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MET3220C & MET6480
Computational Statistics

Exploratory Data Analysis 
For Paired Data

Scatterplots
Correlation (several types)

Star Plot
Glyph Scatterplots

Key Point: ALWAYS LOOK AT THE DATA!!!!
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LINEAR LOG

Wind Speed Histograms Based on 
Co-located Observations From 3 Satellites

Graphics from talk by Mike Freilich and Barry Vanhoff

Better for seeing differences in 
frequently occurring observations

Better for seeing differences in 
infrequently occurring observations



The Florida State University
Data Exploration:
Paired Data Sets 3

http://campus.fsu.edu/
bourassa@met.fsu.edu

Standard Deviation and Variance
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• Recall that the standard deviation is defined as

• The variance is a particularly useful quantity because it is additive in 
many applications, and the total variance is often preserved.
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• For example, if a variable f is dependent on three independent 
variables x, y, and z, then 
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• The variance is the square of the standard deviation.
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Covariance
• Covariance is a measure of sort of like variance.

( )cov , 0x y =

• If x' is independent of y', then
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• If x' is proportional to y', then
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• However, covariance (cov) examines how one variable changes in 
proportion to another.
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Pearson (Ordinary) Correlation
(AKA Linear Correlation)

• This correlation coefficient is defined as 
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• The Pearson correlation assumes that there is (or more accurately 
could be) a linear relationship between the two variables being 
considered: x ∝ y.



The Florida State University
Data Exploration:
Paired Data Sets 6

http://campus.fsu.edu/
bourassa@met.fsu.edu

Properties of the Correlation Coefficient

• If rxy = 1, then x' ∝ y‘
• Indicating a positive slope of the best fit line

• If rxy = −1, then x' ∝ −y'
• Indicating a negative slope of the best fit line

• If rxy = 0, then x' is independent of y'
• The slope of the best fit line is meaningless

• It is often said that r2 is the fraction of the variance explained by a 
linear relationship. This is true provided that the uncertainty in both 
sets of observations is negligible.
• Another key consideration is that both variables should not be 

calculated from the same variable or variables.
• The above problem is called cross correlation, and it results in a 

much larger correlation than would be other wise determined.
• Correlation does NOT imply cause and effect.

• −1< rxy < 1
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Example Problems

• Pearson linear correlation does not work well in either of these examples.
• Why are there problems?

r = 0.88

r2 = 0.74
r = 0.61

r2 = 0.37

Outlier

• Set II: The outlier leads to a large covariance, resulting in a questionable 
value for the correlation.

• Set I: the relationship is substantially non-linear.
• An engineering solution might be linear fits over several ranges.

Graphics from Wilk’s Statistical Methods in the Atmospheric Sciences
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Example of Cross Correlation
Non-Dimensional Fetch Relationship

• Kitiagorodskii has developed a non-dimensional relationship that applies over 
a wide range of conditions.

• The u∗ in both the x and y terms is a serious problem (cross correlation)!

1/3

27.1pu g X
g u
ω −

∗
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• g gravitational 
acceleration

• u∗ friction velocity

• X fetch

• ωp peak wave 
frequency

Figure from Hasselman et al. (1973) and Csanady’s (2001) Fig. 2.7.
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Comparison of PAC3 Stress 
to Modeled Stress

R R^2 regression RMSE

Taylor and 
Yelland 0.99 0.97 y=0.70x-0.00 0.006

Wu 0.99 0.97 y=0.79x+0.00 0.007

Smith et 
al. 0.99 0.97 y=0.70x-0.00 0.007

Total

• All three models are very well 
correlated to the data. 

• Which model is better?

• T&Y model has lower 
RMS errors, but Wu’s 
model seems to have a 
much better slope.

Graphics from talk by Yoshi Goto
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Computationally Efficient Correlation
Step 1: The Covariance

• Computational efficiency can be ignored for small data sets. 
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• Consider the covariance squared:

• However, for every large data sets it can be very important.
• Example: one pass through a data set is used to determine the mean
• A second pass is used to determine the standard deviation.
• If the data set is read in each time, then the process is miserably 

slow!
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Computationally Efficient Correlation
Step 2: The Standard Deviation

• Consider the standard deviation:
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Computationally Efficient Correlation
Step 3: The Correlation

• Combine covariance and standard deviation to get correlation:
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• All the terms in the above equation can be calculated in one pass of a
data set.

• For example: reading satellite data can be extremely time intensive,
and often the data are two massive to store.

• Calculating standard deviations or correlations in one pass is great.
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FORTRAN Tidbit: Procedures
AKA Subprograms

• There are two types of procedures: functions and subroutines.
• In general, procedures have zero or more arguments

• E.g., subprogram1( x1, x2, x3, x4)
• The variables x1, x2, x3, and x4 are arguments
• Each procedure must end with the END command
• Each procedure will cause the program to stop if the program 

reaches any END command
• If procedure is not suppose to cause the program to stop, then the 

program must reach a RETURN command prior to the END. 
• Subroutines change the value of one or more of the arguments.

• Executed with a CALL command. E.g., CALL MEAN( x, ave )
• Functions do not alter any arguments, but return a value.

• Example:  y = mean( x )
• There are several ways to declare procedures.

• Procedures must be declared in any program that uses them.
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FORTRAN90 Example
Function

• Consider a subroutine to calculate standard deviation.
FUNCTION STANDEV( x, n )
! n   the number of values in array x
! x   array of values for which the standard deviation will be determined
INTEGER :: i_data, n
REAL :: standev, sum_x, sum_x_sqd
REAL, dimension( n ) :: x
sum_x = 0.0
sum_x_sqd = 0.0
DO i_data = 1, n

sum_x = sum_x + x(i_data)
sum_x_sqd = sum_x_sqd + x(i_data) ** 2

ENDDO
standev = SQRT( ( sum_x_sqd – ( sum_x ** 2 ) / REAL(n) ) / REAL(n−1) )
RETURN
END FUNCTION STANDEV
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Alternative Correlation Methods
• Spearman Rank Correlation

• More robust than Pearson correlation
• Computes a Pearson correlation using the ranks of the data, rather 

than the actual data values.
• Reduces the influence of outliers
• Still hampered by noisy data

• Where Di is the difference in ranks between the ith pair of ranks.
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• Can be simplified to 
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Autocorrelation
• Autocorrelation is used to investigate how information at one time is 

related to information at other time.
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Where the kth mean is based 
on values from xi+k to xn

• The autocorrelation for the kth lag could be written as 

• It is useful for examinations of:
• Persistence
• Repeating cycles

• Autocorrelation is a correlation of a data set with itself, but with one of 
the series lagged

• For example: With a series of daily temperatures {T0, T1, T2, …, T31} 
could be correlated with a series lagged by one day {T-1, T0, T1, …, T30}
• Correlations for days of two or more days could also be calculated.
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Alternative Autocorrelation
• The previous version of autocorrelation is useful when the overlapping 

portions of the data set are too small.
• However, it is odd to work with means from different periods

( )( )

( )
1

2

1

n k

i i k
i

k n k

i
i

x x x x
r

x x

−

+
=

−

=

⎡ ⎤− −⎣ ⎦
=

−

∑

∑

Where all means are based on 
values from x1 to xn

• The autocorrelation for the kth lag could be written as 

• If there is a large number of overlapping points, then an alternative 
version can be applied.
• Examines only the overlapping period.
• The means are identical

• For example: With a series of daily temperatures {T0, T1, T2, …, T31} 
could be correlated with a series lagged by one day using the values 
{T0, T1, T2, …, T30}
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Example Autocorrelation

Figure from www.neurotraces.com/ scilab/scilab2/node39.html

Time Series

Autocorrelation 
with different 
time lags

http://www.neurotraces.com/scilab/scilab2/node39.html
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Glyph Plots
El Nino Winter Precipitation Anomalies

• Data are from the Global 
Historical Climate Network 
(GHCN).

• Boxes indicate 1998 station data 
that falls within the upper or lower 
5% of values based on the (b) 
neutral or (c) warm phase data.

Figure from Smith, Legler, Remigio and O’Brien, JCLIM, 1999
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Glyph Plots
1998 Winter Precipitation Anomaly Ranked vs. 

Nine Historical Warm Phases

• Warm phase GHCN winter precipitation data and 1999 Winter.
• Boxes indicate rank of the 1999 data.
Figure from Smith, Legler, Remigio and O’Brien, JCLIM, 1999
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6.4 – 7.2 m/s 15.2 – 16.0 m/s

Example Star Plot:
Differences from the mean of three 

co-located satellite observations
The plots show departure form the 
mean (the location where the red 
lines intersect.

Points closer to the sensor satellite 
name indicate values larger than 
the mean

Graphics from talk by Mike Freilich and Barry Vanhoff
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21.6 – 22.4 m/s 25.6 – 26.4 m/s

Example Star Plot:
Differences from the mean of three 

co-located satellite observations

Graphics from talk by Mike Freilich and Barry Vanhoff
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Correlation Maps
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Application of Correlation Maps

• Remote influences (teleconnections) can be identified.
Figure originally from Wallace and Blackmon, 1983
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