

Lecture 8 Parametric Probability Distributions

Continuous Distributions

Key Point: ALWAYS LOOK AT THE DATA!!!! DOES THE DATA REALY FIT THE DISTRIBUTION?

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Continuous Distributions

- Continuous distributions have probabilities for any value(s) within a parameter space.
 - For example, a univariate distribution has probabilities for upper and lower bounds, as well as all values between these bounds.
 - This limits could be $\pm \infty$.
- The probability distribution function f(x) is such that $\int f(x) dx = 1$.
 - Probability distribution (or density) function is ab^{*}breviated as PDF.
- Note that the probability of an event occurring is the area under the PDF, bounded by the limiting conditions on the event.
- These last two points should make it clear that $f(x) = \partial \Pr{x}/\partial x$.
 - This equation is easily written in terms of cumulative probability CDF, C{X $\leq x$ }, because $\partial \Pr{x}/\partial x = \partial C{X \leq x}/\partial x$
 - If we can calculate a a CDF, then we can easily randomly generate a distribution that matches the CDF and corresponding PDF.
 - Particularly so if we can determine X(C) from C(X).

http://campus.fsu.edu/ bourassa@met.fsu.edu

Fitting Parameters for Continuous Distributions

Distribution	E[x]	Var[x]
Gaussian	μ	σ^2
Log-normal	$exp[\mu + \sigma^2/2]$	$(\exp[\sigma^2] - 1) \exp[2\mu + \sigma^2]$
Gamma	αβ	$\alpha\beta^2$
Exponential	β	β ²
Chi-squared	ν	2v
Pearson III	$\zeta + lpha eta$	$\alpha\beta^2$
Beta	p/(p+q)	$(pq)/[(p+q)^2(p+q+1)]$
GEV	$\zeta - \beta [1 - \Gamma (1 - \kappa)] / \kappa$	$\beta^2[\Gamma(1-2\kappa)-\Gamma^2(1-\kappa)]/\kappa^2$
Gumbel	$\zeta + \gamma \beta$	$\beta \pi / \sqrt{6}$
Weibull	$\beta \Gamma(1 + 1 / \alpha)$	$\beta^2[\Gamma(1+2/\alpha) - \Gamma^2(1-\kappa)]/\kappa^2$
Mixed Exponential	$w\beta_1 + (1-w)\beta_2$	$w\beta_1^2 + (1-w)\beta_2^2 + w(1-w)(\beta_1 - \beta_2)^2$

 μ = mean, σ = standard deviation

Gaussian Distribution

- A Gaussian distribution (bell curve) is relatively common, particularly when describing differences.
 - If a Gaussian distribution is normalized, meaning the area under the curve is equal to unity (one), then this special case of the Gaussian distribution is sometimes called a normal distribution.
 - Definitions do vary: Wilks defines the Gaussian distribution as I have defined a normal distribution.
- Estimates of a sum (or mean) will have a Gaussian distribution if the samples are (1) independent, and (2) of sufficient number.
 - The above statement is the **central limit theorem**.
 - The sufficient number is small if the population from which the samples are taken (and the sum calculated) has a near Gaussian distribution. It is larger (>100) for highly non-Gaussian PDFs.

Gaussian Distribution: The Formula

- A normal distribution is described by two parameters: a mean (μ) and a standard deviation (σ).
- A Gaussian distribution (not a pdf) would also have an amplitude.

$$pdf = f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \quad -\infty < x < \infty$$

- Think about how the the standard deviation influences the shape of f(x).
 - Larger σ implies a wider peak, and a smaller amplitude.

Distributions For Conditional Probabilities

- The pdf for a conditional probability can have a very different shape than the unconditional probability.
- For example, consider the pdf for January daily maximum temperatures at Canandaigua: mean = 31.8°F, σ = 7.86°F.
- If the data set is restricted to those days when the temperature at Ithica was 25°F, then the mean is 27.1°F, and $\sigma = 2.28$ °F

6

CDF For a Gaussian Distribution

• The technique for determining a CDF is often the integration of the corresponding pdf.

 $CDF(x) = \int_0^x pdf(x')dx'$

- However, the Gaussian function is non-integratable.
- One approach to solving this problem is a lookup table.
 - Table B.1 in Wilks' book shows the probabilities in terms of z values: $z = (x \mu) / \sigma$.
 - z scores are numbers of standard deviations above (positive values) or below (negative values) the mean.
- The lookup table shows $Pr{Z \le z}$
- Note that the Gaussian function is symmetric.
 - Therefore $Pr{Z \le z} = 1 Pr{Z \ge -z}$

Approximating the Gaussian CDF

• When a good approximation is sufficient, there is a relatively simple function that can be used as an approximate CDF, $\Phi(z)$.

$$\Phi(z) = \frac{1}{2} \left[1 \pm \sqrt{1 - \exp\left(\frac{-2z^2}{\pi}\right)} \right]$$

- Where the positive root is used for z > 0, and the negative root for z < 0
- Where *z* is the number of standard deviations from the mean.
- The maximum errors (in probability) using this approximation are about 0.003 when $z = \pm 1.65$.
- This can be inverted to solve for z as a function of the value of the CDF.

$$z = \left[-\frac{\pi}{2} \ln \left[1 - \left[2\Phi(z) - 1 \right]^2 \right] \right]^{1/2}$$

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Two Dimensional Gaussian Distributions

• Two dimensional Gaussian PDFs are also common, particularly when showing differences in two spatial dimensions.

$$pdf = f(x) = \frac{1}{\sigma_x \sigma_y \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2}\right)\right], \quad -\infty < x < \infty$$

Log-Normal Distributions

- There are many occurrences of distributions that have
 - (1) only positive values, and
 - (2) peak is displaced to the left.
- Some of these distributions are log-normal distributions.
 - A transformation of variables is used: $y = \ln(x)$

$$pdf = f(x) = \frac{1}{x\sigma_y\sqrt{2\pi}} \exp\left[-\frac{\left(\ln(x) - \mu_y\right)^2}{2\sigma_y^2}\right], \quad -\infty < y < \infty, \quad y = \ln(x)$$

- Where μ_y and σ_y are the mean and standard deviation of the transformed variable *y*.
- The mean of x is $\exp[\mu + \sigma^2/2]$, and The standard deviation of x is $(\exp[\sigma^2] - 1) \exp[2\mu + \sigma^2]$,
 - Where μ and σ are the mean and standard deviation of the transformed variable *y*.

Log-Normal Distribution Example

- Features:
 - (1) only positive values, and
 - (2) peak displaced to the left.
 - If the x-axis was plotted in log coordinates, then the distribution would appear to be Gaussian.

Graphic from http://www.weibull.com/AccelTestWeb/characteristics_of_the_lognormal_distribution.htm

http://campus.fsu.edu/

bourassa@met.fsu.edu

Graphic from http://www.biology.lsu.edu/heydrjay/1202/Chapter53/lognormal%20distribution.jpg

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Gamma Distributions

- Gamma distributions are asymmetric, and skewed to the right (meaning the peak is to the left of the mean).
- They are well suited to describe variables that have a peak close to a limit.
 - For example, wind speed or precipitation.
- There are several different (but equivalent) forms of the gamma distribution. Each has two fitting parameters
- The fitting parameters are a shape parameter α , and a scaling parameter β .
 - Alternatively, it can be written with an inverse scale factor.

$$f(x) = \frac{(x/\beta)^{\alpha-1} \exp(-x/\beta)}{\beta \Gamma(\alpha)}, \text{ for } x, \alpha, \beta > 0$$

Gamma Distribution

- The above examples use k and the shape parameter, and θ as the scale parameter.
- The left plot is the PDF, and the right plot is a CDF
- For a constant scale parameter, a smaller shape parameter will results in the peak being shifted further to the left

$$f(x;k,\theta) = x^{k-1} \frac{e^{-x/\theta}}{\theta^k \, \Gamma(k)} \text{ for } x > 0$$

http://campus.fsu.edu/ bourassa@met.fsu.edu Graphic from http://en.wikipedia.org/wiki/Gamma distribution The Florida State University

- For a shape parameter k = 1, the equation simplifies greatly to an exponential distribution.
 - The y-intercept is $1/\theta$.
- For a shape parameter k > 1, the y-intercept is zero.
 - Larger values of *k* result in less skewness, and shift the peak to the right.
 - For k > 50 or 100, the distribution is approximately Gaussian.

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Gamma Distribution Example

- Time series of daily precipitation at Olso (top)
- The distribution
 function for daily
 precipitation in Oslo
 between 1883 and 1964
 (bottom), with the
 dashed line showing the
 distribution for the
 above time period.

Estimating the Gamma Distributions Scale Parameter

- We want to determine the fitting parameters α and β .
- We can solve for these in terms of the mean and the standard deviation of the gamma function.

$$\overline{x} = \alpha \beta$$
$$\sigma = \alpha \beta^2$$

• We can solve these equations for the fitting parameters:

$$\alpha = \overline{x}^2 / \sigma^2$$
$$\beta = \sigma^2 / \overline{x}$$

- What could go wrong with this approach?
 - Good for (shape parameter) $\alpha > 10$
 - Poor estimates of moments lead to problems for smaller α .

More Robust Estimates of Fitting Parameters

- Two better methods are based on *maximum likelihood estimators*.
 - This concept will be explained in later lectures
- Both approach use the same 1st calculation

$$D = \ln\left(\overline{x}\right) - \frac{1}{n} \sum_{i=1}^{n} \ln\left(x_{i}\right)$$

• The Thom estimators are

$$\alpha = \frac{1 + \sqrt{1 + 4D/3}}{4D} \quad and \quad \beta = \overline{x} / \alpha$$

• The other method (Greenwood and Durand, *Technometrics*, 1960)

$$\alpha = \frac{0.5000876 + 0.1648852 D - 0.0544274 D^2}{D}, \quad 0 \le D \le 0.5772$$
$$\alpha = \frac{8.898919 + 9.059950 D + 0.9775373 D^2}{17.19728 D + 11.968477 D^2 + D^3}, \quad 0.5772 \le D \le 17.0$$

http://campus.fsu.edu/ bourassa@met.fsu.edu

Beta Distributions

bourassa@met.fsu.edu

The Florida State University

Extreme Value Distributions

- Extreme value distributions usually apply to a small fraction of the events: the extreme events.
 - E.g., floods at a specific location
- The fraction can be artificially increased by using only extreme values in the distribution.
 - E.g., the annual maximum of daily precipitation totals (at a specific location).
- The Generalized Extreme Value (GEV) Distribution is

$$f(x) = \frac{1}{\beta} \left[1 + \frac{\kappa(x-\zeta)}{\beta} \right]^{1-1/\kappa} \exp\left\{ - \left[\frac{\kappa(x-\zeta)}{\beta} \right]^{-1/\kappa} \right\}$$

Where ζ is a location or shift parameter,
 β is a scale parameter, and
 κ is a shape parameter.

CDF of a GEV Distribution

- The GEV equation can be integrated, resulting in a analytical CDF. $CDF(x) = \exp\left\{-\left[1 + \frac{\kappa(x-\zeta)}{\beta}\right]^{-1/\kappa}\right\}$
- The CDF can be inverted (solved for x as a function of CDF(x)). $CDF^{-1}(p) = x = \zeta + \frac{\beta}{\kappa} \{ [-\ln(p)]^{-\kappa} - 1 \}$
- Given the fitting parameters, we can determine the extreme value as a function of the probability of that extreme (or greater) occurring.
 - We don't expect the distribution to work for likely occurrences.
 - However, as *p* becomes smaller, the distribution can be quite realistic.
 - Note that as $p \to 0$, that $\ln(p) \to -\infty$, resulting in rather large *x*.
- There are three special cases of the GEV Distribution. The two that we will examine are the Gumbel distribution and the Weibull distribution.

Gumbel Distribution

- Typically used to determine the average time between extreme events of the same magnitude or greater.
- The Gumbel distribution is the limit of the GEV distribution, where $\kappa \rightarrow 0$.

$$f(x) = \frac{1}{\beta} \exp\left\{-\exp\left[\frac{(x-\zeta)}{\beta}\right] - \frac{(x-\zeta)}{\beta}\right\}$$
$$CDF(x) = \exp\left\{-\exp\left[-\frac{(x-\zeta)}{\beta}\right]\right\}$$

- The fitting parameter can be estimated through a method of moments.
 - $\beta = \sigma \sqrt{6} / \pi$
 - $\zeta = \overline{x} \gamma \beta$
 - Where $\gamma = 0.57721...$ is Euler's constant.

Gumbel Distribution Example: Simulation of ENSO Extremes

- At the top of each plot is the return period in years.
- At the bottom of each plot is the corresponding frequency in a 40 year period.
- Note the lack of symmetry. This is important in time series analysis.
- Statistical mumbo-jumbo was used to generate 40 years of a sea surface temperature based ENSO index.

http://campus.fsu.edu/ bourassa@met.fsu.edu

Graphics from Caron and O'Brien, Mon. Wea. Rev. 126, 2809-2821. The Florida State University

Return Period

- The return period is **average** time between events of a certain magnitude or greater.
- Note that the return period is an average. Three 100-year flood events have been known to happen in within 5 years.
- Suggesting that there might be year-to-year memory of ground water conditions.
- The return period *R* for an event of magnitude *x* or greater is
 R(*x*) = 1 / {ω[1 CDF(*x*)]}
 - Where ω is the sampling interval.

Weibull Distribution

- Weibull distributions are the limit of the GEV distribution where $\kappa < 0$.
- They have the distribution

$$f(x) = \left(\frac{\alpha}{\beta}\right) \left(\frac{x}{\beta}\right)^{\alpha - 1} \exp\left[-\left(\frac{x}{\beta}\right)^{\alpha}\right]$$
$$CDF(x) = 1 - \exp\left[-\left(\frac{x}{\beta}\right)^{\alpha}\right]$$

• The method of moments does not work for determining the fitting parameters. The gamma functions awkward.

Weibull Distribution Examples

Graphics from www.weibull.com/ basics/parameters.htm

• In this example the shape parameter is β (our α), and the scale parameter is η (our β).

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Mixtures of Distributions

- For mildly complex physical situations, there is no reason that one type of distribution should fit the data.
- If there are several processes contributing to the physics (e.g., processes for generating rain), then it might be necessary to use a weighted average of several distributions.
- Example: wt1* (Gaussian Distribution 1) + wt2 * (Gaussian Distribution 2) + (1 - wt1 - wt2) * Weibull Distribution
 - Where 0 < wt1 < 1, 0 < wt2 < 1, and 0 < wt1 + wt2 < 1

