

MET3220C Meteorological Computations Dr. Mark Bourassa

Class Time: TR 2:00 – 2:50; Wed. 10:10 – 12:05 Office Hours: TR 10:30 – 11:30 Office: 422 Love Bldg (645-4788) 233 R. M. Johnson (644-6923) bourassa@coaps.fsu.edu

TA: David Moroni, office and phone TBD Office Hours: TR 11:45 -1:45; W 12:15 – 2:15 dmoroni@met.fsu.edu

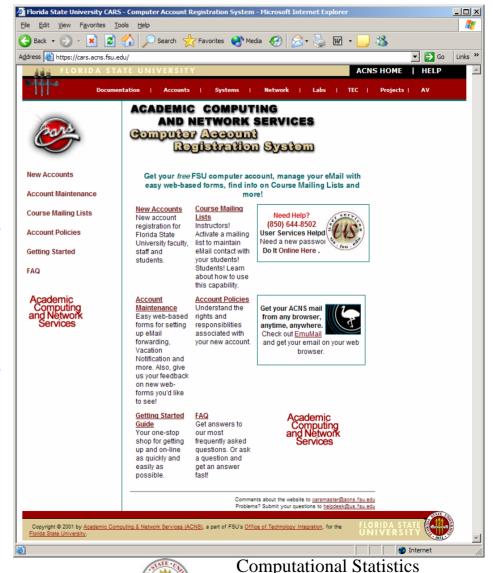
http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Course Objectives

- Students will learn the general statistics and programming (in FORTRAN90), with application to atmospheric sciences.
 - Examples from physical meteorology, remote sensing, and climatology.
- Students will learn a wide range of data analysis techniques
 - Develop computer code to apply them.
 - Become familiar with the strengths and weaknesses of many statistical methods.
 - How to program tests of how typical errors will influence the results of the statistics.
 - Students should be able to assess the quality of statistics.

Course Web Page


- Accessible through <u>http://campus.fsu.edu/</u> on the campus
 - Everyone in this class has access to the course site.
 - You *must* have a *garnet* or *mailer* account to use the class WWW site!
 - Get this ASAP!
- On line versions of
 - Syllabus and course outline.
 - Assignments
 - Grades
 - Reading material and lecture notes will be put online prior to the lecture
 - You are expected to read the material prior to the lecture
 - I suggest printing the pages, and taking them to class

Getting Your garnet or mailer Account

- https://cars.acns.fsu.edu/
 - If you don't already have an account you can get one.
- If you've forgotten your password you can change it.
 - https://cars.acns.fsu.edu/CARS/ account_maintenance.html
- Forward your email to an account you regularly check.
 - https://cars.acns.fsu.edu/CARS/ account_maintenance.html

Introduction 4

The Florida State University

The Basics

• TEXT BOOKS:

- Statistical Methods in the Atmospheric Sciences, 2nd Ed. by Daniel S. Wilks
- Introduction to FORTRAN 90 by Nyhoff, L. and S. Leestma
- Alternative suggestions for books on programming in FORTRAN are listed under 'class library' on the class web site
- Useful resources:
 - Several references cards on computer and editor commands are available on the class web site.
- Read and follow the **honor code.**
- Students with disabilities needing academic accommodations
 - Register with FSU's Student Disability Resource Center
 - Let me know so that I can plan ahead accordingly

Grading

• Exams:

- Midterm #1 Feb. 27 (on all stats material through Feb. 20)
- Midterm #2 April 19 (on all stats material after from Feb. 20)
- Final: None!
- Grading (MET3220C):
 - 40% Weekly Homework (Programming)
 - 30% for Midterm #1
 - 30% for Midterm #2
- Grades will be routinely updated on the blackboard site.

Scoring the Work

- A weighted average $\geq 88\%$
- A- 88% > weighted average $\ge 850\%$
- B+ 85% > weighted average $\ge 82\%$
- B 82% > weighted average \ge 73%
- B- 73% > weighted average $\ge 70\%$
- C+ 70% > weighted average $\ge 67\%$
- C 67% > weighted average $\ge 58\%$
- C- 58% > weighted average \geq 55%
- D+ 55% > weighted average $\ge 53\%$
- D 53% > weighted average $\ge 47\%$
- D- 47% > weighted average $\ge 45\%$
- F weighted average < 45%

- Grading guidelines are available on the blackboard site.
- MET3320 students must have at least a "C" average on the last five homework assignments, or they will receive an overall grade of "F" for this course.
- Consistent studying of material *and* class attendance are generally among the factors which determine grades earned by students.
- Makeup exams are not given except as noted by University policy.
 - Extra credit is available one time for improvements to lecture notes, and
 - Late assignments are accepted, but grades are dramatically reduced,
- All homework must be submitted electronically.
- See handout on grading for detailed expectations.

Course Outline

Jan. 9	Introductory Concepts in Statistics and Programming
Jan. 11 – 30	Empirical Distributions and Data Exploration
Feb. 1 – Feb. 22	Parametric Probability Distributions
March 1 – 13	Hypothesis Testing
March 15 – March 29	Statistical Forecasting
April 3 – 17	Forecast Verification

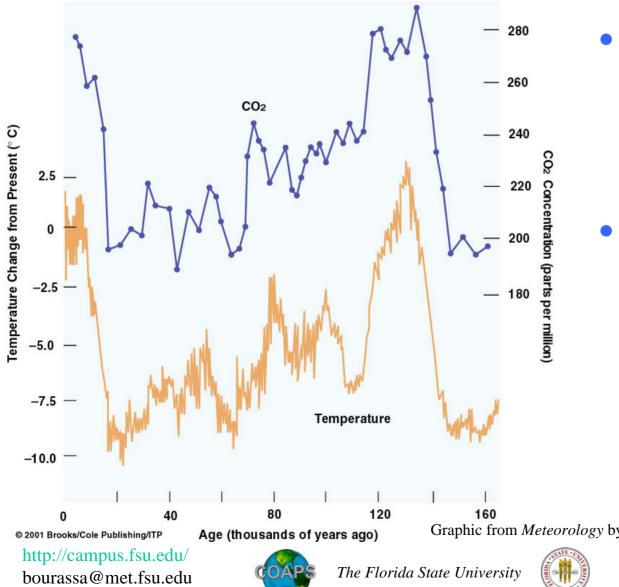
February 27	Midterm 1
April 19	Midterm 2

Solar 'Constant' for Other Planets

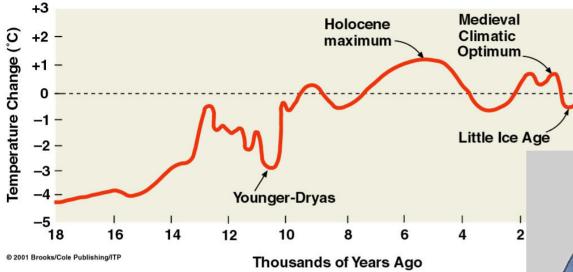
• The energy flux (*F*) from the sun can be estimated by multiplying the flux density (*S*, aka the solar constant) at a radius (*R*) by the surface area of a sphere at that radius. Note that this value of S_E applies only to the distance from the earth to the Sun (R_E). The solar 'constant' varies as a function of distance (*R*) from the Sun.

 $F = S_{\rm E} 4 \pi R_{\rm E}^2$

- F is constant it does not depend on R.
- Solve for *S*, applicable to any value of *R*.


 $S = F / (4 \pi R^2)$

- Consider that *R* for Venus is approximately half of *R* for the earth, and that *R* for Mars is approximately double that of Earth. *F* is constant in this context, so the only variable is *R*.
 - Approximate the solar constants for Venus and Mars.
- Earth's solar constant was originally determined through statistics: a linear regression.


Global Change Does Happen - CO₂ and temperature: a Recent History -

- Strong correlation between global mean surface temperatures and the concentration of CO₂
- **Correlation DOES** NOT imply cause and effect!

Graphic from *Meteorology* by Danielson, Levin and Abrams

Surface Temperature Has Varied In The Last Twenty Thousand Years

- Even relatively recent times have been warmer than now
- During colder periods, lots of current water channels were land (or ice)
- Medieval times were warm in higher latitudes...expansion of territories

Graphics from Meteorology by Danielson, Levin and Abrams

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

NORTH

PACIFIC

Computational Statistics Introduction 11

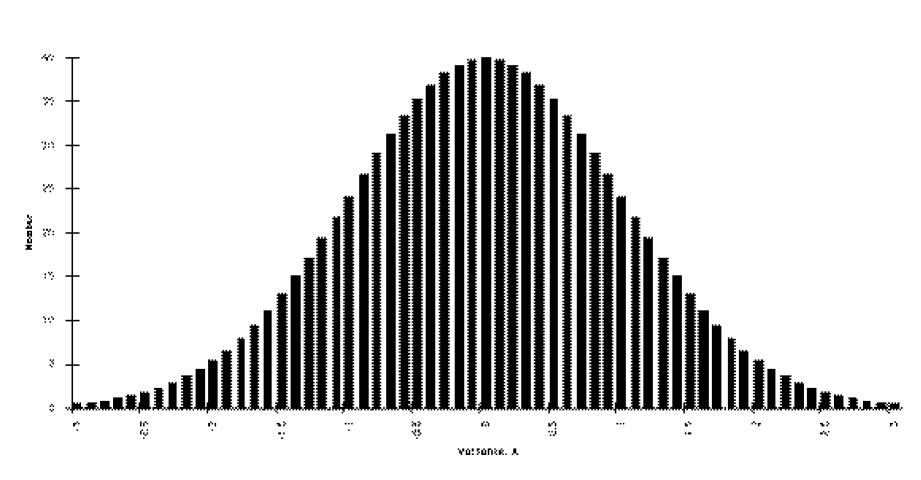
NORTH

OCEAN

ARCTIC

What Is Statistics?

- Traditional descriptions of Statistics are
 - Tedious,
 - Mind numbing, and
 - Time consuming.
- In most statistics classes, the above terms are painfully accurate.
 - However, applied statistics (with modern computers) can be
 - Intriguing,
 - Relevant, and
 - Fast.
- Statistics is used to quantify uncertainty
 - It can also be used to determine trends and make forecasts
 - These applications are most clearly interpreted when statistical uncertainty is mentioned.

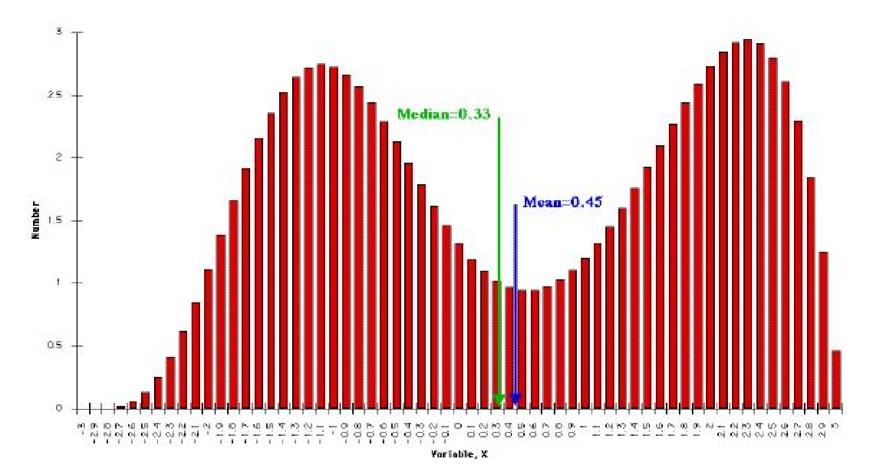

Data vs. Information

- Statistics can be used to summarize data.
 - Data can be thought of as a set of values.
 - Many meteorological data sets have huge numbers of values.
 - The forest cannot be seen due to the trees
 - For example, a single satellite can measure millions of observations in a day.
 - This is too much data for one person to absorb.
 - Statistics can be used to make the data easier to understand.
 - Statistics can tell us an average value, and some information about the distribution.

Gaussian Distribution

Graphic from www.cimms.ou.edu/~doswell/Normals/normal.html

http://campus.fsu.edu/ bourassa@met.fsu.edu

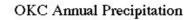


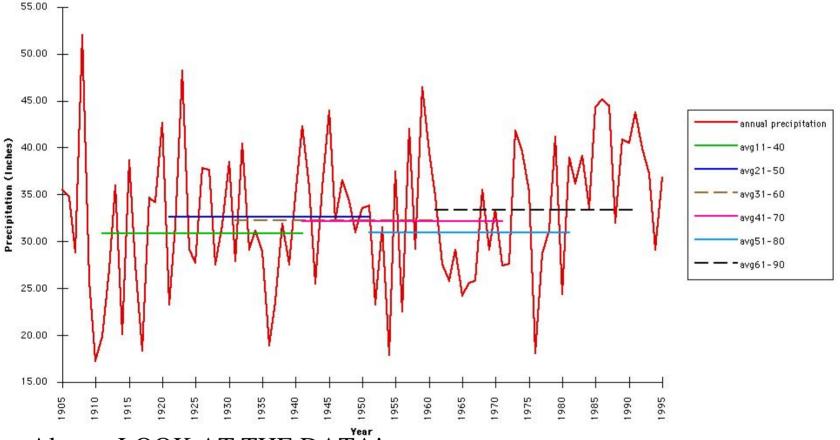
The Florida State University

Is The Average Always the Best Bet?

Bimodal distribution

Graphic from www.cimms.ou.edu/~doswell/ Normals/normal.html


http://campus.fsu.edu/ bourassa@met.fsu.edu



The Florida State University

Is the Average Always the Same

Always LOOK AT THE DATA!

Graphic from www.cimms.ou.edu/~doswell/ Normals/normal.html

http://campus.fsu.edu/ bourassa@met.fsu.edu

The Florida State University

Inferential Statistics

- Statistics can be used to predict an outcome, or to describe the likelihood of a variety of outcomes.
 - Example: gambling in a casino
 - The odds indicate that the casino will win slightly more often than the patron.
 - Example: Trends can be used to forecast conditions.
 - In the absence of a change of air masses, the trend of the recent conditions can be used to estimate future conditions.
 - Rate of change in surface (or upper air) temperatures.
 - Is the resulting rate statistically reliable?
 - Is it physically meaning full?
 - How sensitive is the result to the beginning and end times?

Uncertainty

- Statistical descriptions, comparisons, and particularly forecasts are prone to some errors
 - A typical error is a bias
 - A systematic over or under estimation.
 - Another type of error is random differences
 - Random errors are often referred to as uncertainties.
- Many statistical techniques are based on the assumption that one or more of the types of observations are free of error.
 - There are many example of horrible conclusions due to failing to consider uncertainty of comparison data.
 - There are many real world cases where there is no standard of truth.

Basics of Programming

- The operating system
 - Examples: UNIX, DOS, MAC OS, Windows, Linux
 - Know how to move around, and copy files
- Editing a file
 - Find an editor that you like, and become functional with it.
- Compiling code (and debugging)
 - FORTRAN77: f77 program.f77 –o executable_name
 - FORTRAN90: f90 program.f90 –o executable_name
 - Also works on F77 routines
 - C: cc program.c –o executable_name
- Running code (and debugging)
 - ./executable_name

