MET3220C
Computational Statistics

Linear Regression
(Chapter 6 of Wilk’s book)

Key Points:
1) Determining best fit parameters
2) Determining uncertainty in best fit parameter
3) Working with uncertain observations
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Fitting Parameters for a Line

e The calculations for the y-intercept and slope are:
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Uncertainty Calculations

® The ‘uncertainty iny’ (€2,) Is
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e This can be used as error bars about your best fit line.
e The uncertainty in the slope and y-intercept are
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Example Correlation Between Pressure and
Florida Winter Temperatures

Correlation Between SLP and Flerida Temperature (DJF)

Bl ® A time series of
average (of sorts)
Winter temperature in
Florida can be
determined from
station data.

e That time series can
be correlated with
modeled (analysis)
pressure fields.

® The areas with high
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Selecting a Predictor
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It is somewhat safer to take
predictors that are close to the
location of interest.

Less likely predictors can also
have a good match. That is
predictors with high
correlations, but with a less
obvious physical connection.
The less likely predictors are
more likely to fail in
forecasts.

Here it is assumed that a local
pressure gradient is a good
predictor.

The pressure gradient
explains >98% of variability
In monthly temperatures.
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Hypothesis Testing With Slopes

e Assume that we are interested in global warming. Why?
® The consequences of rapid global warming could be dire.
® The cost of attempting to prevent global warming could be huge.

e |f the cost is huge, it will come at the expense of other
activities.

e |f the cost is huge, and the data does not support the existence
of the problem, then much better things could be done with the
money!

e \We can calculate a rate of change of temperature with time (a slope).
e How do we tell if the slope is statistically significant?
e We can assume (reasonably) that the null distribution (of values for
slope) has a Gaussian distribution.

e A z-value can be calculated by dividing the slope by the
uncertainty in the slope.
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Cool Examples
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e How Big a problem are outliers?

Cool graphics from http://www.statsoft.com/textbook/stbasic.html#Correlationsd
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A Problem:

Uncertainty In Paired Observations
e Linear regression assumes that uncertainty in the observations can be
ignored.

e This assumption is often not valid.

e Results in (potentially large) errors in a slope and y-intercept!
e Example: Uncorrupted data (left), and
e Added random error equal to a standard deviation (right).
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Why Did Purely Random Noise Change The Slope?

e \When we add noise we tend to add outliers, but we also distribute the
data in a more random fashion.

e The distribution looks more like a sphere, and the slope tends to be
closer to zero.

e [nterestingly, if we exchange the axis, the slope also is decreased,
which would seem to conflict with the previously determined slope.
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One Solution To the Problem of

Uncertainty In Paired Observations

e [n many cases there is little bias in either of the paired observations,
and the gain (proportionality) is equal to 1 (x = y).

e The uncertainty in both sets of data can be estimated by randomly
adding Gaussianly distributed noise to a perfect fit, and modifying the
standard deviations of the noise with the goal of match the observed
curves of x(y) and y(x).

e |deally a similar data distribution should be used in this approach.
Fortunately, any ball park distribution will do!
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