Review - Example

e Consider a time series of daily maximum temperatures for
January 1987 from two cities that are close together.

e See table A.1 in Wilk’s Appendix A for the values.
e Answer the question “are the means significantly different?’
e There are several ways to go about this.

e Compute the means of each series, and determine if the differences
Is statistically different from zero.

e Compute the differences and determine if the mean of the
differences is statistically different from zero.

e \What are the pros and cons of each approach?
e Statistics that might be useful for determining which approach to use:
e Lag 1 correlation is 0.52 for one city, and 0.61 for the other.
e Lag 1 correlation is 0.076 for the differences.
e Standard deviations are 7.71, 7.86, and 2.28°F.
e Difference in the means (and mean of the differences) is —1.9°F.

_ R Hypothesis Testing:
bourassa@met.fsu.edu £ The Florida State University - (<[-{{}- ) Goodness of Fit 1
Qonc




Example Continued

e If we look at the difference in the means of each city, then we need to
determine the number of independent data points for each city.
e For the first city thisis 31 (1 - 0.52) / (1 + 0.52) = 9.8 days.
e For the 2" city thisis 31 (1 -0.61) / (1 + 0.61) = 7.5 days.
e If we work with the mean of the paired differences, we use the same
approach to determine the number of independent data points.
e 31(1-0.076)/(1+0.076) = 26.6
e Substantially better than working with the individual cities.
e Recall that the difference in the means is the same in both approaches.
The consideration that changes is the uncertainty, which is a function

of the standard deviation (assuming a Gaussian distribution) and the
number of independent data points.

e Recall that the standard deviation in the differences is approximately
one third the standard deviations for the non-differenced values.
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Example Concluded
The Test Statistics

e Consider approach using the mean of the temperature differences.
e The difference in the means is -1.9°F
e The uncertainty is (2.28%/ 26.6)Y2 = 0.442°F
® The z value is —4.29
e Consider the approach using the difference of the means.
e The difference in the means is -1.9°F
e The uncertainty is (7.712/ 9.8 + 7.862/ 7.5)Y2 = 3.78°F
® The z value is —0.502

e Why is the approach based on the ‘mean of the differences’ so much
better than the other approach?

1) More independent points results in smaller uncertainty in the mean.

2) The cities are closely located, so there is a high correlation between
the temperatures. The variability associated with this correlation is
removed from the differences, resulting in less uncertainty.
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MET3220C & MET6480
Computational Statistics

Hypothesis Testing
Parametric tests:

Goodness of Fit
(Chapter 5.2.3 of Wilk’s book)

Key Points:
1) %° Test
2) K-S Test
3) Filliben Q-Q Correlation test
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Goodness of Fit Tests

e In earlier lectures and assignments we discussed some simple tests.

e Compare the range of the data to the range of the parametric
distribution.

® Are negative values found?
e Can they be explained by random noise?
e Are there other limiting values?

e Compare a histogram of the data to the theoretical parametric
distribution.

e Use the data to determine the fitting parameters.

Distribution u = E(X) o2 = Var[X]

Binomial Np Np(-p)

Geometric 1/p (1-p)/p?

Negative Binomial kK(1-p)/p K@ -p)/p?

Poisson u o
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Objective Measures of Goodness of Fit

e (Goodness of Fit tests are unusual because the goal is often to support
the null hypothesis.

e Null Hypothesis: The data are consistent with the hypothesized
distribution.
e Example of why we don’t base our tests solely on the range of the
data.

e Scientists working with satellite observations of radar backscatter
(the fraction of the radar signal that returns to the satellite), were
greatly disturbed to find negative values. These values did not
match modeled backscatter, which only allowed positive values.

e Some people were ready to totally reject the basis for these models,
and come up with a new distribution.

e |n reality, the negative values were consistent with very low
signals and relatively large random error.

e |t is better to focus on the distribution than subtle differences in

acceptable bounds.

Hypothesis Testing:
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v2 Test

The 2 test is a relatively common and relatively simple test for
goodness of fit. It compares values in an observed histogram to values
from a theoretical distribution.

This test involve partitioning the data into bins.

e Examples:
e Probability of wind speeds in 0.5m/s bins.
e Probability of an annual number of landfalling tropical storms.

The 2 test is much more natural for the second example, because the
values are discrete, and easily binned. Rounding can be an issue when
the technique is applied to continuous distributions.

Continuous data should be integrated over each bin.

Hypothesis Testing:
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v? Test Statistic

#observed — #expected)2

oy

#expected
oy (#0bserved — nbin _ width Pr {datain bin})
= nbin _ width Pr{datain bin}

e If the model is a good fit to the data, then the y2 value will be ‘small.’

e If the data is a poor fit, the y2 value will be much larger.

e The bins should span the entire range of the union of observations and
theoretical values.

e It must be complete. We can’t ignore the observations that don’t fit the
model!

e The number of degrees of freedom (v) is:
v = number of bins — number of fitting parameters —1

e The test is always one sided.

e Likelihoods are given in Wilk’s Table B.3.
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is approximately Gaussian, with mean v and variance 2v.

v? Table:Confidence Limits
for Rejection of Null Hypothesis

TABLE B.3 Right-tail quantiles of the Chi-square distribution. For large v, the Chi-square distribution

Cumulative Probability

v 0.50 0.90 0.95 0.99 0.999 0.9999
1 0.455 2.706 3.841 6.635 10.828 15.137
2 1.386 4.605 5991 9.210 13.816 18.42]
3 2.3606 6.251 7.815 11.345 16.266 21.108
4 3.357 1.779 9488 13257 18.467 23.512
5 4.351 9.236 11.070 15.086 20.515 25.745
6 5.348 10.645 12.592 16.812 22.458 27.855
7 6.346 12.017 14.067 18.475 24.322
8 7.344 13.362 15.507 20.090 26.124
9 8.343 14.684 16919 21.666 27.871

10 9.342 15.987 18.307 23.209 29.588

11 10.341 17.275 19.675 24.725 31.264

12 11.340 18.549 21.026 26.217 32.910

13 12.340 19.812 22.362 27.688 34.528

14 13.339 21.064 23.685 29,141 36.123

15 14.339 22.307 24.996 30.578 37.697

16 15.338 23.542 26.296 32.000 39.252

17 16.338 24.769 27.587 33.409 40.790

18 17.338 25.989 28.869 34.805 42.312

19 18.338 27.204 30.144 36.191 43.820

20 19.337 28.412 31.410 37.566 45.315

21 20.337 29.615 32.671 38.932 46.797

22 21.337 30.813 33.924 40.289 48.268

http://campus.fsu.edu/
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Table adapted

from Wilk’s Statistical Methods '
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Wilk’s Table B.3

The table gives the
minimum y2 values
required to reject the
null hypothesis, as a
function of the
confidence limit and the
number of degrees of
freedom.

For large values of v,
the distribution is
approximately Gaussian,
with a mean of vand a
standard deviations of
2v.
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Example: Comparing Gaussian and Gamma
Distributions to Data

e Consider 50 years of January precipitation in Ithica (Wilk’s example 5.3).

e Compare the fits based on Gamma and Gaussian distributions.
e Determine the fitting parameters for each distribution:
e o =3.76 and 3 = 0.52 for the Gamma distribution, and

e Mean of 1.96” and standard deviation of 1.12”

® |Integrate PDFs over each bin, and multiply by 50 to get number of observations.

bins <1” 1-15” | 15-2"| 2-25" | 25-3" | =>3”
Observed number 5 16 10 7 7 5
Gamma Distrib.:
Probability 0.161 0.215 0.210 0.161 0.108 | 0.145
Expected 8.05 10.75 10.50 8.05 5.4 7.25
Gaussian Distrib.:
Probability 0.195 0.146 0.173 0.173 0.132 | 0.176
Expected 9.75 7.30 8.65 8.90 6.60 8.80
http://campus.fsu.edu/ Hypothesis Testing:
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Example: Comparing Gaussian and Gamma

Distributions to Data
e Calculate the x2values for each distribution.

#observed — #expected )’
. Z< pected)

o~ #expected
e y?values are:

e 5.05 for the Gamma distribution
® 14.96 for the Gaussian distribution
® The number of degrees of freedom:
® v =number of bins — number of fitting parameters — 1
® y=6-2-1=3
® The null hypothesis would be
® Not rejected at the 90% confidence limit for the Gamma distribution,
® Rejected at the 99% limit, but not the 99.9% limit for the Gaussian

d | Stri butl on v 0.50 0.90 0.95 .99 0.999 0.9999
| 0.455 2.706 3.841 6.635 10.828 15.137
2 1.386 4.605 5.991 9.210 13.816 18.421 M
3 2.366 6.251 7.815 11.345 16.266 21.108 ‘
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Word of Caution

e The y? test does not consider the consequences of uncertainty (random
errors) in the observations. If these errors are large compared to the bin
width, the 2 test could be very misleading!

Hypothesis Testing:
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Kolmogorov-Smirnov and Lilliefores Tests

The K-S test is another commonly applied test for goodness of fit.

e Recall that the y?test compared the observed and modeled PDFs.

® In contrast, the K-S test examines the observed and modeled CDFs.
Null hypothesis: the modeled data is a statistically good fit to the
observed data.

e |f our test statistic Is too large, then the null hypothesis is rejected.
Note that the K-S test is usually a more sensitive test than the 2 test.

e Particularly so for continuous distributions.

Note that the K-S test is not applicable when the fitting parameters are
determined from the observations.

e Since fitting parameter are often determined in this fashion, this
consideration is a very serious constraint!

The modified K-S test, or Lilliefores test (Lilliefores 1967), can be
(correctly) applied when the fitting parameters are determined from the
observations.

http://campus.fsu.edu/
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Kolmogorov-Smirnov and Lilliefores Tests

® The test statistic Is the absolute value of the largest difference between
the observed and modeled CDF.

e The differences are calculated only for the CDF values
corresponding to each observation.
e Note that the data does not have to be binned
® The test statistic can be written as D = max|CDF.((X;) — CDF .41 (%) |,

® Where CDF_(x;) =1/n

e Where x; is the i"" smallest value. Think of the series x as sorted from
smallest to largest values.

e The test statistics (D) is compared to a critical (C) value that is a
function of the confidence limit and the number of observations (n).

e |f D > C then the null hypothesis is rejected.

C= K For the K-S test only.

Jn+012+0.11Jn"

e Where K=1.224, 1.358, and 1.628 for « = 0.10, 0.05, and 0.01.
oo Hypothesis Testing:
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Lilliefores Tests Critical VValues

e The critical values for the Lilliefores test are dependent on the
theoretical distribution.

e Critical values have been determined (Crutcher 1975) for Gamma
distributions

e Recall that « is the shape parameter.

Roo-pxmld—ﬁ

20% level 10% level 5% level 15 level
=25 n =30 large n n=25 n=230 large n n=25 n=30 large n n=25 n=730 large n
0.165 0.152 0.84//n 0.185 0.169 0.95/,/n 0.204 0.184 1.05//n 0.241 0.214 1.20//n

0150 0146 08l//n 0176 0161  09l/yn 019 0175  097/yn 0222 0203  L16/y/n
0.148 0136 077//n 0166 0151  086/y/n 0180  0.165  094/yn 0214 091 1 80//n
0146 0134  075/yn 0164  0.148 083/ /n 0178 0163  091/yn 0209  0.191 1.06//n
0.143 0131 074/yn 0159 0146  08l/yn 0173 0161  089/ym 0203 0187  1.OY Jn
0142 0131  0736/Jn 0158 0144  0805/¢/n 0173 0161  0.886/yn 0200 0.187 1.031 /Jn

e For Gaussian distributions use the a = o row.

Table adapted from Wilk’s Statistical Methods in the Atmospheric Sciences
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Lilliefores Test Example

e The Lilliefores test is applied to two fits to precipitation observations
e Observations are from Ithica in January
e Theoretical distributions are Gamma and Gaussian.
e n =150 (large n column on previous table)

1.0 - : —
0.8 - .
O 06 - . = v
@) " D,=0.068 D,=0.131
04 - — T
02 - Gamma distribution, o Gaussian distribution,
. o=3.76, p=0.52" n=1.96" o=1.12"
0.0 4 i 1 | ] : | i | T
0.0 1=5 3.0 45 6.0 0.0 T 3.0 45 6.0
Precipitation, inches Precipitation, inches

Gaussian: C(5%) = 0.886 / 502 =0.125 and C(1%) = 1.031/50¥2 = 0.146
Gamma: C(20%) = 0.75/ 502 =0.106
Why is a 20% chance of false rejection better than a 5% chance?

Figure adapted from Wilk’s Statistical Methods in the Atmospheric Suences . )
http://campus.fsu.edu/ /ST Hypothesis Testing:
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Review of Hypotheses

e The null hypothesis (H,).

e The null hypothesis is part of a logical structure which is used to
examine the test statistic.

e The null hypothesis is often designed as the compliment to what
we would like to test for.

e Example: student A is not statistically taller than student B.

e Example: Any rate of temperature change Is either negative or
‘positive and statistically indistinguishable from zero’.

® The alternative hypothesis (H,).
e This hypothesis is the compliment of the null hypothesis.
e Example: the null hypothesis in not true.
e A more complicated hypothesis is possible.
e Hint: think about whether it is easier to clearly state null

hypothesis or an alternative hypothesis, then define the other
hypothesis as the compliment of the one that is more easily
defined.

http://campus.fsu.edu/ T\ Hypothesis Testing:
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Graphical Example of Hypotheses

Reality

Null
Hypothesis

Alternative
Hypothesis

http://campus.fsu.edu/
bourassa@met.fsu.edu

The null hypothesis together with the alternative
hypothesis describe all outcomes related to the
question.

The boxes to the left describe two possible
states:

e The null hypothesis is correct, or
e The alternative hypothesis is correct.

e There iIs no alternative outcome, and both
hypotheses cannot be correct.

Data analysis (AKA statistics) can be used to try
to determine which of the hypotheses is true.

() Hypothesis Testing:
{ > The Florida State University |;Y‘H§/={| Goodness of Fit 18




Graphical Example of Perception

or example of statistical inference
Statistical testing can be used to either accept or

Statistical reject the null hypothesis.

Inference e Reject the null hypothesis is the same as accept
Ul the alternative hypothesis.

Hypothesis ® The boxes to the left describe two possible outcome

is accepted of the statistical test:
e The null hypothesis is accepted, or
e The alternative hypothesis is accepted.

Altemauv-e e There i1s no alternative outcome, and both
Hypothesis hvpoth ‘b :
is accepted ypotheses cannot be correct.

e So where does statistical confidence (e.g., the
chance of a false rejection of the null hypothesis)
come into play?

® You need to combine the reality and statistical
Inference cases.

http://campus.fsu.edu/ RN
bourassa@met.fsu.edu Ry The Florida State University (-ff 2

Hypothesis Testing:
Goodness of Fit 19




Reality About

True

Null Hypothesis

False

http://campus.fsu.edu/
bourassa@met.fsu.edu

Putting It Together

e Inreality, there are two possibilities
about the null hypothesis:

e |tistrue, or
e |tis false.

l@ The Florida State University (5l
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Reality About

Statistical Inference
About Null Hypothesis

Putting it Together

e [nreality, there are two possibilities
about the null hypothesis:

e |tistrue, or

Accepted

Rejected

True

Null Hypothesis

False

http://campus.fsu.edu/
bourassa@met.fsu.edu

e |tis false.

e There are also two possibilities for
our statistical inference (perception)
about the null hypothesis:

e Itistrue (accepted), or
e |tis false (rejected).

B Hypothesis Testing:
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Reality About

Putting It Together

Statistical Inference

About Null Hypothesis

Accepted

Rejected

True

Null Hypothesis

False

http://campus.fsu.edu/
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In reality, there are two possibilities
about the null hypothesis:

e |tistrue, or
e |tis false.

There are also two possibilities for
our statistical inference (perception)
about the null hypothesis:

e Itistrue (accepted), or

e |tis false (rejected).
Combining reality with perception
results in 4 (2x2) possible outcomes:

e Correct acceptance,
e Correct rejection,

e False rejection (type I error), and
e False acceptance (type Il error).

e Hypothesis Testing:
2 Goodness of Fit 22




Reality About

Putting It Together

e [nreality, there are two possibilities
about the null hypothesis:

e |tistrue, or

Statistical Inference
About Null Hypothesis

Null Hypothesis

Accepted Rejected o Itis false
o | Correct False ® There are also two possibilities for
= Rejection tatistical inference (perception)
= | Acceptance Our's \percep
(@) about the null hypothesis:
e Itistrue (accepted), or

2 Acclrzear:faence Correct ° It iS _false (r(?jecte_d)_ |
5 Rejection e Combining reality with perception

(B) results in 4 (2x2) possible outcomes:

e Correct acceptance,

e Correct rejection,

e False rejection (type I error), and
e False acceptance (type Il error).

http://campus.fsu.edu/ RN Hypothesis Testing:
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Thinking About It

Statistical Inference

About Null Hypothesis

Accepted Rejected

(Vp]
+= D Correct F_als_e
> L2 Rejection
O =|+ | Acceptance
O 0O (o)
<< 4o
>\ >
= I
= =| o False c .
© S|-= | Acceptance orree
X Z|w () Rejection

It we have a 5% chance of a false
rejection, is the chance of correct
acceptance equal to 95%?

If so, then the odds of a correct
acceptance plus the odds of a false
rejection is equal to one.

Clearly the answer is no, because
that would mean there is NO
CHANCE of a false acceptance or a
correct rejection.

The odds of
e Correct acceptance, plus

e Inthis application, we typically take e Correct rejection, plus
the Reality true or false to be either

Z€ero or one.

bourassa@met.fsu.edu

@

e False rejection, plus
e False acceptance

are equal t/g_\‘ne Hypothesis Testing:
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Q-0Q Test

e A very robust test for a Gaussian distribution is often needed.

e Comparisons based on the correlation of the observation-based
quantiles and Gaussian quantiles are very robust (D’Agustino 1986).

TABLE 5.3 Critical values for the Filliben (1975) test for Gaussian N
: o i o
distribution. based on the Q-Q plot correlation. H,, is rejected if the Fllllben (1975) developed a

correlation is smaller than the appropriate critical value. S|mp||f|ed (and aImOSt as effec“ve)
n 0.5% level 1% level 5% level 10% level tESt
10 860 876 917 934
- o o 950 960 ® The data value of the data are
30 938 047 964 970 plotted on the dependent axis,
40 949 i “j; ‘E and the Gaussian quantiles are
50 959 968 b L )
& = o o 983 plqtted on the independent
984 987 .
. s S . os ® Thenull hypothesis, that the data
100 o787 9812 9870 9893 has a Gaussian distribution, is
200 9888 9902 9930 e rejected if the correlation is less
i 007, g 0052 9960 -
300 9924 AP s o that the value in the table.
500 9954 9958 9970 9975
1000 9973 9976 9982 9985
TILLp-//Carmnpus. 1su.eau/ Table adapteshfrom Wilk’s Statistical Methods in the Atmgspheric Sciences  Hypothesis Testing:
bourassa@met.fsu.edu ( OAF: The Florida State University | ;/j' Goodness of Fit 25




Precipitation, or In{precipitation)

Example of Filliben Q-Q Test

e Examine if the January
X precipitation data from Ithica
can be modeled as Gaussian.

X e Test Stat: Q-Q correlation

H,: Gaussian distribution

. H,: Not Gaussian

Confidence: 5% false rejection
Null Distribution: from table,
critical value of 0.977.

Result: H, rejected

Examine if the distribution is
log-normal, with the same test,
O In (precipitation) (r=0.987) except that we are now

25 4 4 ; 'E examining log(precip).

Standard Gaussian Quantile, z e Result: H, accepted.

http://campus.fsu.edu/ 0
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g I x precipitation (r=0.917)
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