

Exploratory Data Analysis For Paired Data

Scatterplots Correlation (several types) Star Plot Glyph Scatterplots

Key Point: ALWAYS LOOK AT THE DATA!!!!

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Wind Speed Histograms Based on Co-located Observations From 3 Satellites

LINEAR

Better for seeing differences in frequently occurring observations

Better for seeing differences in infrequently occurring observations

LOG

Graphics from talk by Mike Freilich and Barry Vanhoff

http://campus.fsu.edu/ bourassa@met.fsu.edu

COA

The Florida State University

Standard Deviation and Variance

• Recall that the standard deviation is defined as

$$s_{x} = \left[\frac{1}{n-1}\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right]^{1/2}$$

• The variance is the square of the standard deviation.

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

- The variance is a particularly useful quantity because it is additive in many applications, and the total variance is often preserved.
- For example, if a variable *f* is dependent on three independent variables *x*, *y*, and *z*, then

$$s_f^2 = s_x^2 + s_y^2 + s_z^2$$

http://campus.fsu.edu/ bourassa@met.fsu.edu

Covariance

- Covariance is a measure of sort of like variance.
- However, covariance (cov) examines how one variable changes in proportion to another.

$$\operatorname{cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$

• If *x*' is proportional to *y*', then

$$\operatorname{cov}(x, y) = s_x s_y$$

• If x' is independent of y', then $\operatorname{cov}(x, y) = 0$

http://campus.fsu.edu/ bourassa@met.fsu.edu

Pearson (Ordinary) Correlation (AKA Linear Correlation)

- The Pearson correlation assumes that there is (or more accurately could be) a linear relationship between the two variables being considered: x ∝ y.
- This correlation coefficient is defined as

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Properties of the Correlation Coefficient

- $-1 < r_{xy} < 1$
- If $r_{xy} = 1$, then $x' \propto y'$
 - Indicating a positive slope of the best fit line
- If $r_{xy} = -1$, then $x' \propto -y'$
 - Indicating a negative slope of the best fit line
- If $r_{xy} = 0$, then x' is independent of y'
 - The slope of the best fit line is meaningless
- It is often said that r^2 is the fraction of the variance explained by a linear relationship. This is true provided that the uncertainty in both sets of observations is negligible.
 - Another key consideration is that both variables should not be calculated from the same variable or variables.
 - The above problem is called cross correlation, and it results in a much larger correlation than would be other wise determined.
- Correlation does NOT imply cause and effect.

http://campus.fsu.edu/ bourassa@met.fsu.edu

Example Problems

- Pearson linear correlation does not work well in either of these examples.
 - Why are there problems?
- Set I: the relationship is substantially non-linear.
 - An engineering solution might be linear fits over several ranges.
- Set II: The outlier leads to a large covariance, resulting in a questionable value for the correlation.

http://campus.fsu.edu/ bourassa@met.fsu.edu

Graphics from Wilk's Statistical Methods in the Atmospheric Sciences

The Florida State University

• Kitiagorodskii has developed a non-dimensional relationship that applies over a wide range of conditions.

• The u_* in both the x and y terms is a serious problem (cross correlation)!

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Comparison of PAC3 Stress to Modeled Stress

Graphics from talk by	Yosh
http://campus.fsu.edu/	
bourassa@met.fsu.edu	CO

<u>۸</u>

Total	R	R^2	regression	RMSE
Taylor and Yelland	0.99	0.97	y=0.70x-0.00	0.006
Wu	0.99	0.97	y=0.79x+0.00	0.007
Smith et al.	0.99	0.97	y=0.70x-0.00	0.007

• All three models are very well correlated to the data.

- Which model is better?
 - T&Y model has lower RMS errors, but Wu's model seems to have a much better slope.

Computationally Efficient Correlation Step 1: The Covariance

- Computational efficiency can be ignored for small data sets.
- However, for every large data sets it can be very important.
 - Example: one pass through a data set is used to determine the mean
 - A second pass is used to determine the standard deviation.
 - If the data set is read in each time, then the process is miserably slow!
- Consider the covariance squared:

$$\operatorname{cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$

$$\operatorname{cov}(x, y) = \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_i y_i) - \overline{y} \sum_{i=1}^{n} (x_i) - \overline{x} \sum_{i=1}^{n} (y_i) + \overline{x} \overline{y} \sum_{i=1}^{n} (1) \right]$$

$$\operatorname{cov}(x, y) = \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_i y_i) - n\overline{x} \overline{y} - n\overline{x} \overline{y} + n\overline{x} \overline{y} \right]$$

$$\operatorname{cov}(x, y) = \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_i y_i) - \frac{1}{n} \sum_{i=1}^{n} (x_i) \sum_{i=1}^{n} (y_i) \right]$$

$$\operatorname{http://campus.fsu.edu/}_{\text{bourassa@met.fsu.edu/}} \xrightarrow{\text{The Florida State University}} \xrightarrow{\text{Data Exploration:}}_{\text{Paired Data Sets 10}}$$

1851

Computationally Efficient Correlation Step 2: The Standard Deviation

• Consider the standard deviation:

http://campus.fsu.edu/ bourassa@met.fsu.edu

Computationally Efficient Correlation Step 3: The Correlation

• Combine covariance and standard deviation to get correlation:

- All the terms in the above equation can be calculated in one pass of a data set.
- For example: reading satellite data can be extremely time intensive, and often the data are two massive to store.
- Calculating standard deviations or correlations in one pass is great.

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

FORTRAN Tidbit: Procedures AKA Subprograms

- There are two types of procedures: functions and subroutines.
- In general, procedures have zero or more arguments
 - E.g., subprogram1(x1, x2, x3, x4)
 - The variables x1, x2, x3, and x4 are arguments
 - Each procedure must end with the END command
 - Each procedure will cause the program to stop if the program reaches any END command
 - If procedure is not suppose to cause the program to stop, then the program must reach a RETURN command prior to the END.
- Subroutines change the value of one or more of the arguments.
 - Executed with a CALL command. E.g., CALL MEAN(x, ave)
- Functions do not alter any arguments, but return a value.
 - Example: y = mean(x)
- There are several ways to declare procedures.

• Procedures must be declared in any program that uses them.

http://campus.fsu.edu/ bourassa@met.fsu.edu

FORTRAN90 Example Function

- Consider a subroutine to calculate standard deviation. FUNCTION STANDEV(x, n)
 - ! n the number of values in array x

```
! x array of values for which the standard deviation will be determined
```

INTEGER :: i_data, n

```
REAL :: standev, sum_x, sum_x_sqd
```

```
REAL, dimension( n ) :: x
```

```
sum_x = 0.0
```

```
sum\_x\_sqd = 0.0
```

```
DO i_data = 1, n
```

```
sum_x = sum_x + x(i_data)
```

```
sum_x_sqd = sum_x_sqd + x(i_data) ** 2
```

```
ENDDO
```

```
standev = SQRT( ( sum_x_sqd - ( sum_x ** 2 ) / REAL(n) ) / REAL(n-1) ) RETURN
```

END FUNCTION STANDEV

http://campus.fsu.edu/ bourassa@met.fsu.edu

Alternative Correlation Methods

- Spearman Rank Correlation
 - More robust than Pearson correlation
 - Computes a Pearson correlation using the ranks of the data, rather than the actual data values.
 - Reduces the influence of outliers
 - Still hampered by noisy data
- Can be simplified to

$$r_{rank} = 1 - \frac{6 \sum_{i=1}^{n} D_i^2}{n(n^2 - 1)}$$

• Where D_i is the difference in ranks between the ith pair of ranks.

http://campus.fsu.edu/ bourassa@met.fsu.edu

Autocorrelation

- Autocorrelation is used to investigate how information at one time is related to information at other time.
- It is useful for examinations of:
 - Persistence
 - Repeating cycles
- Autocorrelation is a correlation of a data set with itself, but with one of the series lagged
- For example: With a series of daily temperatures $\{T_0, T_1, T_2, ..., T_{31}\}$ could be correlated with a series lagged by one day $\{T_{-1}, T_0, T_1, ..., T_{30}\}$
 - Correlations for days of two or more days could also be calculated.
- The autocorrelation for the kth lag could be written as $r_{k} = \frac{\sum_{i=1}^{n-k} \left[(x_{i} \overline{x}_{0}) (x_{i+k} \overline{x}_{k}) \right]}{\left[\sum_{i=1}^{n-k} (x_{i} \overline{x}_{0})^{2} \sum_{i=k+1}^{n} (x_{i} \overline{x}_{k})^{2} \right]^{0.5}}$ Where the on values is

Where the k^{th} mean is based on values from x_{i+k} to x_n

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Alternative Autocorrelation

- The previous version of autocorrelation is useful when the overlapping portions of the data set are too small.
 - However, it is odd to work with means from different periods
- If there is a large number of overlapping points, then an alternative version can be applied.
 - Examines only the overlapping period.
 - The means are identical
- For example: With a series of daily temperatures $\{T_0, T_1, T_2, ..., T_{31}\}$ could be correlated with a series lagged by one day using the values $\{T_0, T_1, T_2, ..., T_{30}\}$
- The autocorrelation for the kth lag could be written as

$$r_k = \frac{\sum_{i=1}^{n-k} \left[\left(x_i - \overline{x} \right) \left(x_{i+k} - \overline{x} \right) \right]}{\sum_{i=1}^{n-k} \left(x_i - \overline{x} \right)^2}$$

Where all means are based on values from x_1 to x_n

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Example Autocorrelation

Time Series

Autocorrelation with different time lags

Figure from <u>www.neurotraces.com/ scilab/scilab2/node39.html</u> http://campus.fsu.edu/ bourassa@met.fsu.edu The Florida St

The Florida State University

Glyph Plots El Nino Winter Precipitation Anomalies

http://campus.fsu.edu/ bourassa@met.fsu.edu

-100 -80 -60 -40 -20 25 50 100 150 200 250 300 %

- Data are from the Global Historical Climate Network (GHCN).
- Boxes indicate 1998 station data that falls within the upper or lower
 5% of values based on the (b) neutral or (c) warm phase data.

Figure from Smith, Legler, Remigio and O'Brien, JCLIM, 1999

The Florida State University

Glyph Plots 1998 Winter Precipitation Anomaly Ranked vs. Nine Historical Warm Phases

• Boxes indicate rank of the 1999 data.

Figure from Smith, Legler, Remigio and O'Brien, JCLIM, 1999

http://campus.fsu.edu/

bourassa@met.fsu.edu

- 6.4 7.2 m/s
- Graphics from talk by Mike Freilich and Barry Vanhoff

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

15.2 – 16.0 m/s

Example Star Plot: Differences from the mean of three co-located satellite observations

21.6 - 22.4 m/s

25.6 – 26.4 m/s

Graphics from talk by Mike Freilich and Barry Vanhoff

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Correlation Maps

FIGURE 3.27 One-point correlation map of annual surface pressures at locations around the globe with those at Djakarta, Indonesia. The strong negative correlation of -0.8 at Easter Island is related to the El Niño-Southern Oscillation phenomenon. From Bjerknes (1969).

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Application of Correlation Maps

• Remote influences (teleconnections) can be identified.

Figure originally from Wallace and Blackmon, 1983

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

