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MET3220C & MET6480
Computational Statistics

Lecture 8
Parametric Probability Distributions

Continuous Distributions

Key Point: ALWAYS LOOK AT THE DATA!!!!
DOES THE DATA REALY FIT THE DISTRIBUTION?
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Continuous Distributions

• Note that the probability of an event occurring is the area under the 
PDF, bounded by the limiting conditions on the event.

• These last two points should make it clear that f (x) = ∂Pr{x}/∂x .
• This equation is easily written in terms of cumulative probability 

CDF, C{X ≤ x}, because ∂Pr{x}/∂x = ∂C{X ≤ x}/∂x
• If we can calculate a a CDF, then we can easily randomly generate a 

distribution that matches the CDF and corresponding PDF.
• Particularly so if we can determine X(C) from C(X).

• Continuous distributions have probabilities for any value(s) within a 
parameter space.
• For example, a univariate distribution has probabilities for upper and 

lower bounds, as well as all values between these bounds.
• This limits could be ±∞.

( ) 1
x

f x dx=∫• The probability distribution function f (x) is such that                    . 
• Probability distribution (or density) function is abbreviated as PDF.
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Fitting Parameters for 
Continuous Distributions

μ = mean, σ = standard deviation

Distribution E[x] Var[x]
Gaussian μ σ2

Log-normal exp[μ + σ2/2] (exp[σ2] – 1) exp[2μ + σ2]
Gamma αβ αβ2

Exponential β β2

Chi-squared ν 2ν

Pearson III ζ + αβ αβ2

Beta p / (p + q) (pq)/[(p + q)2(p + q + 1)]
GEV ζ − β[1 − Γ(1 − κ )] / κ β2[Γ(1 − 2κ) − Γ2(1 – κ)] / κ2

Gumbel ζ + γβ β π / 

Weibull β Γ(1 + 1 / α) β2[Γ(1 + 2 / α) − Γ2(1 – κ)] / κ2

Mixed Exponential wβ1 + (1 – w) β2

6

( ) ( )( )22 2
1 2 1 2w 1 1w w wβ β β β+ − + − −
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Gaussian Distribution

• Estimates of a sum (or mean) will have a Gaussian distribution if the 
samples are (1) independent, and (2) of sufficient number.
• The above statement is the central limit theorem.
• The sufficient number is small if the population from which the 

samples are taken (and the sum calculated) has a near Gaussian 
distribution. It is larger (>100) for highly non-Gaussian PDFs.

• A Gaussian distribution (bell curve) is relatively common, particularly 
when describing differences.
• If a Gaussian distribution is normalized, meaning the area under

the curve is equal to unity (one), then this special case of the
Gaussian distribution is sometimes called a normal distribution.

• Definitions do vary: Wilks defines the Gaussian distribution as I 
have defined a normal distribution.
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Gaussian Distribution: The Formula

• A Gaussian distribution (not a pdf) would also have an amplitude.

• A normal distribution is described by two parameters: a mean (μ) and a 
standard deviation (σ).

( )
( )2

2

1 exp ,
22

x
pdf f x x

μ
σσ π

⎡ ⎤−⎢ ⎥= = − −∞< <∞⎢ ⎥
⎢ ⎥⎣ ⎦

• Think about how the the standard deviation influences the shape of f (x).
• Larger σ implies a wider peak, and a smaller amplitude.

Graphic from http://homepage.univie.ac.at/Franz.Vesely/cp0102/dx/img579.png
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Distributions For Conditional Probabilities
• The pdf for a conditional probability can have a very different shape 

than the unconditional probability.
• For example, consider the pdf for January daily maximum 

temperatures at Canandaigua: mean = 31.8°F, σ = 7.86°F.
• If the data set is restricted to those days when the temperature at Ithica

was 25°F, then the mean is 27.1°F, and σ = 2.28°F
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CDF For a Gaussian Distribution

• However, the Gaussian function is non-integratable. 
• One approach to solving this problem is a lookup table.

• Table B.1 in Wilks’ book shows the probabilities in terms of 
z values: z = (x − μ) / σ.

• z scores are numbers of standard deviations above (positive values) 
or below (negative values) the mean.

• The lookup table shows Pr{Z ≤ z}
• Note that the Gaussian function is symmetric.

• Therefore Pr{Z ≤ z} = 1 − Pr{Z ≥ −z}

0
( ) ( )

x
CDF x pdf x dx′ ′= ∫

• The technique for determining a CDF is often the integration of the 
corresponding pdf.
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Approximating the Gaussian CDF

21 2( ) 1 1 exp
2

zz
π

⎡ ⎤⎛ ⎞−⎢ ⎥⎟⎜ ⎟Φ = ± − ⎜⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

• When a good approximation is sufficient, there is a relatively simple 
function that can be used as an approximate CDF, Φ(z).

• Where the positive root is used for z > 0, and the negative root for z
< 0

• Where z is the number of standard deviations from the mean.

• The maximum errors (in probability) using this approximation are
about 0.003 when z = ±1.65.

• This can be inverted to solve for z as a function of the value of the 
CDF.

[ ]
1/ 2

2ln 1 2 ( ) 1
2
π⎡ ⎤⎡ ⎤⎢ ⎥= − − Φ −⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

z z
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Two Dimensional Gaussian Distributions
• Two dimensional Gaussian PDFs are also common, particularly when 

showing differences in two spatial dimensions.

Graphic from www.westgard.com/ lesson34.htm Graphic from http://www.sia.uq.edu.au/physics/light/fred.gif

( )
( ) ( )22

2 2

1 1exp ,
22

yx

x yx y

yx
pdf f x x

μμ
σ σσ σ π

⎡ ⎤⎛ ⎞⎟−⎜ −⎢ ⎥⎟⎜ ⎟= = − + −∞< <∞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

http://www.westgard.com/lesson34.htm
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Log-Normal Distributions

• The mean of x is exp[μ + σ2/2], and 
The standard deviation of x is (exp[σ2] – 1) exp[2μ + σ2], 
• Where μ and σ are the mean and standard deviation of the 

transformed variable y.

• There are many occurrences of distributions that have 
• (1) only positive values, and
• (2) peak is displaced to the left.

( )
( )( )

( )
2

2

ln1 exp , , ln
22

y

yy

x
pdf f x y y x

x

μ

σσ π

⎡ ⎤−⎢ ⎥
= = − −∞< <∞ =⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

• Some of these distributions are log-normal distributions.
• A transformation of variables is used: y = ln(x)

• Where μy and σy are the mean and standard deviation of the 
transformed variable y.
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Log-Normal Distribution Example

• Features:
• (1) only 

positive values, 
and

• (2) peak 
displaced to the 
left.

• If the x-axis was 
plotted in log 
coordinates, then 
the distribution 
would appear to be 
Gaussian.

Graphic from http://www.weibull.com/AccelTestWeb/characteristics_of_the_lognormal_distribution.htm
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Log-Normal Distribution Example

Graphic from http://www.biology.lsu.edu/heydrjay/1202/Chapter53/lognormal%20distribution.jpg

A lot more data helps 
resolve extremes
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Gamma Distributions

• They are well suited to describe variables that have a peak close to a 
limit.
• For example, wind speed or precipitation.

• There are several different (but equivalent) forms of the gamma 
distribution. Each has two fitting parameters

• The fitting parameters are a shape parameter α , and 
a scaling parameter β.
• Alternatively, it can be written with an inverse scale factor.

• Gamma distributions are asymmetric, and skewed to the right 
(meaning the peak is to the left of the mean).

( )
( ) ( )

( )

1/ exp /
, , , 0

x x
f x for x

αβ β
α β

β α

− −
= >

Γ
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Gamma Distribution

• The above examples use k and the shape parameter, and θ as the 
scale parameter.

• The left plot is the PDF, and the right plot is a CDF
• For a constant scale parameter, a smaller shape parameter will 

results in the peak being shifted further to the left

Graphic from http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Image:Gamma_distribution_pdf.png
http://en.wikipedia.org/wiki/Image:Gamma_distribution_cdf.png
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Gamma Distribution Parameters

• For a shape parameter k > 1, the y-intercept is zero.
• Larger values of k result in less skewness, and shift the peak to the 

right.
• For k > 50 or 100, the distribution is approximately Gaussian.

• For a shape parameter k =1, the equation simplifies greatly to an 
exponential distribution.
• The y-intercept is 1/ θ.

http://en.wikipedia.org/wiki/Image:Gamma_distribution_pdf.png
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Gamma Distribution Example

• Time series of daily 
precipitation at Olso
(top)

• The distribution 
function for daily 
precipitation in Oslo 
between 1883 and 1964 
(bottom), with the 
dashed line showing the 
distribution for the 
above time period.

Graphic from www.gfi.uib.no/~nilsg/ kurs/notes/node31.html

http://www.gfi.uib.no/~nilsg/kurs/notes/node31.html
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Estimating the Gamma Distributions 
Scale Parameter

• We want to determine the fitting parameters α and β.

• What could go wrong with this approach?

2

x αβ

σ αβ

=

=

We can solve for these in terms of the mean and the standard deviation 
of the gamma function.

•

2 2

2

/
/

x
x

α σ

β σ

=

=

• We can solve these equations for the fitting parameters:

• Good for (shape parameter) α > 10
• Poor estimates of moments lead to problems for smaller α .
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More Robust Estimates 
of Fitting Parameters

• Two better methods are based on maximum likelihood estimators.
• This concept will be explained in later lectures

2

2

2 3

0.5000876 0.1648852 0.0544274 , 0 0.5772

8.898919 9.059950 0.9775373 , 0.5772 17.0
17.19728 11.968477

D D D
D

D D D
D D D

α

α

+ −
= ≤ ≤

+ +
= ≤ ≤

+ +

• The other method (Greenwood and Durand, Technometrics, 1960)

( ) ( )
1

1ln ln
n

i
i

D x x
n =

= − ∑

• Both approach use the same 1st calculation 

1 1 4 / 3
/

4
D

and x
D

α β α
+ +

= =

• The Thom estimators are
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Beta Distributions

• Beta distributions have limits of 0 and 1.
• Applications: RH & cloud cover

• They have two tuning parameters: α, β.
• The B term normalizes the PDF.
• If α = β, the distribution is symmetric.
• If α and β are exchanged, the f(x) is 

mirrored around x = 0.5.

x x

PDF
x

∂
∂

CDF

http://en.wikipedia.org/wiki/Image:Beta_distribution_pdf.png
http://en.wikipedia.org/wiki/Image:Beta_distribution_cdf.png
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Extreme Value Distributions

• Where ζ is a location or shift parameter, 
β is a scale parameter, and 
κ is a shape parameter.

• Extreme value distributions usually apply to a small fraction of the 
events: the extreme events.
• E.g., floods at a specific location

( )
( ) ( )

1 1/ 1/
1 1 exp

x x
f x

κ κ
κ ζ κ ζ

β β β

− −⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤− −⎪ ⎪⎪ ⎪⎢ ⎥ ⎢ ⎥= + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

• The Generalized Extreme Value (GEV) Distribution is 

• The fraction can be artificially increased by using only extreme values 
in the distribution.
• E.g., the annual maximum of daily precipitation totals (at a specific 

location).
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CDF of a GEV Distribution

• Given the fitting parameters, we can determine the extreme value as a 
function of the probability of that extreme (or greater) occurring.
• We don’t expect the distribution to work for likely occurrences.
• However, as p becomes smaller, the distribution can be quite 

realistic.
• Note that as p → 0, that ln(p) → −∞, resulting in rather large x.

• There are three special cases of the GEV Distribution. The two that we 
will examine are the Gumbel distribution and the Weibull distribution.

( )
( )

1/

exp 1
x

CDF x
κ

κ ζ
β

−⎧ ⎫⎪ ⎪⎡ ⎤−⎪ ⎪⎪ ⎪⎢ ⎥= − +⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

• The GEV equation can be integrated, resulting in a analytical CDF.

( ) ( ){ }1 ln 1CDF p x p
κβ

ζ
κ

−− ⎡ ⎤= = + − −⎣ ⎦

• The CDF can be inverted (solved for x as a function of CDF(x)).
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Gumbel Distribution
• Typically used to determine the average time between extreme events 

of the same magnitude or greater.
• The Gumbel distribution is the limit of the GEV distribution, where 

κ → 0.

• The fitting parameter can be estimated through a method of moments.
•
•
• Where γ = 0.57721… is Euler’s constant.

( )
( ) ( )1 exp exp
x x

f x
ζ ζ

β β β

⎧ ⎫⎡ ⎤⎪ ⎪− −⎪ ⎪⎢ ⎥= − −⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭

( )
( )

exp exp
x

CDF x
ζ

β

⎧ ⎫⎡ ⎤⎪ ⎪−⎪ ⎪⎢ ⎥= − −⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭

6 /β σ π=
xζ γβ= −
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Gumbel Distribution Example:
Simulation of ENSO Extremes

Graphics from Caron and O’Brien, Mon. Wea. Rev. 126, 2809–2821. 

• Statistical mumbo-jumbo was used to generate 40 years of a sea 
surface temperature based ENSO index.

• At the top of each 
plot is the return 
period in years.

• At the bottom of 
each plot is the 
corresponding 
frequency in a 40 
year period.

• Note the lack of 
symmetry. This is 
important in time 
series analysis.

El Niño

La Niña
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Return Period

• Note that the return period is an average. Three 100-year flood events 
have been known to happen in within 5 years.

• Suggesting that there might be year-to-year memory of ground water 
conditions.

• The return period R for an event of magnitude x or greater is
R(x) = 1 / {ω [1 – CDF(x)]}
• Where ω is the sampling interval.

• The return period is average time between events of a certain 
magnitude or greater.
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Weibull Distribution

• Weibull distributions are the limit of the GEV distribution where κ < 0.
• They have the distribution 

( )
1

expx xf x
α α

α
β β β

− ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎟ ⎟ ⎟⎜ ⎜ ⎜= −⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎜ ⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

( ) 1 exp xCDF x
α

β

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜= − − ⎟⎜⎢ ⎥⎟⎟⎜⎜⎝ ⎠⎢ ⎥⎣ ⎦
• The method of moments does not work for determining the fitting 

parameters. The gamma functions awkward.
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Weibull Distribution Examples

• In this example the shape parameter is β (our α), and the scale 
parameter is η (our β).

Graphics from www.weibull.com/ basics/parameters.htm

http://www.weibull.com/basics/parameters.htm
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Mixtures of Distributions
• For mildly complex physical situations, there is no reason that one type 

of distribution should fit the data. 
• If there are several processes contributing to the physics (e.g., 

processes for generating rain), then it might be necessary to use a 
weighted average of several distributions.

• Example:  wt1* (Gaussian Distribution 1) +
wt2 * (Gaussian Distribution 2) +
(1 – wt1 – wt2) * Weibull Distribution

• Where 0 < wt1 < 1, 0 < wt2 < 1, and 0 < wt1 + wt2 < 1
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