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MET3220C & MET6480
Computational Statistics

Error and Error Propagation

Systematic and Random errors

Key Points: 
1) Random errors can be mistaken for biases 

when examining paired data.
2) Random errors cause uncertainty in the answers to questions.

3) Sometimes these questions are best answered with probabilities.
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Types of Error

• Random errors are NOT systematic. 
• They appear to be random.
• The often have a Gaussian distribution.
• Example: estimating the decimal place in temperature, when the 

thermometer only indicates integers.

• There are two general types of errors: systematic errors and random errors.
• Systematic errors follow a mathematical pattern
• Examples:

• Bias: a uniform error. E.g., the temperature is always 3°C too high.
• Gain: An bias in slope. E.g., y = 3.1 x rather than y = 2.9 x.
• Complex function. E.g., error in sheltered thermometer’s temperature 

is equal to 
constant1 * ( solar radiation + constant2 ) / ( wind speed + constant3)
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Why Do We Care About Errors?

• Example: Global averaged temperatures are increasing. Is it due to an 
actual increase in temperature, or a bias due to changes in the 
observing system (e.g., urban heat islands).

• Example: less rain falls in Florida during an El Nino year. Is this 
finding due to a real change in rain totals, or due to random errors in 
the very limited and noisy observations?

• Ideally, biases are determined through comparison to independent 
data, and then removed from the data set.
• This ideal is great for laboratory data, but is hard to work with in 

the real world. Why?
• It is hard to get independent high quality data, that is 

physically similar to the data in question.
• We want to be able to say how likely it is that a difference is physical, 

rather than an artifact of random error.

• It is hard to make conclusions about physics (e.g., climate) if we can’t 
tell if the differences are due to something physical or due to errors.
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Is a Difference Due to Random Error?

• Take, for example, the lengths of the 10 hairs remaining on a professor’s 
head. Is the total hair length greater than 1m?

• Assume that our measuring tool has a scale in millimeters.
• Assume that we can be accurate to 0.5mm

• Assume that we have sufficient attention span that our accuracy will not 
suffer from boredom.

• The largest possible error assumes that none of the errors will cancel out.
• For the total length, the absolute error is the sum of the individual errors 

(10*0.5mm). For the mean, we would then divide this error by 10,
resulting in 0.5mm absolute uncertainty.

• If the total length is greater than 1m plus the absolute error, then we can 
be sure the prof’s total hair length is greater than 1m.

• Our ability to answer this question depend on how we can characterize 
the random error.
• A measure of the largest possible error (called absolute error). 
• A measure of spread (the common approach)

• Absolute error example: a mean of a population of 10 items.
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More Complex Example of Absolute Error

• The worst case interpretation is that P is underestimated, and that 
T is overestimated. We will assume that Rd is known accurately 
enough that considering error in Rd has negligible influence on the 
absolute error in ρ.

• For one sample, the absolute error (worst case) in ρ is 
AE(ρ) = Rd (T + AE(T) ) / ( P – AE(P) )− Rd T / P

• This is equal to the most changed value minus the original value.
• Consider adding up absolute errors for all the partial pressures of 

the atmospheric constituents.

• Note that in cases with many samples, absolute error can get rather 
large.

• Consider the ideal case law (meteorology version of it):
• Pressure = density * gas constant for dry air * absolute temperature
• Assume that we are determining density, from observations of 

pressure and temperature: ρ = Rd T / P
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Uncertainty Measured as a Spread

• There are two types of uncertainty to be considered.
• Observational (or recording) error, and
• Sampling error.

• Observational error
• Errors refer to uncertainty in observations.

• Example: random errors in pressure might have a standard 
deviation of 0.01kPa.

• Example: weather station temperatures are recorded with a 
precision of 1°F, resulting in a standard deviation of about 0.4 °F.

• Sampling error is due to insufficient sampling of a population.
• Example: mean height of meteorology students, based on heights of 

students in MET3220C-02. The uncertainty in the mean due to 
sampling is equal to the standard deviation divided by squareroot N.

• The big difference from absolute error is that some random errors are 
assumed to cancel out. All random errors are not in the same direction! 
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Coverage by Two 
SeaWinds Scatterometers
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Example VOS and Buoy Observations 
Dec. Average from 1988-1997

Buoys

VOS
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Observational Error + Sampling Error
Monthly Average Wind Components

Sept.
1992

July
1985

0    6  12  18 24  30  360   6  12  18 24 30 36 m2s-2m2s-2

Zonal Pseudostress m2s-2 Meridional Pseudostress m2s-2
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Combining 
Sampling And Observational Errors

• Key (good) assumptions:
• Observational errors are independent from sampling errors.

• This is a great assumption for random error
• Not so good for complex biases.

• Biases have been removed (or are small compared to random 
errors).

• Sometimes this ideal is hard to achieve.
• If the above assumptions are met, then the variances associated with 

each type of random error are additive.
• Recall that variance is the square of the standard deviation.

• In other words, the standard deviations are additive in a root-mean-
square sense:  total uncertainty = [ (obs uncert)2 + (samp uncert)2 ]1/2

• This equation applies to the uncertainty in one term.

• In practice, random errors due to observational error and sampling 
error both contribute to random uncertainty.
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Representation Error

• In the field (AKA the real world), this ideal is rarely achieved. Why?
• We rarely have two of the same instruments in the same location,

useless they are part of a planned exercise in validation.
• Usually we are working with different types of instruments, 

measuring at different times over different periods, and usually in 
different locations.

• Example: comparing satellite footprints to in observations from 
ships or buoys.

• Never the less, representation error is often ignored – sometimes safely

• The ‘total random error’ on the previous slide is based on the 
assumption that the proverbial apple is being compared to another 
proverbial apple. 
• Example: wind speeds from one type of anemometer being 

compared to wind speeds at a nearby location, and measured with 
the same type of anemometer (calibrated identically to the first
anemometer).
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Example of Various Errors
Zonal Pseudostress (Sept. 1992)

• Uncertainty including observational and representation errors (upper left)

0   6  12  18 24 30 360   6  12  18 24 30 36 m2s-2 m2s-2

• Total uncertainty in background: observational, representation, and 
sampling (upper right).
• Fields are monthly averaged and smoothed over a large spatial 

domain.
• The smoothing results in uncertainty related to representation errors.
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Error Propagation:
How Do Errors Combine in Equations?

( )

• Which is likely to be the bigger cause of error: speed errors or
direction errors?

( ) ( )( )
2 22 cos DTOR * 90.0 DTOR sin * 90.0u w w DTOR θσ θ σ θ σ⎡ ⎤ ⎡ ⎤= − + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

• The previous pages described how to combine different types of errors 
contributing to uncertainty in a single observation.

• How do we combine uncertainties in different terms in an equation?
• Example: consider the zonal wind component (u), determined from 

observations of wind speed (w) and wind direction (θ)
• u = w cos( DTOR * ( 90 – θ ) )
• Where DTOR is a constant converting from degrees to radians, 

and there is uncertainty in θ and q.
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• Fortunately, there is a single equation that explains how to handle error 
propagation.
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Example
• Consider temperature data, distributed messily in two dimensions. For 

example temperatures from surface stations.
• Pretend these are from an area without changes in altitude
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• Smoothing is sometimes applied with a Gaussian filter. This filter 
weights the data, based on a Gaussian function, with the weight 
decreasing as distance increases away from the point of interest.
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