CffAES MET3220C & MET6480
- Computational Statistics

Lecture 8
Parametric Probability Distributions

Continuous Distributions

Key Point: ALWAYS LOOK AT THE DATAI!!I
DOES THE DATA REALY FIT THE DISTRIBUTION?

Parametric Probability
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Continuous Distributions

Continuous distributions have probabilities for any value(s) within a
parameter space.

e For example, a univariate distribution has probabilities for upper and
lower bounds, as well as all values between these bounds.

e This limits could be +oo.

The probability distribution function f(x) is such thatf f(x)dx=1,
e Probability distribution (or density) function is abbrewated as PDF.

Note that the probability of an event occurring is the area under the
PDF, bounded by the limiting conditions on the event.

These last two points should make it clear that f(x) = oPr{x}/ox .

e This equation is easily written in terms of cumulative probability
CDF, C{X < x}, because oPr{x}/ox = 0C{X < x}/ox

e |f we can calculate a a CDF, then we can easily randomly generate a
distribution that matches the CDF and corresponding PDF.

e Particularly so if we can determine X(C) from C(X).
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Fitting Parameters for

Continuous Distributions

Distribution E[X] Var[x]

Gaussian ul 02

Log-normal exp[u + o%/2] (exp[o?] — 1) exp[2u + 7]
Gamma af a2

Exponential B B2

Chi-squared Y 2v

Pearson 111 C+af ap?

Beta p/(p+q) (Pa)/[(p + q)*(p + q + 1)]
GEV C-PB[1l-T(1-x)]/x B2[I(1-2x)-T2(1-x)]/«?
Gumbel C+vB B r/\6

Weibull Br(1+1/a) Br(l+2/a)-T%(1-x)]/«?
Mixed Exponential WB, + (1-w) B,  |[WBZ+(1-w)B+w(l-w)(8, —5,)

L = mean, o= standard deviation
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Gaussian Distribution

e A Gaussian distribution (bell curve) is relatively common, particularly
when describing differences.

e |f a Gaussian distribution is normalized, meaning the area under
the curve is equal to unity (one), then this special case of the
Gaussian distribution is sometimes called a normal distribution.

e Definitions do vary: Wilks defines the Gaussian distribution as |
have defined a normal distribution.

e Estimates of a sum (or mean) will have a Gaussian distribution if the
samples are (1) independent, and (2) of sufficient number.

® The above statement is the central limit theorem.

e The sufficient number is small if the population from which the
samples are taken (and the sum calculated) has a near Gaussian
distribution. It is larger (>100) for highly non-Gaussian PDFs.
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Gaussian Distribution: The Formula

e A normal distribution is described by two parameters: a mean («) and a
standard deviation (o).

e A Gaussian distribution (not a pdf) would also have an amplitude.

(x=p)°

p — 1 (x)= ——exp| -

e Think about how the the standard deviation influences the shape of f (x).

exXp|— , —OO0 < X0

e Larger oimplies a wider peak, and a smaller amplitude.
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Graphic from http://homepage.univie.ac.at/Franz.Vesely/cp0102/dx/img579.png
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Distributions For Conditional Probabilities

e The pdf for a conditional probability can have a very different shape
than the unconditional probability.

e For example, consider the pdf for January daily maximum
temperatures at Canandaigua: mean = 31.8°F, o= 7.86°F.

e |f the data set is restricted to those days when the temperature at Ithica

was 25°F, then the mean is 27.1°F, and o= 2.28°F

f{x) Conditional distribution,

/\ 1=27.1°F, 6=2.28°F

Unconditional distribution,
n=31.8°F, o=7.86°F

15 20 25 30 35
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CDF For a Gaussian Distribution

The technique for determining a CDF is often the integration of the
corresponding pdf.

CDF(x) = j; " pdf (x')dx’

However, the Gaussian function is non-integratable.
One approach to solving this problem is a lookup table.

e Table B.1 in Wilks’ book shows the probabilities in terms of
zvalues:z=(x—uw)/ o

® 7 scores are numbers of standard deviations above (positive values)
or below (negative values) the mean.

The lookup table shows Pr{Z <z}
Note that the Gaussian function is symmetric.
® Therefore Pr{Z<z}=1-Pr{Z>-z}
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Approximating the Gaussian CDF

e When a good approximation is sufficient, there is a relatively simple
function that can be used as an approximate CDF, ®(z).

P(2) = % 1+ \/1 exp[2 Z ]

e Where the positive root is used for z > 0, and the negative root for z
<0

e Where z is the number of standard deviations from the mean.

e The maximum errors (in probability) using this approximation are
about 0.003 when z = +1.65.

e This can be inverted to solve for z as a function of the value of the
CDF.

7= gln[l[ZCI)(z)l]z”m
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Two Dimensional Gaussian Distributions

e Two dimensional Gaussian PDFs are also common, particularly when
showing differences in two spatial dimensions.
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Graphic from www.westgard.com/ lesson34.htm
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Log-Normal Distributions

e There are many occurrences of distributions that have
® (1) only positive values, and

® (2) peak is displaced to the left.
e Some of these distributions are log-normal distributions.

e A transformation of variables is used: y = In(x)

1 exp —(In(x>_ﬂy>2

df = f (x)= - y=1
P () ny\/ﬂ 207 0o <y <oo, y=In(x)

e Where Hy and o, are the mean and standard deviation of the
transformed variable y.

e The mean of x is exp[u + 0%/2], and
The standard deviation of x is (exp[o?] — 1) exp[2u + &7],

e Where 1 and o are the mean and standard deviation of the
transformed variable y.
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LLog-Normal Distribution Example

Frokbability Density Function

e Features:
e (1)only
positive values,
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\ HEE EEEEEE displaced to the
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left.
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Graphic from http://www.weibull.com/Accel TestWeb/characteristics_of_the Iognormal distribution.htm
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LLog-Normal Distribution Example

Manusl C, Molles, Jr, Ecology: Concepts and Applications, © 100% The Melraw-Hill Compankes, inc. All fights. reserved

eneral, taking larger samples
wll? show more of a lognormal
distribution.
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Graphic from http://www.biology.lsu. edu/heydrjay/1202/Chapter53/IognormaI%ZOd|str|but|on Jpg
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Gamma Distributions

e Gamma distributions are asymmetric, and skewed to the right
(meaning the peak is to the left of the mean).

e They are well suited to describe variables that have a peak close to a
limit.
e For example, wind speed or precipitation.

e There are several different (but equivalent) forms of the gamma
distribution. Each has two fitting parameters

e The fitting parameters are a shape parameter «, and
a scaling parameter f.

e Alternatively, it can be written with an inverse scale factor.

f (x)= (Xlﬁ)a6§?§§—xlﬂ)

, for x,a, 5>0
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Gamma Distribution

0.5

k=1,8=20 i ——— -
i k=28=20
', k=3.8=20 - 09 f
04 | k29,6205 — 7 0 }
07 F
i 106t
0.5
02} o~ 1oat |
¥4 ) as | ,'II
| ,L | o2t/ reoo26
/ = o1f k56210
0 3 4 6 8 W0 12 1 15 1 20 LTS S
- - - 14 16 18

e The above examples use k and the shape parameter, and £as the
scale parameter.

e The left plot is the PDF, and the right plot is a CDF

® [or a constant scale parameter, a smaller shape parameter will
results in the peak being shifted further to the left

—r /8
flxk,0) = I“_lm forxr >0
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Gamma Distribution Parameters
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e For ashape parameter k =1, the equation simplifies greatly to an
exponential distribution.

® The y-intercept is 1/ 6.

e [or ashape parameter k > 1, the y-intercept is zero.

e Larger values of k result in less skewness, and shift the peak to the
right.

e For k> 50 or 100, the distribution is apprOX|mater Gaussian.
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Frequency

Gamma Distribution Example
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e Time series of daily

precipitation at Olso
(top)

The distribution
function for daily
precipitation in Oslo
between 1883 and 1964
(bottom), with the
dashed line showing the
distribution for the
above time period.
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Estimating the Gamma Distributions

Scale Parameter

e We want to determine the fitting parameters « and f.
e \We can solve for these in terms of the mean and the standard deviation
of the gamma function.

X=af
oc=a°
e We can solve these equations for the fitting parameters:
a=X"1o°
B=0°1X

e What could go wrong with this approach?
® Good for (shape parameter) o > 10

® Poor estimates of moments lead to problems for smaller « .

Parametric Probability

http://campus.fsu.edu/ ' _ N
bourassa@met.fsu.edu GAPS The Florida State University ;,\f Distributions 17




More Robust Estimates

of Fitting Parameters
e Two better methods are based on maximum likelihood estimators.
e This concept will be explained in later lectures
e Both approach use the same 1%t calculation

D:In(i)—%izn;ln(xi)

e The Thom estimators are
14+/1+4D/3
B 4D

® The other method (Greenwood and Durand, Technometrics, 1960)

~0.5000876 + 0.1648852 D — 0.0544274 D?
B D

o 8.898919 + 9.059950 D + 0.9775373 D?
17.19728 D +11.968477 D? + D?
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Beta Distributions
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Beta distributions ha&(e limits of 0 and 1.
e Applications: RH & cloud cover

They have two tuning parameters: «, .

The B term normalizes the PDF.

If o = p, the distribution is symmetric.

If o and S are exchanged, the f(x) is
mirrored around x = 0.5.

Parametric Probability
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Extreme Value Distributions

e Extreme value distributions usually apply to a small fraction of the
events: the extreme events.

e E.g., floods at a specific location
e The fraction can be artificially increased by using only extreme values
In the distribution.
e E.g., the annual maximum of daily precipitation totals (at a specific
location).

e The Generalized Extreme Value (GEV) Distribution is

s(x = exp{_ Mx—c*)}”‘f}

14— >/ S S A
5 5
e Where £'is a location or shift parameter,
S 1s a scale parameter, and
x 1S a shape parameter.
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CDF of a GEV Distribution

e The GEV equation can be integrated, resulting in a analytical CDF.

CDF (x) = exp Jl 1+ %VM}

e The CDF can be inverted (solved for x as a function of CDF(x)).
cor *(p)-x—+ (s "
KR
e Given the fitting parameters, we can determine the extreme value as a
function of the probability of that extreme (or greater) occurring.
e \We don’t expect the distribution to work for likely occurrences.

e However, as p becomes smaller, the distribution can be quite
realistic.

e Note that as p — 0, that In(p) — —oo, resulting in rather large x.

® There are three special cases of the GEV Distribution. The two that we
will examine are the Gumbel distribution and the Weibull distribution.
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Gumbel Distribution

e Typically used to determine the average time between extreme events
of the same magnitude or greater.

e The Gumbel distribution is the limit of the GEV distribution, where

K — 0.
f(X)—%exp|exp <X;C) <X5C>]
CDF(x)explexp (x=¢) }

e The fitting parameter can be estimated through a method of moments.
o 0= o6 7
o (=X—70

e Wherey=0.57721... is Euler’s constant.
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SST Extreme (warm)

SST Extreme (cold)

Gumbel Distribution Example:
Simulation of ENSO Extremes

(a) 107 1.58 3.25 8.62 19.23 52.6
2.5 C ‘ .~ ' Return Period N
- El Ninho .
2.0 i
1.5 =
1.0F =
0.5E , . ) . . , .

0.064 0.366 0.692 0.884 0.948 0.981

Frequency (1/events)

(b) 1.0v 1.58 3.25 B.62 19.23 52.6
25F ' ' ' ' ' i 3
= =~ Return Period .
- La NIna ]
2.0 —
1.5 —
1.0 -
0.5E ]

0.064

0.366

0.692

Frequenecy (1/events)

0.884

0.848

0.981

At the top of each
plot is the return
period In years.

At the bottom of
each plot is the
corresponding
frequency in a 40
year period.

Note the lack of
symmetry. This is
important in time
series analysis.

e Statistical mumbo-jumbo was used to generate 40 years of a sea
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surface temperature based ENSO index.

frog . Caron and O’Brien, Mon. Wea. Rev. 126,-2
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Return Period

e The return period is average time between events of a certain
magnitude or greater.

e Note that the return period is an average. Three 100-year flood events
have been known to happen in within 5 years.

® Suggesting that there might be year-to-year memory of ground water
conditions.

e The return period R for an event of magnitude x or greater is
RX)=1/{w[1-CDF(X)]}
e Where w is the sampling interval.
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Welbull Distribution

e \Weibull distributions are the limit of the GEV distribution where x < 0.
e They have the distribution

ol <o
o

e The method of moments does not work for determining the fitting
parameters. The gamma functions awkward.

CDF (x)=1—exp
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Weibull Distribution Examples

Graphics from www.weibull.com/ basics/parameters.htm
Effect of the Scale Parameter, Eta n, on the Weibull pdf

Effect of the Shape Parameter, Beta 3 , on the Weibull pdf
0.0100 0.0250 | _ |
L ‘["I:SO L 4
=3
0.0080 0.0200 ,
0.0060 0.0150
= 1 1n=100
& e
0.0040 00100 ! | | —
0.0020 0 0050 /\
0 0 1 |
0 20000 40000 B00.00 B00.00 1000.0C ' ' o
Time () 0 500000 100.0%%;&1?.0000 3200000 400.0000
e In this example the shape parameter is S (our «), and the scale
Parametric Probability
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Mixtures of Distributions

e For mildly complex physical situations, there is no reason that one type
of distribution should fit the data.

e If there are several processes contributing to the physics (e.g.,
processes for generating rain), then it might be necessary to use a
weighted average of several distributions.

e Example: wtl* (Gaussian Distribution 1) +
wt2 * (Gaussian Distribution 2) +
(1 — wtl — wt2) * Weibull Distribution

e WhereO<wtl<l O<wt2<l,andO<wtl+wt2<1
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