of statistical inference

• Statistical testing can be used to either accept or 
reject the null hypothesis.
• Reject the null hypothesis is the same as accept 

the alternative hypothesis.
• The boxes to the left describe two possible outcome 

of the statistical test:
• The null hypothesis is accepted, or
• The alternative hypothesis is accepted.
• There is no alternative outcome, and both 

hypotheses cannot be correct.
• So where does statistical confidence (e.g., the 

chance of a false rejection of the null hypothesis) 
come into play?
• You need to combine the reality and statistical 

inference cases.

Statistical 
Inference

Null 
Hypothesis 
is accepted

Alternative 
Hypothesis 
is accepted
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Putting it Together
• In reality, there are two possibilities 

about the null hypothesis:
• It is true, or
• It is false.Accepted Rejected

Correct
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Putting it Together
• In reality, there are two possibilities 

about the null hypothesis:
• It is true, or
• It is false.

Statistical Inference 
About Null Hypothesis

Accepted Rejected
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(β)

Correct
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• There are also two possibilities for 
our statistical inference (perception) 
about the null hypothesis:
• It is true (accepted), or
• It is false (rejected).
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Putting it Together
• In reality, there are two possibilities 

about the null hypothesis:
• It is true, or
• It is false.
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Accepted Rejected

Correct
Acceptance

False
Rejection

(α)

False
Acceptance

(β)

Correct
Rejection • Combining reality with perception 

results in 4 (2x2) possible outcomes:
• Correct acceptance,
• Correct rejection,
• False rejection (type I error), and
• False acceptance (type II error).

• There are also two possibilities for 
our statistical inference (perception) 
about the null hypothesis:
• It is true (accepted), or
• It is false (rejected).
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Putting it Together
• In reality, there are two possibilities 

about the null hypothesis:
• It is true, or
• It is false.
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Correct
Rejection • Combining reality with perception 

results in 4 (2x2) possible outcomes:
• Correct acceptance,
• Correct rejection,
• False rejection (type I error), and
• False acceptance (type II error).

• There are also two possibilities for 
our statistical inference (perception) 
about the null hypothesis:
• It is true (accepted), or
• It is false (rejected).
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Thinking About It
• It we have a 5% chance of a false 

rejection, is the chance of correct 
acceptance equal to 95%?

Statistical Inference 
About Null Hypothesis
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• Clearly the answer is no, because 
that would mean there is NO 
CHANCE of a false acceptance or a 
correct rejection.

• The odds of 
• Correct acceptance, plus
• Correct rejection, plus
• False rejection, plus
• False acceptance
are equal to one.

• If so, then the odds of a correct 
acceptance plus the odds of a false 
rejection is equal to one.

• In this application, we typically take 
the Reality true or false to be either 
zero or one.
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Q-Q Test

• Filliben (1975) developed a 
simplified (and almost as effective) 
test.
• The data value of the data are 

plotted on the dependent axis, 
and the Gaussian quantiles are 
plotted on the independent 
axis.

• The null hypothesis, that the data 
has a Gaussian distribution, is 
rejected if the correlation is less 
that the value in the table.

• A very robust test for a Gaussian distribution is often needed.
• Comparisons based on the correlation of the observation-based 

quantiles and Gaussian quantiles are very robust (D’Agustino 1986).

Table adapted from Wilk’s Statistical Methods in the Atmospheric Sciences
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Example of Filliben Q-Q Test

• Examine if the January 
precipitation data from Ithica
can be modeled as Gaussian.

• Test Stat: Q-Q correlation
H0: Gaussian distribution
HA: Not Gaussian
Confidence: 5% false rejection
Null Distribution: from table, 
critical value of 0.977.

• Result: H0 rejected
• Examine if the distribution is 

log-normal, with the same test, 
except that we are now 
examining log(precip).

• Result: H0 accepted.
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