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MET3220C
Computational Statistics

Linear Regression
(Chapter 6 of Wilk’s book)

Key Points: 
1) Determining best fit parameters

2) Determining uncertainty in best fit parameter
3) Working with uncertain observations
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Fitting Parameters for a Line
• The calculations for the y-intercept and slope are:
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Uncertainty Calculations

• The ‘uncertainty in y’ (Ωy) is 

• This can be used as error bars about your best fit line.
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• The uncertainty in the slope and y-intercept are
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Example Correlation Between Pressure and 
Florida Winter Temperatures

• That time series can 
be correlated with 
modeled (analysis) 
pressure fields.

• The areas with high 
(positive or negative) 
correlation indicate 
teleconnections.

Correlation Coefficient

• A time series of 
average (of sorts) 
Winter temperature in 
Florida can be 
determined from 
station data.
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Selecting a Predictor
• It is somewhat safer to take 

predictors that are close to the 
location of interest. 

• The pressure gradient 
explains >98% of variability 
in monthly temperatures.

• The less likely predictors are 
more likely to fail in 
forecasts.

• Here it is assumed that a local 
pressure gradient is a good 
predictor. 

• Less likely predictors can also 
have a good match. That is 
predictors with high 
correlations, but with a less 
obvious physical connection.
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Hypothesis Testing With Slopes

• We can calculate a rate of change of temperature with time (a slope).
• How do we tell if the slope is statistically significant?

• We can assume (reasonably) that the null distribution (of values for 
slope) has a Gaussian distribution.
• A z-value can be calculated by dividing the slope by the 

uncertainty in the slope.

• The consequences of rapid global warming could be dire.
• The cost of attempting to prevent global warming could be huge.

• If the cost is huge, it will come at the expense of other 
activities.

• If the cost is huge, and the data does not support the existence
of the problem, then much better things could be done with the 
money!

• Assume that we are interested in global warming. Why?
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Cool Examples 

• How Big a problem are outliers?

Cool graphics from http://www.statsoft.com/textbook/stbasic.html#Correlationsd



The Florida State University
Linear Regression

8
http://campus.fsu.edu/
bourassa@met.fsu.edu

A Problem: 
Uncertainty In Paired Observations

• Linear regression assumes that uncertainty in the observations can be 
ignored.
• This assumption is often not valid.
• Results in (potentially large) errors in a slope and y-intercept!

• Example: Uncorrupted data (left), and 
• Added random error equal to a standard deviation (right).

Slope =  1.029423  +/- 0.018493129
Y-int =  -2.4984943 +/- 1.152925

Slope =  0.6916264  +/- 0.041425
Y-int =  18.220524 +/- 2.5778608
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Why Did Purely Random Noise Change The Slope?

• The distribution looks more like a sphere, and the slope tends to be 
closer to zero.

• Interestingly, if we exchange the axis, the slope also is decreased, 
which would seem to conflict with the previously determined slope.

• When we add noise we tend to add outliers, but we also distribute the 
data in a more random fashion.
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One Solution To the Problem of 
Uncertainty In Paired Observations

• The uncertainty in both sets of data can be estimated by randomly 
adding Gaussianly distributed noise to a perfect fit, and modifying the 
standard deviations of the noise with the goal of match the observed 
curves of x(y) and y(x).

• Ideally a similar data distribution should be used in this approach. 
Fortunately, any ball park distribution will do!

• In many cases there is little bias in either of the paired observations, 
and the gain (proportionality) is equal to 1 (x = y).
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