

MET3220C (© Meteorological Computations

Programming – week #1 Dr. Mark Bourassa

TA: David Moroni, room??, phone ?? Office Hours: TBA dmoroni@met.fsu.edu

http://campus.fsu.edu/ bourassa@met.fsu.edu

Computational Statistics Introduction 1

First Programming Assignment

- Goal #1: acquire familiarity with some simple UNIX commands
- Goal #2: acquire familiarity with a UNIX editor
- I suggest using the editor called emacs
 - It is available on most systems
 - It is reasonably easy to use
 - It has color coding that will cut down on mistakes
- The goal of the first assignment is to type in a simple program, compile it (without errors), and run it (without errors).
- But before we start that, we will go over how to start using the Meteorology Department's computers and how to (and how not to) turn in assignments.

How to Log In

- Logging In to the machine that your monitor is attached to:
 - You need two pieces of information to log in
 - 1) A login ID
 - 2) The password associated with that login ID
 - Note that your password is something that you should keep secret so that someone else does not log into your account and do malicious things (e.g., deleting your assignments).
- When you sit down at the computer terminal, there should be a login prompt. After entering your login ID, you will typically be prompted for your password.
- Note regarding Metlab terminals: You are now logged into the best place for editing with emacs.
 - If you log into the metlab server you can also use emacs, but it will not have some of the cool functions.
- When your are done working, don't forget to log out!

Logging Into a Foreign Computer (using SSH)

- You can use SSH to log into a different computer.
- For example, to log into the metlab server, you would type
 - ssh metlab
 - This assumes that you logged into the original machine using the same login ID you have on the new machine.
- If you are logging in from a different ID, then type
 - ssh login_ID@metlab
 - Where login_ID is your login ID
- If you are logging into an offsite machine, you would type
 - ssh login_ID@name_or_ID_of_new_machine
 - Where name_or_ID_of_new_machine is the name of the new machine
 - For example:
 - ssh bourassa@huey.met.fsu.edu

Oddities of Meteorology's System

- There are many metlab 'terminals' (e.g., metlab14), which are computers.
- There is also a more powerful metlab server (metlab.met.fsu.edu)
- You will probably want to
 - edit on the 'terminals', and
 - Compile and run code on the server.

Opening Multiple Windows

- You do not want to log in and log out between editing and trying to compile your code!
- Open another window, and use it to log into the server.
- How to do this varies a lot among computer system, but there is usual a button (on the window top, or screen top, or on a drop down menu after left clicking), that can be clicked to get another window.
- You can open more windows than you should need in this manner.

Working With Directories

- To create a new directory use the mkdir command
 - mkdir MET3220C
 - mkdir junk
 - Recall that UNIX commands ARE case sensitive
- To change directories use the cd command
 - cd MET3220C
 - cd .. Moves you up one directory level
 - cd MET3220C brings you back
 - cd ../junk takes you up one level, then down into the junk directory
 - cd ..
- To remove a directory use the rmdir command:
 - rmdir junk
- If you want to know what directory you are in type
 - pwd

Editing a File

- To edit a file using the emacs editor type
 - emacs filename
 - Where filename is the name of your file. E.g., my_great_code.f
 - If the file does not exist it will be created,
 - If it does exist, it will be opened for editing.
- You can enter text as you normally would on a really dumb word processor.
 - Please open a new file named my_great_code.f for editing.
 - In the file, write "I spent 100 hours on this amazing code!
 - Save the file: control-x control-s
 - Exit the file: control-x control-c
- Use a UNIX command to look at (but not edit) the file:
 - cat my_great_code.f
 - more my_great_code.f

Other UNIX commands

- The rm command can be used to delete (remove) files
 - First make a file: cp my_great_code.f oops.f
 - rm oops.f
 - Deleted files cannot be retrieved, so be cautious!
- If you want to see what files are in your directory, use the ls command
 - 1s
 - If you just want to see files with an f90 extension type
 - 1s *.f90
 - The * is a wild card representing any number of characters.
 - Similarly, a ? is a wild card representing one character.
- Note that typing 'rm *' should only be done with great caution.

Turning in Your Assignment

- This vary important step is where things can go horribly wrong!
- We will practice with the file that you just created.
- First, because bad things can happen, make a backup copy of your program:
 - cp is the UNIX command for copy
 - cp file1 file2 (don't type cp file1 to file2)
 - Where file1 is the original, and file2 is the new file
 - Give it a try:
 - cp my_great_code.f my_great_code_bak.f
- To email the code use
 - /usr/lib/sendmail email_address < attachment
 - /usr/lib/sendmail your_ID@met.fsu.edu < my_great_code.f90
 - Now let's make a horrible mistake:
 - /usr/lib/sendmail your_ID@met.fsu.edu > my_great_code.f90
 - You have sent nothing and have destroyed your great code!

Assignment #1: Enter, Compile, and Run a Simple Program

- 1) Create a MET3220 subdirectory
 - mkdir MET3220
- 2) Change directories to that directory
 - cd MET3220
- 3) Open a new file called AS1_your_last_name.f90, where 'your_last_name' is replaced by your last name.
 - emacs AS1_your_last_name.f90
- 4) Enter the program into that file.
- 5) Attempt to compile the program
 - f90 AS1_your_last_name.f90 –o AS1_your_last_name
 - Debug until it compiles.
- 6) Run the program
 - ./AS1_your_last_name
- 7) Email the working source code (AS1_your_last_name.f90) to the TA (dmoroni@met.fsu.edu).
- Due date: Tuesday, Jan. 17, before 5:00PM (local time)

- The ! indicates comments. The text after the '!' is not converted to something the computer can interpret. It is good
 - practice to define variables. and give some indication of what the code does
- Well chosen variable names will help.

```
X 740 x 626 Jey.met.fsu.edu
                                                                                                  Buffers Files Tools Edit Search Mule F90 Help
                       VGRAM sum test
                           Programmed by: Mark A. Bourassa
                           Programmed on Jan. 6, 2006
                           Programmed as part of MET3220C (section 2), Homework #1
                           Purpose: compare two approaches to calculating the sum of
                                    of integers, from 1 to N.
                           Variables:
                                          counter and value of integer that is being added to the sul
                              i_integer
                                          maximum integer in the sum
                              n.
                              sum1
                                           sum of the integers, determined by method 1
                              sum2
                                           sum of integers determined by method 2
                              dif
                                           difference in the above sums
                                           fractional error in sum2, assuming method 1 is correct
                              fract
                       IMPLICIT NONE
                                         !prevents implicit typing of variables - a very good idea
                       integer :: i_integer, n, sum1, sum2
                       real :: dif. fract
                       n = 25
                       sum1 = 0.0
                       DO i_integer = 1, N
                         sum1 = sum1 + i_integer
                       FNDDO
                       sum2 = N * (N + 1) * 0.5
                       dif = sum2 - sum1
                       fract = dif/sum1
                       PRINT*, sum1, sum2, dif, fract
                       OUTPUT, sum1, sum2, dif, fract
                       END
                            first_program.f90
                                                    (F90)--L1--A11
http://campus.fsu.ed Emacs F90 mode; please report bugs to T.Einarsson@clab.ericsson.se
bourassa@met.fsu.edu
                                      The Florida State University
                            UUAPS
                                                                                    Introduction 12
```

The program name.

Chose something that makes sense!

```
🗙 740 x 626 jey.met.fsu.edu
                                                                                                 Buffers Files Tools Edit Search Mule F90 Help
                   ROGRAM sum_test
                           Programmed by: Mark A. Bourassa
                           Programmed on Jan. 6, 2006
                           Programmed as part of MET3220C (section 2), Homework #1
                           Purpose: compare two approaches to calculating the sum of
                                    of integers, from 1 to N.
                           Variables:
                                          counter and value of integer that is being added to the sul
                              i_integer
                                          maximum integer in the sum
                              n.
                              sum1
                                          sum of the integers, determined by method 1
                                          sum of integers determined by method 2
                              sum2
                              dif
                                          difference in the above sums
                                          fractional error in sum2, assuming method 1 is correct
                              fract
                       IMPLICIT NONE
                                        !prevents implicit typing of variables - a very good idea
                      integer :: i_integer, n, sum1, sum2
                      real :: dif. fract
                       n = 25
                       sum1 = 0.0
                      DO i_integer = 1, N
                         sum1 = sum1 + i_integer
                       ENDDO
                      sum2 = N * (N + 1) * 0.5
                      dif = sum2 - sum1
                       fract = dif/sum1
                      PRINT*, sum1, sum2, dif, fract
                      OUTPUT, sum1, sum2, dif, fract
                      END
                           first_program.f90
                                                    (F90)--L1--A11
http://campus.fsu.ed Emacs F90 mode; please report bugs to T.Einarsson@clab.ericsson.se
bourassa@met.fsu.edu
                                      The Florida State University
                           UUAPS
                                                                                   Introduction 13
```

X	740 x 626 Jey.met.fsu.edu
Declarations	
Declarations	Programmed by: Mark A. Bourassa
These specify	Programmed on Jan. 6, 2006 Programmed as part of MET3220C (section 2), Homework #1
the 'nature' of	Purpose: compare two approaches to calculating the sum of
the variable.	of integers, from 1 to N.
Integers are	i_integer counter and value of integer that is being added to the su m
whole numbers,	n maximum integer in the sum sum1 sum of the integers, determined by method 1
positive or	! sum2 sum of integers determined by method 2 ! dif difference in the above sums ! fract fractional error is sum2 assuming method 1 is correct
negative.	IMPLICIT NONE /prevents implicit typing of variables - a very good idea
Reals can also	integer :: i_1 teger, n, sum1, sum2
be fractions.	real :: dif, fract
The distinction	sum1 = 0.0 D0 i_integer = 1, N
has to do with	sum1 = sum1 + i_integer ENDDO
	sum2 = N * (N + 1) * 0.5
how memory 1s	dif = sum2 - sum1 fract = dif/sum1
allocated when	PRINT# our1 our2 dif frant
the code is	! OUTPUT, sum1, sum2, dif, fract
compiled or run.	END
	: first_program.f90
http://campus.fsu.ed	Emacs F90 mode; please report bugs to T.Einarsson@clab.ericsson.se
bourassa@met.fsu.edu	Introduction 14

The default naming convection for variables that are not declared is names starting with letter i to n are integers, and everything else is a real

The implicit none statement causes any undeclared variables to generate errors.

```
🗙 740 x 626 Jey.met.fsu.edu
                                                                                                  Buffers Files Tools Edit Search Mule F90 Help
                     ROGRAM sum_test
                           Programmed by: Mark A. Bourassa
                           Programmed on Jan. 6, 2006
                           Programmed as part of MET3220C (section 2), Homework #1
                           Purpose: compare two approaches to calculating the sum of
                                    of integers, from 1 to N.
                           Variables:
                                          counter and value of integer that is being added to the sul
                              i_integer
                                          maximum integer in the sum
                              n.
                              sum1
                                           sum of the integers, determined by method 1
                                           sum of integers determined by method 2
                              sum2
                              dif.
                                           difference in the above sums
                                           fractional error in sum2, assuming method 1 is correct
                              fract.
                       IMPLICIT NONE
                                         !prevents implicit typing of variables - a very good idea
                       integer :: i_integer, n, sum1, sum2
                       real :: dif. fract
                       n = 25
                       sum1 = 0.0
                       DO i_integer = 1, N
                         sum1 = sum1 + i_integer
                       FNDDO
                       sum2 = N * (N + 1) * 0.5
                       dif = sum2 - sum1
                       fract = dif/sum1
                       PRINT*, sum1, sum2, dif, fract
                      OUTPUT, sum1, sum2, dif, fract
                       END
                            first_program.f90
                                                    (F90)--L1--A11
http://campus.fsu.ed Emacs F90 mode; please report bugs to T.Einarsson@clab.ericsson.se
bourassa@met.fsu.edu
                                      The Florida State University
                                                                                   Introduction 15
                            UUAPS
```

```
🗙 740 x 626 Jey.met.fsu.edu
                                                                                           - 🗆 ×
             Buffers Files Tools Edit Search Mule F90 Help
              ROGRAM sum_test
                     Programmed by: Mark A. Bourassa
                     Programmed on Jan. 6, 2006
                     Programmed as part of MET3220C (section 2), Homework #1
                     Purpose: compare two approaches to calculating the sum of
                              of integers, from 1 to N.
                     Variables:
                                    counter and value of integer that is being added to the sul
                        i_integer
                                    maximum integer in the sum
                        n.
                                    sum of the integers, determined by method 1
                        sum1
                                    sum of integers determined by method 2
                        sum2 -
                        dif
                                    difference in the above sums
                        fract
                                    fractional error in sum2, assuming method 1 is correct
                 IMPLICIT NONE
                                  !prevents implicit typing of variables - a very good idea
                integer :: i_integer, n, sum1, sum2
                                               Set the value of n to be 25
                 real :: dif, fract
                 n = 25 ┥
                 sum1 = 0.0 🔨
                 DO i_integer = 1. N
                   sum1 = sum1 + i_integer
                                               Set the value of sum1 to be 0
                 ENDDO
                 sum2 = N * (N + 1) * 0.5
                 dif = sum2 - sum1
                 fract = dif/sum1
                PRINT*, sum1, sum2, dif, fract
                OUTPUT, sum1, sum2, dif, fract
                 END
                     first_program.f90
                                             (F90)--L1--All-----
http://campus Emacs F90 mode; please report bugs to T.Einarsson@clab.ericsson.se
                                      The Florida State University
                           UUAPS
bourassa@met.fsu.edu
                                                                                  Introduction 16
```

```
🗙 740 x 626 Jey.met.fsu.edu
                                                                                         Buffers Files Tools Edit Search Mule F90 Help
              PROGRAM sum_test
                    Programmed by: Mark A. Bourassa
                    Programmed on Jan. 6, 2006
                    Programmed as part of MET3220C (section 2), Homework #1
                    Purpose: compare two approaches to calculating the sum of
                             of integers, from 1 to N.
                    Variables:
                                   counter and value of integer that is being added to the sul
                       i_integer
                                   maximum integer in the sum
                       n.
                       sum1
                                   sum of the integers, determined by method 1
                                   sum of integers determined by method 2
                       sum2
                       dif
                                   difference in the above sums
                                   fractional error in sum2, assuming method 1 is correct
                       fract
                IMPLICIT NONE
                                  !prevents implicit typing of variables - a very good idea
                integer :: i_integer, n, sum1, sum2
                real :: dif. fract
                                              A looping block (of code). The
                n = 25
                sum1 - 0.0
                                                   loop is repeated N times, and
                DO i_integer = 1, N
                  sum1 = sum1 + i_integer
                                                   i_integer is increased by 1 each
                ENDDO
                                                   time.
                sum2 = N * (N + 1) * 0.5
                dif = sum2 - sum1
                fract = dif/sum1
                PRINT*, sum1, sum2, dif, fract
                OUTPUT, sum1, sum2, dif, fract
                END
                     first_program.f90
                                             (F90)--L1--All
http://campus Emacs F90 mode; please report bugs to T.Einarsson@clab.ericsson.se
                                     The Florida State University
bourassa@met.fsu.edu
                           UUAPS
                                                                                 Introduction 17
```

```
🗙 740 x 626 Jey.met.fsu.edu
                                                                                          Buffers Files Tools Edit Search Mule F90 Help
              PROGRAM sum_test
                    Programmed by: Mark A. Bourassa
                    Programmed on Jan. 6, 2006
                    Programmed as part of MET3220C (section 2), Homework #1
                    Purpose: compare two approaches to calculating the sum of
                             of integers, from 1 to N.
                     Variables:
                                   counter and value of integer that is being added to the sul
                       i_integer
                                    maximum integer in the sum
                       n.
                       sum1
                                    sum of the integers, determined by method 1
                                    sum of integers determined by method 2
                       sum2
                       dif
                                    difference in the above sums
                                   fractional error in sum2, assuming method 1 is correct
                       fract
                IMPLICIT NONE
                                  !prevents implicit typing of variables - a very good idea
                integer :: i_integer, n, sum1, sum2
                real :: dif. fract
                                              Writes variables to the screen.
                n = 25
                sum1 = 0.0
                                                   Good for program output and
                DO i_integer = 1, N
                  sum1 = sum1 + i_integer
                                                   for debugging.
                ENDDO
                sum2 = N * (N + 1) * 0.5
                dif = sum2 - sum1
                fract = dif/sum1
                PRINT*, sum1, sum2, dif, fract
                 DUTPUT sum1 sum2
                END
                     first_program.f90
                                             (F90)--L1--All-
http://campus Emacs F90 mode; please report bugs to T.Einarsson@clab.ericsson.se
                                     The Florida State University
bourassa@met.fsu.edu
                           UUAMJ
                                                                                 Introduction 18
```

Example Error Messages

```
huey.bourassa> f90 first program.f90
        n <u>=</u> 25
      "first_program.f90<. Line = 22, Column = 3: EPROR: IMPLICIT NONE is specified in
       the local scope, therefore an explicit type must be specified for data object
      N".
        sum1 = 0.0
      "first program.F90C Line = 23. Column = 3: ERROR: IMPLICIT NONE is specified in
       the local scope, therefore an explicit type must be specified for data object
      SUM1".
        DO i_integer = 1, n
      "first_program.f90", Line = 24, Column = 6: ERROR: IMPLICIT NONE is specified in
       the local scope, therefore an explicit type must be specified for data object
      I_INTEGER".
        sum2 = n * (n + 1) * 0.5
      "first_program.f90", Line = 28, Column = 3: ERROR: IMPLICIT NONE is specified in
       the local scope, therefore an explicit type must be specified for data object
      SUM2".
      f90: COMPILE TIME 0.070000 SECONDS
      f90: MAXIMUM FIELD LENGTH 4958766 DECIMAL WORDS
      f90: 36 SOURCE LINES
      f90: 4 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI
      huey.bourassa>
http://campus.fsu.edu/
bourassa@met.fsu.edu
```

The Florida State University

Computational Statistics Introduction 19