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I. Outline of the General Circulation Model

A NEW GENERAL CIRCULATION model, which has an improved finite-dillerence
formulation, greater vertical resolution, and new parameterizations of the
subgrid-scale processes, has been developed at UCLA to replace the earlier
two- and three-level UCLA general circulation models.

The primary prognostic variables of the model are horizontal velocity,
temperature, and surface pressure, governed by the horizontal momentum
equation, the thermodynamic energy equation, and the surface pressure
tendency equation, respectively. These governing equations, together with
the hydrostatic equation, form the system of “quasi-static equations™ or
so-called “primitive equations.”

A number of secondary prognostic variables, with corresponding govern-
ing equations, are added to the system to determine the heating and friction.
The most important of the secondary prognostic variables is water vapor,
which is governed by the water vapor continuity equation. Ozone, governed
by an ozone continuity equation with parameterized sources and sinks, is
added as a prognostic variable for use in the radiational heating calculation.
The planetary boundary layer depth and the magnitudes of the temperature
discontinuity, moisture discontinuity, and momentum discontinuiry at the top
of the boundary layer are made prognostic variables to determine the
boundary layer structure. The ground temperature, ground water storage, and
mass of snow on the ground are also taken as prognostic variables, governed
by the energy and water budget equations of the ground.

The horizontal momentum equation includes the convergence of vertical
flux of horizontal momentum due to the boundary layer turbulence and
cumulus convection. The thermodynamic energy equation includes a heating
term that consists of solar and infrared radiational heating, the convergence
of vertical flux of sensible heat duc to the boundary layer turbulence and
cumulus convection, the release of latent heat due to cumulus-convective and
large-scale condensation processes, and cooling due to evaporation of clouds
and falling raindrops. The water vapor continuity equation includes the
convergence of vertical flux of water vapor due to the boundary layer tur-
bulence and cumulus convection, and both cumulus-convective and large-
scale condensation and evaporation. The formulation of horizontal and
vertical diffusion due to turbulence in the free atmosphere depends on the
version of the model. We plan to introduce, in the near future, a formulation
based on the quasi-geostrophic turbulence theory.

To use the general circulation model the following parameters must be pre-
scribed for each grid point: surface characteristics (open ocean, ice-covered
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ocean, bare land, and land covered by glacial ice); elevation of the land;
surface roughness; thickness of the sea ice; and ocean surface temperature,

Figure 1 shows the vertical structure of the model. The lower boundary
follows the earth’s topography, where the surface pressure is defined. The
upper boundary is the 1 mb pressure surface, which is approximately at the
height of the stratopause. The atmosphere between the upper and lower
boundaries is divided into twelve layers, and the boundaries of these layers
follow the coordinate surfaces of a gencralized ¢ coordinate (Section V).
From 100 mb upward these coordinate surfaces are also constant pressure
surfaces. The lowest four layers have equal depth in pressure p, and the
uppermost seven layers have equal depth in log p.

ptmb) Z (km)
1.00 : (48.5)
1.29 {SPONGE LAYER) '

1.93 (a3.0}
268 == e

define layers, broken lines indicate levels within layers at which prognostic variables are carried.
Pressure levels and heights in parentheses are spproximate, given for purposes of illustration.

The broken lines in Fig, 1 show the levels at which the prognostic variables
of horizontal velocity, temperature, water vapor, and ozone are carried for
each of the layers. These levels are approximately centered in p for the layers
below 100 mb, and centered in log p for the layers above 100 mb.

The uppermost layer of the model, called the “sponge layer,” hasa damping
term designed to absorb upward propagating wave encrgy and thus prevent
4 spurious reflection of wave energy at the upper boundary. The actual
formulation of the damping term, however, is still in an experimental stage.
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FiG. 2. The vertical structure of tln. :mpu:phcru. I.m.ra- ol the model showing the param-
eterized planetary boundary layer (light shaded area) and possible cloud types associated with
the planctary boundary layer (stippled area),

Figure 2 shows the vertical structure of the lower layers of the model. The
light shaded area represents the parameterized planetary boundary layer,
which may or may not contain stratus cloud, and out of which there may or
may not extend a cumulus cloud ensemble. The boundary layer depth may be
less than, equal to, or greater than one or more of the model layers.

Although the model is designed and programmed to have as many as
12 layers, it can be used with fewer layers. A six-layer version of the model,
with a vertical structure identical to the lower half of the 12 layer version,
is also used at UCLA.

The horizontal coordinates are longitude and latitude; the current grid
size is 5° of longitude and 4° of latitude. The convergence of the meridians
toward the poles would normally necessitate the use of an extremely short
time interval to maintain computational stability. To avoid this requirement,
a Jongitudinal averaging is done of selected terms in the prognostic equations
near the poles. At present, the finite-difference time step is 6 min, except for
the heating, friction, and source and sink terms, for which the time step 1s
30 min.

I1. Principles of Mathematical Modeling
The space finite difference scheme of the model is designed to maintain

many of the important integral constraints of the continuous atmosphere,
such as the conservation of total mass; the conservation of total kinetic

o s e e e e R G ST T A [ R TR £ S e £ £ 5 T e g <t



WEE T ERVEE WLR SRR RTINS ALY ST S ¢ i H T LR o L g S

Ll mp i M e et Sty et Ll i i et sl MG i b R ]

THE UCLA GENERAL CIRCULATION MODEL 177

energy during inertial processes; the conservation of enstrophy (mean square
vorticity) during vorticity advection by the nondivergent part of the hori-
zontal velocity; the conservation of the integral constraint on the pressure
gradient force; the conservation of total energy during adiabatic and nondis-
sipative processes; and the conservation of total entropy and total potential
enthalpy during adiabatic processes.

As the grid size approaches zero, the finite-difference solution obtained
with any convergent scheme will approach the true solution and, therefore,
in the limit will satisfy the integral constraints. The order of accuracy of a
convergent scheme determines how rapidly its solution approaches the true
solution as the grid size approaches zero. Although many schemes share the
same order of accuracy, the solutions of such schemes generally approach
the true solution along different paths in a function space, and with different
statistics. One of the basic principles used in the design of the finite difference
scheme for the model is the desirability of secking that finite difference
scheme in which the solutions approach the true solution along a path on
which the statistics are analogous to those of the true solution. To this end,
_in the finite difference scheme used in the model, discretized analogs of the
~integral constraints are maintained, regardless of the grid size, which ap-
proach the true integral constraints as the grid size approaches zero.

Maintenance of the integral constraints by the finite difference scheme may
not be a critical requirement for short-range numerical weather prediction
(over a period of a day or two), because there the concern is with the local
accuracy of the solution in space and time, and a formal maintenance of the
integral constraints does not necessarily mean a greater accuracy of the
solution at a particular place and time. In short-range predictions, the period
of integration is usually not long enough for significant changes to occur in
the integral properties. The local accuracy in short-range predictions is
therefore more or less determined by the grid size and the order of accuracy
of the scheme.

In numerical general circulation simulations, however, the governing
equations are integrated beyond the physical limit of deterministic predic-
tion, which is of the order of a few weeks. Because the atmosphere is turbulent,
in a long-term integration there is no “true” solution in the deterministic
sense, and such integrations (including long-range numerical weather predic-
tion from an observed initial state) can only predict the statistical properties
of the atmosphere. In a long-term integration, then, it is the accuracy ol the
statistical properties of the solution that concerns us.

[Uis shown in Section I11 that maintaining the conservation of enstrophy
as well as of kinetic energy is of great advantage in the control of the statistical
properties of nondivergent horizontal flow. It not only prevents nonlinear
computational instability, but it also maintains the constraint on the kinetic



178 AKIO ARAKAWA AND VIVIAN R. LAMB

energy exchange between motions of diflerent size. A false systematic com-
putational cascade of Kinetic energy into small-scale motions is prevented,
and because there is then relatively little energy in the small-scale motions,
the overall error is small. In this way, other statistical properties of the
solution, such as conservation of the higher moments of the statistical
distribution of vorticity, are approximately maintained. :

I the energy in the shortest scale is the result of a spurious computational
energy cascade, a decrease of the grid size does not help insofar as the long-
term simulation of nonviscous flow is concerned. Such a result is completely
diflerent from that which might be expected from the usual analysis of
truncation error, which is a measure of the formal difference of the finite-
difference equation from the original differential equation. The paradox
occurs because a decrease of the grid size allows a further computational
cascade of energy into the added part of the spectral domain. After a sufficient
period of integration, the cascading energy will again reach and accumulate
in the shortest resolvable scale. The overall error will become large again and
the prediction of some of the statistical properties will become even worse
than with the coarser grid (Section 11T will show an example of this).

The existence of lateral viscosity can make a false computational cascade
of energy less harmful. Since such viscosity is more effective for smaller scales,
however, a spurious computational energy cascade into these scales falsely
enhances the total amount of energy dissipation.

The second part of Section I1I describes a finite difference Jacobian that
maintains the conservation of enstrophy and kinetic energy and that is
suitable for the representation of advection of any quantity in two-dimen-
sional, incompressible flow. The usefulness of this scheme as a guide in the
formulation of a finite-difference scheme for the primitive equations rests
on the fact that although the motions of the atmospheric general circulation
are not exactly horizontal and nondivergent, they are to a good approxima-
tion quasi-geostrophic. This type of motion is quasi-nondivergent, as far as
horizontal advection is concerned: divergence is important only in the linear,
or approximately linear, terms. Thus as far as the consideration of the
(nonlinear) advection terms is concerned, the finite-diflerence scheme for
advection by the nondivergent part of the flow is crucial; indeed, a scheme
that is inadequate for purely nondivergent motion is almost certainly inade-
quate for quasi-nondivergent motion.

The other integral constraints maintained by the finite-difference scheme
of the UCLA model are not for the prevention of a computational cascade
and, therefore, do not directly increase the overall accuracy of the statistics
of the solution. The maintenance of these other integral constraints does help
make the errors less systematic, however, in terms of the generation, destruc-
tion, and conversion of energy, entropy, and angular momentum or vorticity.
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Therefore, in a statistical sense, they make the physics of the discrete model
more analogous to the physics of the continuous atmosphere.

The following examples may serve to illustrate this point. A small error
in the meridional velocity is tolerable if that error is random: but if the error
15 a systemalic one resulting, say, from some latitudinal distribution of false
mass sources and sinks, there will be a systematic false generation of the
relative angular momentum of the global atmosphere. A small false residual
of the line integral of the pressure gradient force, which is an irrotational
vector, can drastically afTect the angular momentum and vorticity budgets.
A systematic small error in the vertical distribution of potential temperature
in the troposphere can cause a significant error in the gross static stability,
and thereby produce large errors in the motion field,

[tis important to note that the integral constraints are maintained regard-
less of the initial condition, because their maintenance is guaranteed by the
form of the finite-difference scheme. Difference schemes that do not have
such a formal guarantee may approximately maintain the integral constraints
with a particular set of initial conditions, but may not do so with another set
of initial conditions. Pccause the governing equations are nonlinear, we have
no way of knowing in advance the integral properties of the solutions
obtained with such schemes.

In numerical models of the atmosphere, the energy propagation in physical
space, as well as in spectral space, must be properly simulated. In particular,
the energy propagation by small-scale dispersive inertia-gravity waves, ex-
cited by a local breakdown of the quasi-geostrophic balance, is important
in restoring an approximately quasi-geostrophic flow by geostrophic adjust-
ment. Unless the geostrophic adjustment process can operate properly,
nothing is gained by maintaining integral constraints on quasi-geostrophic
motion. The finite-dificrence scheme of the model is designed to control the
small-scale inertia-gravity waves and the accompanying geostrophic adjust-
ment process.

Computational problems also arise in the simulation of the vertical prop-
agation of wave energy forced from below. The vertical differencing scheme
and the location of the levels in the stratosphere are designed to eliminate
any false computational internal reflections of the wave energy in a resting
isothermal atmosphere.

II. Finite Difference Schemes for Homogeneous Incompressible Flow
Our governing equations are the primitive equations. Under typical condi-

tions in the atmosphere (low Rossby and Froude numbers), these equations
govern two well-separable types of motion. One type is the high-frequency
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inertia-gravity wave, for which nonlinearity is usually small; the other is
low-frequency, quasi-geostrophic motion, for which nonlinearity is usually
dominant. Tt is known that the energy of locally excited inertia-gravity waves
disperses away into a wider space, leaving the slowly changing quasi-
geostrophic motion behind. This process is called “geostrophic adjustment.”

Consequently, there are two main computational problems in the simula-
tion of large-scale motions with the primitive equations, One computational
problem is the proper simulation of the geostrophic adjusiment. The other
is the simulation of the slowly changing quasi-geostrophic (and, therefore,
quasi-nondivergent) motion after it has been established by geostrophic
adjustment.

This section discusses finite-difference schemes to deal with both of these
computational problems for the case of homogencous incompressible flow,
The results of this section will be used in Section VI as a guide for the design
of the horizontal finite-difference scheme for the model.

A. DISTRIBUTION OF VARIABLES OVER THE Grip POINTS

Winninghoff (1968) found that the simulation of the geostrophic adjust-
ment process with a finite-difference scheme is highly dependent on the
manner in which variables are distributed over the grid points. The following
discussion is based on his work.

Consider the simplest fluid in which geostrophic adjustment can take
place—namely, an incompressible, homogeneous, nonviscous, hydrostatic,
rotating fluid with a flat bottom and a free top surface. The basic equations
which govern such a fluid are the so-called shallow water equations, given by

dujdt — fo + g@hjx) = 0, - (1)
dv/dt + fu + g(éh/cy) = 0, (2)
dhfdt + h(éuféx + dvfdy) = 0, (3)

where ¢ is time, x and y are the horizontal cartesian coordinates, v and v are
the velocity components in the x and y directions, respectively, i is the depth
of the fluid, f is a constant coriolis parameter, and g is gravity. The individual
time rate of change is defined by

d @ il d
Bl g o 5B 4
dr t+"ax+vﬁy )

=T
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In most of this stndy a linearized version of these equations is used, which
is obtained by replacing d/dt by é/ét, and by replacing h as the factor on
(Cu/dx + ¢v/cy) in Eq. (3) by H, the mean value of . This procedure is
Justified when the Rossby number is small and the horizontal scale is of the
order of the radius of deformation or less.

Consider the five distributions of the dependent variables h, ., and v,ona
square grid illustrated in Fig, 3. Each of the following five space finite-
difference schemes used with the lincarized equations is the simplest second-
order scheme for the correspondingly labeled distribution.

(A)

-—d—-

(E)
I+ r‘.v_." v
- Ih uy

/ el

b,

j-g _”*f-\l'-_L. u;v
t=y e

16, 3, Spatial distributions of the dependent variahles on a square grid,

Scheme A

ou/ct — fo + (g/d)Sh)* = 0, (5)
/et + fu + (g/d)(S,h) = 0, (6)
chfot + (H/d)[(§0)* + (5,0)] = 0; (7)
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Scheme B:

au/dt — fo + (g/d)(Sh) = 0, (8)
dvfét + fi + (¢/d)(Sh)* = 0, (9
dh/et + (Hd[(Gw)” + (5,0] = 0; (10)

Scheme C:
dufdt — fT + (g/d)(é.h) = 0, (11)
avfét 4 fu + (g/d)(s,h) = 0, (12)
Shjot + (H/d)[(8,1) + (8,0)] = 0; (13)

Scheme D:
oufot — [ + (g/d)(Shy = 0, (14)
du/ot + [ + (g/d)(Shy = 0; (15)
ah/ot + (H/d)[(8u)™ + (0,0)*] = 0; (16)

Scheme E:
dufét — fu + (g/d*)(d.h) = 0, (17)
dvfét + ju + (g/d*)(é,h) = 0, (18)
dhjat + (H/d*)[(S) + (6,0)] = 0; (19)

where we define

(5xf1)u = Oiyay2, ) — %i-142, )0 (20)
(@) = S04 /2.5 + %i-1s2, i) (21)

and where i and j are the indices of the grid points in the x and y directions,
respectively. The symbols (d,%),; and (&");; are defined in a similar manner,
but with respect to the y direction, and

@) = @) (22)
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For Schemes A through D, d is the grid size shown in Fig. 3. For Scheme E,
d* equals \/2d; with this choice Scheme E will have the same number of grid
points as the other schemes in a given two-dimensional domain.

In this study, all analyses with the linearized cquations leave the time-
change terms in differential form. If an explicit scheme is to be used for the
time differencing, the time interval must be chosen to satisfy the Courant—
Friedrich-Lewy type condition for linear computational stability of the
wave with the largest possible phase speed, which for the primitive equations
of atmospheric motion is the Lamb wave. A time interval so chosen is
adequately small for all other waves, including internal gravity waves, and
the time discretization error can be ignored in the first approximation,

Consider, first, the following one-dimensional linear equations:

cufdt — fv + y(eh/dx) = 0, (23)
dvfét + fu =0, (24)
dhjor + H(du/éx) = 0. (25)

Eliminating v and h yields
a*ufor* + f*u — gH(@*u/ox?) = 0, (26)

If the solution is assumed proportional to exp[i(kx — v)], then the angular
frequency v for the inertia-gravity waves is given by

(vN? =1 + gHK/)?, (27)

where k& is the wave number in the x direction. The frequency of inertia-
aravity waves is a monotonically increasing function of the wave number k
unless the radius of deformation 4 defined by \/gH/f, is zero. The group
velocity dv/ck is not zero unless 4 == 0; this nonzero group velocity is very
important for the geostrophic adjustment process.

The effect of the space discretization error on the frequency can now be
examined. The space distributions of the dependent variables in this one-
dimensional case for Schemes A through D are shown in Fig. 4; Scheme E
is not shown, since it is equivalent to Scheme A, but with a smaller grid
size. For Schemes A through D the following frequencies are obtained:

Scheme A:

(V)P = 1 + (3/d)? sin?® (kd), (28)
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Scheme B:

(f)? =1+ d(i/d)? sin? (kd/2), (29)
Scheme C:

(v/f)? = cos® (kd/2) + 4(2/d)? sin® (kd/2), ' (30)
Scheme D:

(v/f)? = cos? (kd/2) + (A/d)? sin? (kd). (31)

In all cases, the nondimensional frequency v/f depends on the two parameters
kel and 2/d.

(A) (B)
uy,h uyh uvh h wuy h uy h
S———r—————— r———— ——8
i-4 i i# -4 i {4/
q—d’—-r 4—d—o

(c) (D)
vh u wh u wh uh v uh v ugh
i i i i i+
—d— Rt

Fig. 4. Distributions of the dependent variables for a one-dimensional grid which cos-
respond to those for a square grid shown in Fig. 3.

With these frequencies for the inertia-gravity waves, the dispersion prop-
erties of each scheme can be examined. The wavelength of the shortest
resolvable wave is 2d; the corresponding wave number k,,,, is 7r/d. Therefore,
in examining Eqs. (28)—(31). it is sufficient to consider the range 0 < kd < =

Scheme A.  The frequency reaches its maximum at kd = /2, which means
that the group velocity at kd = 7/2 is zero. When inertia-gravity waves
at about this wave number are excited somewhere in the domain (by non-
linearity, heating, etc.), the wave energy stays there. In this scheme, a wive
with kd = = behaves like a pure inertia oscillation.

Scheme B. For nonzero 4 the frequency is monotonically increasing in
the range 0 < kd < .

Scheme C. The [requency is monotonically increasing for A/d > 3 and
monotonically decreasing for 2/d < 4. For j/d = 4, v? = f? and the group
velocity is zero for all k.

Scheme D. The frequency reaches a maximum at (2/d ) cos (kd) = 1.
Moreover, kd = x is a stationary wave,
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These results for the one-dimensional case show that Scheme B is the
most satisfactory. However, when A/d is sufliciently larger than 1/2, Scheme C
is as good as Scheme B. To illustrate, Fig, 5 shows a comparison of the
dependence of |v|/f on kd/x for the case i/d = 2.

af
/1
ik
=7 —————
2;_-\::-"':":' ______ _""-:-,:‘-.__-
ke
q““-.“"'-‘-h.
- -
il \_\ﬂ\ -
~
~
=
=
bl i : i i i Y}
04 0.6 o8 10
kd /7

FiG. 5. The dependence of the (nondimensional) frequency on the (nondimensional) wave
number for the shallow water equations for the case i/d = 2. Solid line corresponds 1o the
differential case, given by Eq. (27); dashed lines represent the difference Schemes A-D, given
by Eqs. (28)=(31).

Cahn (1945) gave the selution of an initial value problem for which
Egs. (23)-(25) are the governing equations. At the initial time, he let h =
constant, ¥ = 0, v = V; in the domain from x = —atox =a and v = 0
outside of this domain.

A form of the solution u(x, ) for these same initial conditions, suitable
for use in a comparison of the differential and difference formulations, is
obtained by first expressing u(x, 1) in Fourier integral form:

u(x, t) = 2i Re [--.-: e® ek, 1) dk, (32)
T o = o

where

Wik, 1) = f_"‘w e ®u(x, 1) d, (33)
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and Kk is the wave number in the x direction. The function w*(k, t) then
satisfies the following equation

a2u*(k, 1)

aZ

which has the general solution

u*(k, t) = A(k) cos (vt) + B(k) sin (ve),

where

To determine A(k), Egs. (35) and (33) are applied at t = 0 to give
A(k) = u*(k, 0) = jf:. e~ ikxy(x, 0) dx = 0.

Moreover, Eqs. (35) and (33) give

au*(
3

and

iu*(k, B

v2

at

Applying Egs. (38) and (39) at 1 = 0 gives an expression for B(k),

- 1(280)

l

v

o ile au(‘..x, 1) m

= f3(1 + A%3).

o
]

+ (2 + KrgHu*(k, 1) = 0,

2 = y[ — A(k) sin (vt) + B(k) cos (vt )]

From the initial conditions and Eq. (23), we have

. AT T T T AR T e

Ve

Ju(x, L) 3
5 ol

Ju(x, 0

eﬂik:(

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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Therefore, from Eq. (40),

x=a

. I a —ikx o _fVoe_””‘
B(k) = ; I_u e~ f Vo dx = =

= Ei " gin (ak). (42)

oy

x==a

Finally, Eq. (32) gives, with Eqs. (35) and (42), the desired solution

_ faV, o sin (ak) sin (vt)
u(x,0) = = Re 5= = e, (43)
or
e i s ik
e ) = frtloj- sin (ak) sin (vi) —— (44)
n J-=  ak v

Expressions for h were obtained using Eq. (44) with the equation of
continuity (25) in the differential case and with the finite-difference analogs
of the equation of continuity for each of the Schemes A-D. In the differential
case, v was given by Eq. (36), while with finite-difference Schemes A-D the
frequency v was given instead by Eqgs. (28)~(31), respectively.* The integral
in these expressions for /i was evaluated numerically using Simpson’s rule
with 600 intervals in k from 0 to n/a. The solutions for h were calculated,
with f = 107* sec™", for constant x for values of r up to 40 hr at 15-min
intervals, and for constant ¢ over a range of x.

Some results of these calculations, with a/d = 1 and 2/d = 2, are shown
in Figs. 6 and 7. Figure 6 shows the rime variation of h at x = a for the
differential case, which approximates the solution obtained by Cahn, and
for each of the difference schemes. Figure 7 gives the space variation of h
in the differential case and for cach of the schemes at t = 80 hr. As expected,
Schemes B and C simulate the geostrophic adjustment better than the
other schemes.

However, in the two-dimensional case there is a difficulty with Scheme B.
Figure 8§ shows |v|/f for each of Schemes A through E, as a function of kd/=
and ld/n, where k and | are the wave numbers in the x and y directions;
again A/d = 2. For comparison, |v|/f for the differential case is shown in
Fig. 9. The chain lines in Fig. 8 show the maximum \-|;ff for each of a range

‘Nate added in proof. Professor Arthur L. Schoenstadt, Department of Mathematics, United
States Naval Postgradunte School, Monterey, has pointed out in a personal communication
that f in Eq. (44) must also be modified for Schemes C and D, Figures 6 and 7 are based on
his corrected cxpressions,
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A=D. The thin vertical lipe at x/d = 39 indicates the theoretical limit of influence.

Fii. 6. Time variation of the (nondimensional) height perturbation at x = a for the initial
value problem posed by Cahn (1945): comparison of results for the differential case and for
difference Schemes A-D.

Fi6. 7. The spatial variation of the (nondimensional) height perturbation at r = %0 hours
for the same initial value problem: comparison of results for the differential case and for Schemes

L S
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FiG. 8. Contours of the (nondimensional) frequency |v|/f for Schemes A—E, as a function
of the (nondimensianal) horizontal wave numbers for the shallow witer equations, for fixed

4 = 2. Chain lines show the position of maximum values of the function for a range of the
ratio Ik,
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Fic. 9. Contours of the (nondimensional) frequency as a function of the (nondimensional)
harizontal wave numbers for the dilferential shallow water equation for A/d = 2, presented
for comparison with Fig. 8.

i

10

of values of the ratio I/k. Note that there is no such maximum for Scheme C
or the differential case.

In conclusion, the simulation of geostrophic adjustment is best with
Scheme C, except for abnormal situations in which 2/d is less than or close
to 1.

B. Two-DIMENSIONAL NONDIVERGENT FLOW

The next consideration must be the simulation of the slowly changing
quasi-geostrophic (and, therefore, quasi-nondivergent) motion after it is
established by the geostrophic adjustment process.

Consider, first, a flow which is purely horizontal and nondivergent,
governed by the vorticity equation

aLjét + vVl =0, (45)

where

v=kxVy (=k-Vxv=V, (46)
and y is the stream function, V is the two-dimensional del operator, and
k is the unit vector normal to the plane of motion. Equation (45) can also be

wrillen as

afor = J(& W), (47)

Wi S ARl L, e e S BT it i
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where J is the Jacobian operator, defined by
JW ) = (6L/ax)(p/ey) — (BL/ey)p/)ix). (48)

There are the following integral constraints, among others, on the
Jacobian:

JEA) =0, (49)
I v) =0, (30)
WG ) = 0, (51)

where the bar denotes the average over the domain, along the boundary
of which i/ is constant. From these integral constraints it is seen that the mean
vorticity £, the enstrophy (one half of the mean square vorticity) 4%, and the
mean kinetic energy 4(Vi/)? are conserved with time, Conservation of these
quantities during the advection process poses important constraints on the
statistical properties of two-dimensional incompressible flow, as pointed out
by Fjgrtoft (1953). In particular, the average wave number k defined by

k= (VIR /(V)R, (52)

is conserved with time, so that no systematic cascade of energy into shorter
Waves ¢an oceur.

If the statistical properties are to be simulated numerically, a finite-
difference scheme must be used that approximately conserves these quadratic
quantities. Avoiding computational instability in the nonlinear schse is
necessary but not sufficient for this purpose, Two examples of stable schemes
that have a false energy cascade into shorter waves will be shown later.

It should be noted that if Eq. (47) is applied to a one-dimensional problem,
the nonlinearity will be lost. Therefore, the tests of a finite-difference scheme
for incompressible flow must be made with two-dimensional problems.

The finite-difference approximation for Eq. (47) may be written in a
relatively general form as

G = G = Ay ym, (53)

where " = (W 2y)" is a finite-difference approximation of { = V3 at
the grid point x = id, y = jd, and at time t = n At. Here, d is the grid size,
Atis the time interval, and W ;;* and J;; are finite difference approximations
for the operators V2 and J at the grid point x = id, ¥ = jd. Hereafter, the
subscripts 1, j will be omitted unless they are necessary for clarity.
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There are a number of time-difference schemes corresponding to different
end 12

choices of * and *. For example, (* may be equal to { , a5 in the
leapfrog scheme: or £* may be a linear combination of " and ("' such as

C* s %[C" it ‘:-|+I)‘ [54’

which is an implicit scheme of the Crank-Nicholson type. "As another
example, {* may be a provisional value of ¢, predicted by

OF = SC" + o ALIRC" W, (55)

where S and  may be equal to 1, as in the Matsuno scheme, or $ may be a
smoothing operator and = = 3, as in the two-step Lax-Wendroll scheme.
Here J* is not necessarily the same as J.

The change of enstrophy is abtained from Eq. (53), as

@Y = (P = ML + TV2IIE* v*) (56)

where the bar denotes an average over all grid points in the domain con-
sidered. Equation (56) can be rewritten as

TP = (0] = ([ + O3] = M = )
+ AITFICE, ). (57)

To conserve enstrophy, £* and the form of J must be chosen in such a way
that the right-hand side of Eq. (57) vanishes. The first term on the right
vanishes if ¢* is chosen as ({"*' + {")/2. The second term vanishés if the
finite-difference Jacobian J maintains the integral constraint given by Eq. (50)
for the differential Jacobian J. Similarly, it can be shown that a properly
defined kinetic energy is conserved if i* is chosen as (pt Tt ")2 and
J maintains the integral constraint given by Eq. (51).

Consider the grid shown in Fig. 10. There are three basic second-order,
finite-diflcrence Jacobians:

‘J]I o AKC A,lﬁ’ = Ayc A,
\!]1 = A)‘(Ilb A\tg) = A.!(!” A}'C)'» (58]
Jy = AL AW — AL AW),

1l
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Ly Ey Ly

Je i | sl

P=l |j+1

g Ely Ly

i-l | il] | ]
Ly L Cly
i-1 j-1 - i el

Fig. 10. Grid showing indexing for {, i points used in the finite-difference Jacobian schemes
of Eq. (58).

where (Ayz) is defined by (2., ; — 22y, ;)/2d. and A 2 is defined similarly
with respect to y. It was shown by Arakawa (1966) that the Jacobian J
given by

J=ady +3d; + B3, a+yp+pf=1, (59)

conserves mean square vorticity il o = f and conserves energy if & = 7.
Examples of Jacobians which have the form of (59) are

Jy = '}T(‘jl + J),
Js = Jz'(J]z =+ “E;’O)t
‘Bu .%(\jl =+ .ﬂl),
Jy =4, + I, + Jy).

(60)

I

A schematic representation of the { and 1 points used in constructing the
seven finite-difference Jacobians introduced above is given in Fig. 11.

J; is the Jacobian proposed by Arakawa (1966) as conserving both
enstrophy and energy. J, and Jg conserve enstrophy, but not energy. J,
and J,; conserve energy, but not enstrophy. All five schemes mentioned thus
far are stable. J; does not conserve either quantity, and an analysis similar
to that by Phillips (1959), but with the implicit scheme (54), shows that it is
unstable. Js, also, does not conserve either quantity, but experience with
numerical tests shows that the instability is very weak, if it exists at all.
This is not surprising, since 2J5 = 3J, — J,; because J, is a quadratic-
conserving scheme the time rates of change of the mean quadratic quantitics
using [, for given ¢ and v, have opposite sign to the time rates of change
ol the mean quadratic quantities using J,.
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O={-POINT USED
X =y -POINT USED
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XE;
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ENERGY ENSTROPHY
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Jy
ENERGY 8 ENSTROPHY
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FiG. 11. Schematic representation of { and ¥ points used in constructing the finite-difference
Jacobians defined by Eqs. (58) and (60),

J is the best second-order scheme because of its formal guarantee for
maintaining the integral constraints on the quadratic quantities, J, is also
Just as accurate as any other second-order scheme. A further increase in
accuracy can be obtained by going to higher order schemes. The more
accurate fourth-order scheme that has the same integral constraints as J,
was also given by Arakawa (1966).

Numerical tests have been made with the above seven Jacobians. In
these tests, the initial condition was given by

Y= ¥ sin (ni/8)[cos (nj/8) + 0.1 cos (mj/4)], (61)

TR i b A et e R e B e e L R ———
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and At was chosen such that At/d?* = 0.7. The leapfrog scheme was used
instead of the implicit scheme. In order to eliminate the gradual separation
of the solutions at even and odd time steps that occurs in the leapfrog
scheme, a two-level scheme was inserted every 240 time steps. The simplest
five-point Laplacian was used. Figures 12 and 13 show the time change of
enstrophy and energy obtained with the seven Jacobians, The expected
conservation propertics are observed, even though the implicit scheme was
not used. The energy conserving schemes J, and J,; show considerable
increase of enstrophy. On the other hand, the enstrophy conserving schemes
J; and Jg approximately conserve energy in spite of the lack of a formal
guarantee. This is reasonable because the enstrophy is more sensitive to
shorter waves for which the truncation errors are large. J5 approximately
conserves both quantities, again in spite of the lack of formal guarantees.

1 1 L i
0 500 1000 1500 2000
TIME STEP

FiG. 12, Comparison of the time variation of the mean square vorticity (units arbitrary)
during a numerical integration with the seven finite-difference Jacobians under consideration.
(Arakawa, 1970). Reprinted with permission of the publisher American Mathematical Society
from STAM-AMS Procecdings. Copyright (<) 1970, Vol. 2, Fig. 5, p. 35.
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1 1 1 L
o] 500 1000 1500 2000

TIME STEP
Fig. 13. Comparison of the time variation of the kinetic energy during a numerical integra-
tion with the seven finite-difference Jacobians under consideration (Arakawa. 1970). Reprinted
with permission of the publisher American Mathematical Society from STAM-AMS Proceedings.
Copyright (€) 1970, Val. 2, Fig. 6, p. 36.

J; conserves both quantities, with only negligible errors arising from the
leapfrog scheme. Jg, like J,; and J5, maintains the property of the Jacobian
JE ) = —J(, ).

Figure 14 shows the spectral distribution of kinetic energy obtained by
the energy and enstrophy conserving scheme 1. and by the energy conserving
scheme Jj at the end of the calculations. The small arrow shows the wave
number for sin (ri/8) cos (nj/8), which contained almost all of the energy
at the initial time. Although the total energy was approximiiely conserved
with J3 there was a considerable spurious energy cascade into the high wave
numbers, whereas with J, more energy went into a lower wave number
than into the higher wave numbers, in agreement with the conservation of
the average wave number as given by Eq. (52).

Whether the increase of the enstrophy is important in the simulation of
large-scale atmospheric motion will depend on the viscosity used with the

Ty T A ST 1 T R B T Fs A4, T TG | e e ST o o g et i e oy S e S e ey
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Jo

{wave number)?

Js

.l[..l_nu_.h.:_lll.l.[l_d_._dld_l_“_l‘_L.l__hll_J_._.

(wave number)?

FiG. 14. A comparison of the spectral distribution of kinetic energy, obtained with [, and
L, after a numerical integration of 2400 time steps. Arrow shows the wave number that con-
tained most of the energy at the initial time.

complete equation. A relatively small amount of viscosity may be suflicient
to keep the enstrophy quasi-constant in time. However, the viscosity will
also remove energy, and as a result the average wave number, defined by
Eq. (52), will falsely increase with time,

In Section 1I it was pointed out that when a scheme that produces a
strong computational cascade is used, a decrease in grid size does not mean
an increase in overall accuracy as far as long-term numerical integrations
are concerned. Figure 15 shows such an example. With an identical initial
condition, experiments have been made using [y with three different grid
sizes. The nondimensional parameter "WAr/d* is kept the same for the three
experiments. A two-level scheme was inserted every 120 time steps Lo suppress
separation of the solution due to the leapfrog scheme. The figure shows a
more rapid increase of enstrophy with the smaller grid sizes. Since (he
kinetic energy is practically conserved in all three experiments, a larger
enstrophy means a smaller average scale of the motion, These results show
that the convergence of the scheme, in the nonlinear sense, must be seriously
questioned.,
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Fie. 15. A comparison of the time variation of mean square vorticity obtained by numerical

integrations using J; for three different grid sizes.

With the grid shown in Fig. 16, J, may be written as

0= 30T + 0,007}
(62)

[ 28]

1
0y ¥) = 52
Ll s (= 6,T) + 6,607
32‘13{ x° y'l!’Q }+()" x'lp )j"
xlf

Uty
yit v
B, %Qm
u Sylf—’x u Sy‘;’ X U Sy‘i’
' LY
yltZ v oylt v el
xy
i+1

i-1
Fi6. 16, Grid showing points of definition of the dependent variables and axes of definition
for mean and difference operators used in the differencing of the momentum advection terms.
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where .o and @* are defined as

(‘sxl’}fﬂfz.j =iy, Yy (63)
and

(E)ivrj2,5 = %’(qnl.j + & ;). (64)

The symbols é,« and & are defined in a similar manner, but with respect to
the y direction, and & = 7 The symbols 6., d,., @, and @ follow the
same definitions, but in the x" and ' directions and with the spacing ,/2d.
It can casily be shown that

5;-'1/ = W.’f - H:v rs_r"tb et _{W.\' + wx' [65)

Since it is the momentum equation and not the vorticity equation that is
used in the model, the next problem is to find a finite-difference scheme for
the advection term 0 the momentum equation. The guiding assumption
in our present approach is that a scheme that is inadequate for purely
nondivergent motion is almost certainly also inadequate for the quasi-
nondivergent molion typical of large-scale atmospheric motions. Thus the
first constraint on a finite-difference scheme for the momentum equation is
that it become equivalent to ¢/ét = J5(L. ) when the low is horizontal
and nondivergent,

The vorticity can be expressed as

Ly = (V)= .“?(ﬂ/_’*‘ ‘ '-‘Ji:ﬂ ~ ﬁf_’f;:_:;”f;u " bf_:f" Vis Vi —;”u— 1)

1
= d_'_’,'{'hi-l.J F Wiy, j W e -y — W) (66)

For the grid points shown in Fig. 16, u and ¢ are defined by

1l

gy E‘E:.'i’_)l J+1/2 .

(ls.\"fb).i +1/2,
"l'.jl' 112 = d U""UZ.J = e

d (67)

Then the vorticity given by Eq. (66) is

l':u = “/l’”[(ts.d’}.'; = (‘533"};;']‘ (68)
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and the vorticity equation may be written as
(@/a0[(0,0); — (dyu)i;] = (0,0 — dyu, ). (GY)
Here the symbol J is used for J,.
Consider J; ;. /2(u, 17%). From a property of the Jacobian, which is main-
tained by J-,
B g2t P2 = Jy a2, 7 + Jud), (70)
and
By, jo 12 7) = 3y o yau, 7 — Jud). (71)

Note that (i + Sud), j4y0 = (B — fud); j-y;2 = Yy for arbitrary i, j.
Using (70) and (71),

[‘5;-\5('6 ‘I}‘)]u‘ = J];'.j+ 1_(3(‘# !7‘-'3") - J]r.jr 12y, ,];r],
= J;(S,u, ). (72)

Similarly,
(6900, 7]y = Dy (6,0, ) (73)
Equations (72) and (73) are analogs, respectively, of
@/o0) I, yr) = J(@u/ey, W), (@/0x)J(v, ) = J(Cv/dx, ).
From Eqgs. (72), (73), and (68),

[‘3:"0{")' @I)]u - [6,?"!](“' ‘l;y)]” = ‘u‘f(éxu - 6)-'“‘ W)
= dd],-j(i:, ). (74)

The conclusion is that

Ju, ¥*)  for —v+Vuat the u points
J(w, %) for —v - Veat the v points

are consistent with

JE W) for —v -V at the J points.
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Equations (62) and (65), with { replaced by u and ¥ by ", give the forin
T 2 PAY=X FXP=)
-vj(:z,pfr):i-i[ = 0T + 65 )]
e 6? [5,-{(5:&;"" i m_.-;c)ﬁ;'} + ‘Syl_{(mr.\' -+ W)-xlﬂr'}]' (75)

Define v* and ¢* by

u* = —.(],’d)wx, v* = (1/d)d . (76)

Then (75), which is the divergence of r-momentum transport, becomes
[3’ _)E\\—x 48 (_-‘Fx,\-\ ] + Ret? [5 (vﬂ'"‘_—-kj x) s 5 (_l:—-i'elnl"}]_ (77)
Similarly, the divergence of v-momentum transport becomes

2 —. . o .
17 [ + 8,57 w)] + Elfi [6.(5%F F 00%) + 8,(FF — w2 (78)

In Fig. 16, the distribution of 1 and v is staggered as in Schemes C and D
of the last subsection. Results of the last subsection indicate, however, that
Scheme C is definitely better than Scheme D in view of the geostrophic
adjustment and therefore the x points rather than the o points in Fig. 16
carry pressure and temperature,

C. FiNiTe DIFFERENCE SCHEME FOR THE NONLINEAR
SHALLOW WATER EQUATIONS

For use with the advection term of the momentum equations in the
general circulation model, the finite-difference expressions (77) and (78) de-
rived for the case of horizontal nondivergent low must be generalized to
the case of divergent flow. In this subsection, the principles guiding such a
generalization will be illustrated through the derivation of a finite-difference
scheme suitable for integration of the nonlinear shallow water equations on
asquare grid with the variables staggered as in the C scheme. The analogous
development for the momentum equations governing three-dimensional mo-
tion in curvilinear coordinates is presented in Section VI.
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The governing differential equations are Egs. (1)-(3), restated below for
convenicnce:

cu du du ch

'E)_t+“ﬁ+ ué—}j-jv4-95;=0, < (79)
du dv dv ah

paifed etk i i =0

a0 + U + v 3 fu+yg i (80)

éh  é(hu)  alhy)
5tE Ty "

Combining Eq. (81) with Egs. (79) and (80) gives another useful form of
the momentuin equations,

A(uhy  d(huw)  dlhou) ch
.y i + iy fhe + gh == 0, (82)
d(vh)  é(huw)  d(hvr) . ch
owh) | olmv) . P o fhu -+ gh—= 0.
g Ty TG . (63

Multiplying Eq. (79) by v and Eq. (80) by v and combining the resulls
with Eq. (81) yields the equations for the time change of kinetic energy,

ohubid] | elhele’]

d " . ch
E(Iiiu ) + = jll'um + ghua =0, !84)

ox dy
3 a[huto*] | a[hvie?] ch .
LATTN fl ld ul huw iy ] g
(3:( lv?) + > + 5y + fhuv + ghv 3 0 (83)

Multiplying Eq. (81) by gh gives the equation for the change of potential

energy,
a (gh? é a -
T (—2-) + gh [a—x-(hu) + F’)}Uu)] =0, (86)

or

é (gh® il i dh éh
LYY L o (gh? ey o) — gl e — | = 0. 87
6‘!(2) i—ax(glu}Jrey[gh v) gll:uex+u6y] (87)
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The coriolis force of course makes no contribution to the change of
total kinetic energy. Also, the summation of the last terms in Egs. (84), (85),
and (87) is zero. These points, which lead to conservation of the total energy,
are utilized in the construction of the finite-difference scheme.

The diflerencing for the continuity equation is chosen on the basis of
simplicity. At k points, Eq. (81) can be represented as

. 1 "
A hi ; + M [Fivrga,y — Fi- 12,5 + Gije12 = Gi j-12] = 0, (88)

where the mass fluxes

Fivypa,; = d[h™u],, 1/2,j (89)
Gijri2 = dl__ﬁyl"]i.ﬁuz
are defined at u and v points, respectively. The time change terms are left
in differential form throughout this section.
The first requirement on the finite-difference scheme is that it conserve
total kinetic energy during inertial processes. To this end, considering first
the 1 momentum equation (82), the terms

3

¢ il d
E(uh) + = {(huu) + 5)-, (hvn)

can be represented by the following form, which automatically guarantees
proper conservation of integrated zonal momentum:

4 I
;:_.'I‘(Hhﬂ:l)i.j & (;;f [%(C%"ﬂn-t) g (Sr({’()lu)ﬁy)

+ S (F ) + 5 (Fw)], (90)

where [{* and #%, g, F©_ G0 are a5 yet undefined (see Fig. 17 for the
points of definition of the new mass flux symbols). For simplicity, the con-
vention of using the indices (i, j) for the variable whose prognostic equation
is under consideration is followed. If these new terms are chosen in such a
way that they satisfy

) -
;,}'- ”,[:'} {- Ez [()_‘:..'F("] -+ (S,.'J}‘"“ + 61-..5“"‘_‘") -} 5}"(’;’(")Jf.l = 0, (91)
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| u
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Fia. 17. Grid showing points of definition of fluxes introduced in Eq. (90) in the differencing
of the advection terms of the u-momentum equation.

then by subtracting Eq. (91) multiplied by u;;, (90) can be shown equivalent to

du -
H{S -—d i [f"" S G o’
ot

+ eﬁ‘w e + 96, 92)

Multiplying (92) by «;; and combining with Eq. (91) multiplied by b, a
finite-difference analog to the first three terms of Eq. (84) is obtained:

é 4 1 il
3 (H"ht), + 502 [F 1 2 i i1, = F12 02, -1,

i(1) u)
+ Gt W — Gyl oyl
(1) Z (u)
+ Fn g1t vt gvr = Fy2, - yathi-1, -1t
el _ &
+ Gz, g2, iy, e '3"'.'+:r2.1--1;z“r+1.1—1“5.13-

In (93), each of the kinetic energy flux terms reappears at a neighboring
point but with the opposite sign. Thus, regardless of the subsequent definition
of HY W @ Z and 4" the choice of form (90) and the constraint (91)
together ensure that the total kinetic energy over the domain does not falsely
increase or decrease,

The additional reguirement on the difference scheme is that enstrophy be
conserved during advection by the nondivergent part of the horizontal
velocity, This will be guaranteed if the finite-difference scheme for the mo-
mentum advection terms reduces to (77) for the case of nondivergent flow,

R S P R TTLEAR
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If new symbols, based on Eq. (89), are defined at h'points by
F*¥ = F* G* = (7, (94)

it is seen that in the case of nondivergent motion, F* and G* are equivalent,
respectively, to (a constant) hd times «* and v* given by Eq. (76). The flux
terms in (90) then reduce to (77) for this case if ‘
FMin. ;= €F™im.3
iﬁ’?’.‘}+ 12 = %(G*)w)[,j-l- 1/2
Fajen = HGF + F¥), 4102
':;"f}u—'uz,,uuz - %(G_ —F ".]I—Ijz.j-b-l.'l' (93)

It should be noted that this generalization of (77) is not unique.
The definition of H™ is now determined by the requirement (91). Making
use of Egs. (95) and (94), Eq. (91) can be written in the form

2

11 i
;.r H{" -+ 73 [(6.F 4+ 6,G)s 2 jo1 + (6F + 6,G) - 172, 541

+ (BF + 8,Giwry, jr + 0:F + 8,G)ic 2, j-1
+" 2(().‘11: + ‘SJ‘G)l-i-lfz.j + 2(6“;!:‘ -l' -(SJ.G)"_ l.fI.J] = Oo (96)

From the continuity equation (88) it is then clear that Eq. (96) is satisfied
only il

HY, = (), ;. (97)

An analogous development for the first terms of the v momentum equation
(83) yields the form '
a (). I S { gEl)ex f7A LY
;’;"[- [I,{ L L—I j - d'z [0“.(.}' U ) "I‘ 6‘\‘( i/ Aty ]

+ S FTE) + (G (98)

which guarantees both conservation of kinetic energy, integrated over the
domain, under inertial processes and conservation of enstrophy for the case
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of nondivergent flow with the definitions

"'q;lil?l,'z.j - %”’T’F”)br 172, f
(5?34 12 = .’;'(G“x]f.ﬂ 1/2
= 3 o T " AT ]
3"?3”}..;“!3 = EIS‘((-'* + & “)Huz.ﬁlgz
fg{@ 12, f+1j2 = s(G¥ = Fw)r—uz.ﬁ 1/2 (99)
and
H{_”j: (71'“’],-.}-. (100)
The coriolis term — fhy in Eq. (82) is represented at the « point (i, j) by

— fihe), (101)

and the term + fhu in Eq. (83) at the v point (i + 1/2, j + 1/2) is represented
by

(THZ" Yk 1), 4 172+ (102)

Here the coriolis parameter f; is defined at latitudes where h is carried,

The rate of increase in the kinetic ensrgy of the 1 component at the point
(4, J) due to the coriolis force is obtained by multiplying (101) by w;, ;. The
contribution to this increase from the v point (i + 1/2, j + 1/2) involves the
portion

'_ij}hﬁ 12, Y%+ 12, j+ 12t (103)

Similarly, the rate of increase in the kinetic energy of the v component at the
point (i + 1/2, j + .1/2) is given by (102) times v, 1,2, 4+ 12 and the fraction
due to the « point (i, j) involves the term

+-‘tfjh;-u- 12, W, Qi a2, e 1g2- (104)

Note that (103) and (104) exactly cancel so that total kinetic energy is not
influenced by these terms.

Finally, the pressure gradient terms, which convert potential into kinetic
energy, can be examined. At the v point (i, j), the term gh(¢h/dx) in Eq. (82)
is represented as

g[ﬁx 5.wh]u; (105)
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and at the ¢ point (i -+ 1/2, j + 1/2), gh(3h/cy) in Eq. (83) is represented as

!}[ﬁr fsyh}n 12, j41/2° (106)

An argument completely analogous to that utilized in the discussion of the
coriolis terms can be advanced to show that this finite-difference form of the
pressure gradient terms does not cause any false production of total energy.

IV. Basic Governing Equations
A. THE VERTICAL COORDINATE

The vertical coordinate used in the model is a combination of the ¢
coordinate (Phillips, 1957) for the lower part of the atmosphere, and the
pressure coordinate for the upper part of the atmosphere.

Let p be the pressure: py, the pressure at the top of the model atmosphere,
taken as a constant; and pe, the pressure at the earth’s surface, which varies
with the horizontal coordinates and time. A constant pressure p, 1s chosen
which lies between p; and a lower bound of pg, and the vertical coordinate
g is then defined by

o= = (107)
where
H={RUEP|FPT ror pT"":"p{Pll (108}
.= ps— P for pp<p<ps

Note that 7, is constant, whereas 7, is a function of the horizontal co-
ordinates and time. It follows from Eqgs. (107) and (108) that

¢=—1 for p=pg
g=10 for p=p, (109)
g =1 for p = ps.

Figure 18 shows surfaces of constant ¢ in a vertical cross section. The
lower boundary, which follows the earth’s topography, is a coordinate
surface; and the isobaric surfaces for pr < p < p; are coordinate surfaces,
When p; = py. this vertical coordinate system reduces to the ¢ coordinate
of carlier versions of the UCLA General Circulation Model (Mintz, 1965,
1968: Arakawa, 1972); and when p, = py = 0, il reduces to the original
o coordinate of Phillips (1957).

LEAES
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P, g=-|
m, — 0= CONST, & P CONST—
I Py : =0
FRCONBT.
p . __E
-
ps-, iy o=

FiG. 18. Definition of the layers of the model in terms of the vertical & coordinate.

Since 7 is either 7y, which is a constant, or m, which is a function only
of the horizontal coordinates and time, (107) gives

op = n oa, (110)
where & denotes the differential under constant horizontal coordinates and
time. 7 da/g is the mass per unit horizontal area in a layer of depth da,

where g is the acceleration of gravity.
From Eg. (107), the individual time derivative of pressure is given by

o = dp/dt = né + o[(@r/dt) + v+ Va), (111)

where ¢ = do/dt, v is the horizontal velocity, and V is the horizontal gradient
operator. Note that dr/dt + vV = 0 for ¢ < 0 and, therefore,

w = 16 for o <0 (112)

At the top of the model atmosphere, Eq. (112) gives (n6),= - = (@),=p,.
It is assumed that (w),-,, = 0, and thus

(R)y= -1 = 0. (113)

The earth’s surface is a material surface as well as a coordinate surface.
The kinematical boundary condition there is simply ¢ = 0, so that

(n6),-, = 0. (114)
Finally, the continuity of @ at ¢ = 0 requires
(m&)al-'o- = ('J’l’d’),:u.{. = (1]5}

where oy = ()=,

ey S A S P T S T LA M T My
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B. THE EQUATION OF STATE

The model atmosphere is assumed to be a perfect gas, so that
o = RT/p, (116)

where 2 is the specific volume, T'is the temperature, and R is the gas constant.
For simplicity, the difference of the gas constant from that of dry air (which
determines the difference between the virtual temperature and the tempera-
ture) is neglected except in the parameterizations of subgrid scale turbulence
and cumulus convection.

C. THE HyDprOSTATIC EQUATION
-With Eq. (110), the hydrostatic equation 6@ = — x5p becomes
o = —7a do, (117)
where @ is the geopotential gz and z is height.

The following alternate forms of the hydrostatic equation can be derived
from Eq. (117) and will be useful:

5(Dg) = —(noo — D) 8, (118)
o = —RT &6 In p, (119)
= —¢,0 8(p/po)* (120)
_dIng [pY
= Lp(f(l-/"_{]_)‘j(;}n)’ (12[)
3c, T + @) = (;f—) c, 80, (122)
0

where ¢, is the specific heat at constant pressure, x = R/e,, and 0 is the
potential temperature, T(py/p)*, where p, is a standard pressure.
D. Tue EQuaTion 0OF CONTINUITY

In the pressure coordinate system. the equation of continuity takes
the form

Vo v o (ém/ip) = 0. (123)
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Gradients in the pressure and g-coordinate systems are related by

YV, =V, + (V,0)(&/do), (124)

P
Using the gradient V,, of Eq. (107), namely
Vo + aVr =0,
Eq. (124) becoines
V,=V, — o/n Vn d/ée. (125)

Note that V, =V, for ¢ < 0, because 7 is constant for ¢ < 0,
Using Eq. (125) for V,, « v and using Eqs. (111) and (110) for cw/cp, Eq.
(123) gives

and finally
(@m/dt) + V, - (nv) + (8/d0)(nd) = 0. (126)

The equation of continuity (126) is used to compute both ng and ér, /6t =
dps/at. Integrating Eq. (126) with respect to o, from —1 to g, and using
Eq. (113) gives

e 0
f_l —c,}—fda + g = —ffl V- (v) do. (127)

Since dn/dt = ény/dt = 0 for ¢ < 0 and dn/ét = éng /ot for ¢ > 0, which
is constant in g,

no =~ [" V-@)ds for o<, (128)

d o
a% + no = — S Vi(avda  for o> 0. (129)

From Eq. (129) applied at ¢ = 1, where ng = 0,

aEL - aps

1
e e _f_l V : (nv) do. (130)

Substituting én, /ét from Eq. (130) into Eq. (129) gives né for & > 0.
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E. Tue INpDIvipuaL TiME DERIVATIVE AND ITs FLUX ForMm

With the ¢ coordinate, the individual time derivative d/dt is expressed as
didt = (2/), + vV, + &(d/éa). (131)

With A an arbitrary scalar, (131) gives
dAjdr = [(3/3t), + v+ V,]4 + ¢(8/30)A, (132)

which is the advective form for dA/dt. Use of the continuity equation (126)
then gives the {lux form

n(dA/dt) = (8/dn),(nA) + V, - (mvA) + (6/da)nd A). (133)

F. Tue MoMenTUM EQUATION

The pressure gradient force is given by —V, . Applying (125) to @ gives
V,0 = V,® — (g/n) Vr(dD/da), (134)

which with substitution from Eq. (117) becomes
V,® = V,® + ox Vr. (135)
Forg < 0, V,® = V,®. For ¢ > 0, the pressure gradient force consists
of two terms, as shown by Eq. (135). Where the slope of the earth’s surface
is steep, the individual terms are large but are approximately in opposite
directions. In the particular case where V, & = 0, complete compensation

oceurs,
The horizontal component of the equation of motion becomes

dvidt + [k x v + V, D + o6 Vi = F, (136)

where F is the horizontal frictional force and dv/dt is the horizontal accel-
eration, Nole that

(V0 + gx Va) = V,(n®) + (erz — O) Vr, (137)
which gives us another form of the equation of motion

nldv/dt + fk % v) + V,(zD) + (onx — D) Va = xF, (138)
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or, using Eq. (118) in Eq. (138),

n(dv/dt) + fk % nv 4+ V, (2D) — (0(De)/ca) Vi = aF. (139)

G. Tue TuerMopyNaMic ENERGY EQUATION

The specific entropy is ¢, In 0 = const, and the first law of thermo-
dynamics is

dfdt ¢, In 0 = Q/T, (140)

where Q is the heating rate per unit mass. The flux form which 'corrcsponds
to Eq. (140) is

a( L In0) 4 V- (nve InU}+i e, In f) = 9 (141)
a1 T e, e (mocyIn 0) = = T

The first law of thermodynamics can also be written as
c,(dT/dt) = vz + O, (142)
where ¢,7 is the specific enthalpy and

o = dp/dt = né + a(¢/dt + v+ V),

as given by (111). The corresponding flux form is

é e &y
% (e, T) + V, « (rve,T) + a’-(nm',,TJ = n(wx + Q). (143)

H. Tue WaTiER Varor aND OzoNE CoNTINUITY EQUATIONS

Let ¢ be the mixing ratio of either water vapor or ozone. The continuity
equation for either variable is expressed by

dq/dt = 8, (144)
where S is the source term. The corresponding flux form is

(C/et)ng) + V, - (avg) + (¢/do)lnéq) = nS. (145)
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V. The Vertical Difference Scheme of the Model

A. SOME INTEGRAL PROPERTIES OF THE ADIABATIC FRICTIONLESS
ATMOSPHERE

The lollowing integral properties of the governing equations, or of selected
terms in these equations. are useful in designing the vertical finite difference
scheme.

1. Mass Conservatism

Equation (130) gives

c"ps_ T
£ = v L: v do. (146)

The area integral of Eq. (146) over the entire globe makes the divergence
term vanish, which means that the total mass of the model atmosphere is

conserved.

2. Vertically Integrated Horizontal Pressure Gradient Farce

With the p coordinate, the horizontal pressure gradient force per unit
mass is —V . Vertical integration with respect to mass gives

1 Ps -l s
—— ] = e —_—
5 fm V.0 dp = [V Lr O dp — g Vps:|

1 .
e [V J;:’: (D — dg)dp + (ps — py) V(bs} (147)

I

where g = gz, and zq is the height of the earth’s surface. The first term in
brackets in Eq. (147) is a gradient vector, and a line integral of its tangential
component taken along an arbitrary closed curve on the sphere always
vanishes. Only the second term contributes to such a line integral and
therefore only when there is a nonhorizontal boundary surface can there
be any acceleration of the circulation (any “spin-up” or “spin down"” of the
vertically integrated atmosphere) by the pressure gradient force.

With the ¢ coordinate, the horizontal pressure gradient force per unit
da is given by

~1/g{V,(n®) — [&(Va)/da] Va) (148)
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[see Eq. (139)]. Vertical integration with respect to o gives
T d(ha) 1 1
Ty f-l [Vd(n@ —— Vﬂ} do = 3 [V f_. nd do — g Vrc], (149)

where the fact that Vi = 0 for ¢ < 0 has been used. From Egs. (110) and
(108) it is easy to show that Eq. (149) is equivalent (o Eq. (147).

3. Conservation of Total Energy
The equation of motion (136) readily gives the kinetic energy equation
n(d/d)yiv = —zv- (V,® + 62 Vr) + nv- F. (150)

The left-hand side of Eq. (150) can be written in the flux form given by Eq.
(133) with 4 = 3+ as lollows

il d ,
(,— (m3v?) + V, - (nviv?) + — (nodv?)
ét/, do
= —nv:[V,d + oo Vz] + 7v + F. (151)
The rate of kinetic energy generation by the pressure gradient force per
unit da/g is thus —zv - [V,d + ou Vx]. Using Egs. (126), (117), (118), and

(111), this becomes

=y [V, + 00 V] = —V, - (mvd) + OV, - (o) — onav - Vi

¢ .. én
==V, (nvd) - @ [EE (rd) + ;3*:{| —onav-Vr
I .o an .
= -V, (nvd) -%(mm) + g o (Il-gt——— anayVr

: a i
= -V, (nvd) - 3= (6 ®) + (onx — D) &_7:

—n|ao|—+Y'Vr |+ 76 |a
at

0 A
—-V, (nvdh) — = (ndd’ + g c:_rr) — e,
do ot

]

(152)

Ol b L R e i B aad e e i B e e —
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so that
i, an "

Vi LGVR) = [(U = + Jm‘) (D:l = v+ [V, + ox Va] — nowa (153)
ca 0

The first law of thermodynamics as given by Eq. (143) is

& ;. i T
A (mc, T) + Vg (mve,T) + aglnm:p?) nQ + mea. (154)

Taking the sum of Eqgs. (151), (153), and (154), and integrating with respect
to g lrom —1 to 1 gives

13

L'f; [:Ps‘hs iy J-_ll n(dv? &, T) rft:r] + vV f_ll av(iv? + ¢, T + @) do
= [ xv-F + Q) do. (155)
Here én/dt = 0 at ¢ = — 1, én/ct = dps/Ct at ¢ = 1, ¢dg/dt = 0 and Eqgs.

(113) and (114) have been used. The area integral of Eq. (155) over the entire
globe makes the contribution of the divergence term vanish, and total energy
is thus conserved when F = Oand Q = Q.

4. Conservation of Total Potential Enthalpy and Total Entropy

Under adiabatic processes the potential temperature 0 and therefore any
function of the potential temperature f(!) are conserved with respect to an
air parcel. The Mux form which corresponds to Jdf(0)/dr = 0 is given by
Eq. (133), with A replaced by f(0); that is,

@/, [7f (0] + Y, - [7yf(0)) + (&/¢e)[naf(0)] = 0. (156)

Integrating Eq. (156) with respect to ¢ from — [ to 1 gives
d m i ,
e J'_l wf(0) do + V - J'_l 2v/(0) dg = 0, (157)

where /(1) can be any arbitrary function of 0 whose global integral with
respect to mass exists, Because the divergence term in Eq. (157) vanishes
when the area integral is taken over the entire globe, the global integral
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of f(0) with respect to mass is conserved under adiabatic processes. Choosing
J0) = ¢,0 gives conservation of the total potential enthalpy, and choosing
f(0) = ¢, In 0 -+ const gives conservation of the total entropy.

The conservation of these quantities can be interpreted from a diflerent
point of view. For simplicity, consider motion in a stably stratified atmo-
sphere. Under adiabatic processes, air parcels that carry potential tempera-
tures larger than 0, stay above the isentropic surface (0 = 0,, and air parcels
that carry potential temperatures smaller than 0, stay below the isentropic
surface 0 = 0,: therefore the total mass of air above the isentropic surface
is constant. This holds even when the isentropic surface intersects the
ground, as does the surface = 0, in Fig. 19. In this respect, the earth's
surface can be regarded as a continuation of the isentropic surface, as shown
by the heavy line in the figure. Then, for quasi-static motion, the horizontal
average of the pressure on each isentropic surface p(0) does not change with
time. (This constraint was used by Lorenz (1955) in deriving an expression
for available potential energy.) Because (1/g) dp (0)/d0 is the mass of air
per unit horizontal area and per unit increment of 0 in the vertical, dp (9)/d0
is termed the “mass density function in @ space.” Since p(0) is constant in
time, the mass density function is also constant in time. Figure 20 shows
the shape of the function for a typical situation. The reciprocal of the density
function is closely related to the static stability (but not exactly related,
unless the isentropic surfaces coincide with the isobaric surfaces).

The global integral of f(f) with respect to mass, where f(#) is any function
for which the integral exists, can be related to the mass density function

:Bo
9=9|

e o
Fia. 19. Isentropic surfaces, one of which intersects the earth's surface.

9%
dg
TROPOSPHERE
STRATOSPHERE
8

Fia. 20. Schematic representation of a typical distribution of the mass density function
in 0 space,
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as follows

" 5}7
Jn /10) o0 @

S
e
v
=
=
£,
=
i

= . op
= j:?min ‘f(o ajdo

w

li

a
110) 5 do, (158)

fmin

where for simplicity it has been assumed that pr = 0 and therefore 0; =
Here, the bar over the integral denotes the horizontal average; pg and f
are, respectively, p and 0 at the earth’s surface, and Omin = min (0). In
changing the lower limit of the integral from Og to 0,,,, ép/é0 = 0 for
Os = 0 > 0, has been used. Thus conservation of the global integral of
J(0) with respect to mass is equivalent to a constraint on the density function.
For example, when f(0) = 0", the integral gives the nth moment of the
density function.

In order to fully constrain the density function, it is generally necessary
to specify an infinite sequence of moments or an integral transform such
as the momentum generating function or the characteristic function. In a
discrete system, however, such a full constraint on the density function is
not possible unless the isentropic surfaces are taken as coordinate surfaces,
In the next subsection it is shown that reasonably simple vertical difference
schemes can exactly conserve global integrals with respect to mass of only
two independent functions of 0, say f(0) and ¢(0); that is, only two indepen-
dent constraints on the density function can be formally satisified. Con-
sequently, some false distortion of the density function by discretization
errors cannot be avoided in numerical simulation. It is to be expected,
however, that certain features of the density function can be maintained by
proper choice of f(0) and g(@).

The vertical difference scheme for the first law of thermodynamies in the
current UCLA general circulation model has been derived with Ji)y =20
and g(0) = In 0 as the two lunctions. This choice is based on the following
physical reasoning, Choosing f(0) = 0 guarantees conservation of the first
moment of the density function and, therefore, guarantees conservation of
mean potential enthalpy, which is of physical importance, Lorenz (1960)
showed that if we define a gross static stability § by

P\ E
§= (P s e R (159)
Po) 1 + kK
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where £ and (P + I) are, respectively, the potential enthalpy and the total
potential energy of the whole atmosphere and pg is the mean surface pressure,
S becomes a weighted vertical integral of the static stability. Then, because
d(P + I)/dt = —dK/dt, when Q = 0 and F = 0, where K is the kinetic
encrgy of the whole atmosphere, dE/dt = 0 guarantees

dS/dt = dK/dt. (160)

Thus when potential enthalpy is conserved, energy conversion from total
potential energy to kinetic energy. which requires rising of warmer air and
sinking of colder air, stabilizes the almosphere.

The earlier UCLA general circulation models used g(@) = 0%, That choice,
together with f(0) = 0, guaranteed conservation of the second moment
about the mean of the density function and, therefore, guaranteed conserva-
tion of the variance of the potential temperature. That was a reasonable
choice for the carlier versions of the model, for they covered only the tropo-
sphere and the potential temperature distribution in the troposphere does
not deviate greatly from a Gaussian distribution. That choice also guaranteed
the approximate conservation of the total entropy because

(In0), = In6, + [(#/0,)],., (161)

for small 0/0,,. where the subscript m denotes the mean and § = -0,

However, the potential temperature distribution in the coupled tropo-
sphere-stratosphere system is highly skewed (see Fig. 20): and conservation
of the second moment is not necessarily an effective constraint on the
density function near ils maximum, because the very large potential tem-
peratures in the stratosphere make a dominant contribution to the second
moment. With the present choice of g(f)) = In @, instead of conservation of
the variance, there is conservation of (In )y — O, which is a measure of the
broadening of the density function near its maximum [see Eq. (161)]. In
addition, g(0) = In 0 guarantees the conservation of total entropy, which
is a quantity of physical importance. Furthermore, as is shown in the next
subsection, the finite-difference hydrostatic equation that is energetically
consistent with this choice of g(0) is very accurate for a wide range of vertical
profiles of temperature.

B. A VERTICAL DIFFERENCE SCHEME WHICH MAINTAINS INTEGRAL
PrOPERTIES

In this subscction the vertical differencing of all the basic equations
except the water vapor and ozone continuity equations is presented, The

bk TN oty e gl e T A e st e T T
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vertical differencing is designed 1o maintain finite-difference analogs of the
integral constraints discussed in the last subsection,
L. The Vertical Index
The model atmosphere is divided into K layers by K-1 levels of constant
{

a. The layers are identified with odd k and e rry the velocity v, the tem-
perature T, the water vapor inixing ratio 4, and the ozone mixing ratio Q.
! The levels which divide the layers are identified with even k and carry 7¢.

The upper boundary p = py, the level P = p;, and the lower boundary
p = ps are identified with k =0, k = ki, and k = K + 1, respectively
(see Fig. 21). Define, for odd k,

! : Aoy = 0441 = 04y (162)
' then

J ky=1 K

L Y Agy =1 and Y Aoy, =1, (163)
| k=g k=kp+1

where } ' represents a symmation over odd k.

k
o) ra=0 oa-|
] It e e ——— VITI Qlo3
\ 2 T =0,
3 mm———— S e s i i i ————— T
}
|
kpol e ——— e e s “T,q, 04
kI e a=0
k] ———————— = T,q,04
{ k-2 e ———— T e e i R O
k-1 o Ty,
i A T I NOSS: =-73 775 ——m %T,4, O3
k+! To TE2%n
k42 e e v T q, 0'_5
K-2 o e e e e s o e e e e e e e e e W T,q. 05
K-l -4 TEa
K T e e e e e ———— ¥ T, Q, 03 g
K+ 1

7@ =0 o=

Fia. 21, The vertical structure of the model, showing distribution of the prognostic variables:
solid lines (even k) indicate the levels dividing the layers; dashed lines (odd k) indicate levels
within layers at which prognostic variables are carried (exact position discussed in Section V).
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2. The Equation of Continuity

The continuity equation is written in the form

ont 1
TtV ) b [y — (k-] =0, (164)

where k is odd. We have

T, for k > k. (165)

X {nu for k <k
With dn/ct = 0 for k < ky, ém/ét = én /it for k > ky, and (né)y =
(ré)g4y = 0, Y 8-, (164) Aoy gives

" K
ET_EE = — E‘ V- (K*Tk) Aolu (IGGJ
ot k=1

which is an analog of Eq. (130). Because én /ct = éps/dt, and the area
integral of the right-hand side of Eq. (166) over the entire globe vanishes,
total mass conservation is maintained with this vertical differencing for
the continuity equation.

The quantity (nd), 4+ is given by

k

(6hsy = — Y V' (mv) Ao, for k < ki,
k=]
: 5 (167)
(s = — 2' V- (mvy) Aoy — 044 a_:L for k >k,
k=1

which are analogs of Eqs. (128) and (129).

3. Flux Forms

For any variable 4 carried by the layers, the flux form analogous to
Eq. (133) can be written as

d 1 5 -
a_‘_(ﬂkAk) + Vo (mevedy) + Ty [(Z6)s 1 Apsy — (nd)k—lAk—l]‘ (168)
k

r ‘L-r.m‘-n.--,.%-_—---»—_.‘ L BT e e s sie B e
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where the variable A, defined at the levels between layers, is obtained by
some manner of interpolation from A. Whatever the form of the interpola-
tion, however, Eq. (168) guarantees that the analog of the global integral
of A with respect to mass is conserved as far as advective processes are
concerned, because ' £ (168) Agy gives

3 K K

( = —

‘5" >_" TE;‘AJ‘ Aﬂk + 2; Vv (T{L‘Vk"qk) A!’?k
Ol =4 k=1 \

and the second term vanishes when the area integral over the entire globe
is taken.
Equations (164) and (168) give the expression

dA ¢
(ﬂ ‘R!")k = (E -} Vi * V) Ak

1 5 .
+ 5o [0 il iay = Ay) + (m0)—(Ay = Ay-1)),  (169)
ATy

which when divided by m, gives the advective form for dA/dt which is con-
sistent with the fux form in Eq. (168).

So far, the choice of A is completely arbitrary, provided that the choice
does not violate the consistency of the scheme with the original differential
equation. It is possible, then, to satisfy an additional requirement.

Let us require also that the finite-difference analog of the global integral
of F(A) with respect to mass be conserved. Let Fy = F(A,) and Fj =
dF(A)/d A, Then (169) multiplied by Fj, gives

9 1 =5 N .
iy (',:" + ¥ V) F;‘ o — [("'Id-]k+li.k(’4k by == fl;‘) - (na‘)k_le(Ak - A;‘_J].
ot C\ﬂ';‘
(170)

Using the equation of continuity, (170) can be rewritten as

0 . _ 1 5 o
= (eky) & Vol F) + 5= (61 {FilAkiy — Ax) + Fil
ol /.\ij(

= ()1 {— Fi(Ax — A + Fiilo ()
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In order that (171) be in flux lorm, it is necessary that

f:71.-4-1. = ?J'\-(fih-l i Ak) -+ Flu (172)
lﬂ-k_l _I‘.;(ftk = fi‘k_]) -+ P‘k- (173}

Il

Replacing k in Eq. (173) by k + 2 and eliminating F,., with Eq. (172) gives

_(F;n 2"'[11-_!-_:'! ______Fk-o-z) —_(_F;‘AL __F_k_}

Avsy = TR - (174)
This may be interpreted as a finite-difference analog to the identity
A= -‘!(f%;ﬂ. (175)
When F(4) = 42, for example, Eq. (174) gives
Aoy = HA + A (176)

That this constraint on A,,, leads to conservation of the global integral
of 4% with respect to mass was first pointed out by Lorenz (1960),

4, Vertically Integrated Horizontal Pressure Gradient Force

In order to maintain the property of the vertically integrated horizontal
pressure gradient force discussed in Section V, A, 2, it is convenient to start
from the form given in Eq. (139). The terms V,(z®) — é/¢a(®o) Vr are
written for odd k as

| .
V(m @) — E(‘T’Aﬂﬂhﬂ = @y 04—y) Vmy. (177)
k

Again, the caret is a reminder that a variable is evaluated at the levels,
that is, at even k. The analog to Eq. (149) is

gr=1 k=1

K | K‘ = =z
- 2 (180) Agy = E[V ( > mldy — ) Af’_k) + (ps — pr) Vq’s:l- (178)

In this way the integral property is maintained,

MFLTL BT RIS HT R
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The terms in (177) are equivalent to
m VO, + [y — (1/Aa ) Dy s 1044y — (f’k—lak—x)] V. (179)
If we let

mlow), = O, — (]/AUk)(d)k-+lak+l = ‘i‘k—lﬂ'k—l)s (180)

(179) can be written as
[V, + (o), V], (181)

which is the analog to n(V® + oz V), another form of the horizontal pres-
sure gradient force. Equation (180) provides an analog to Eq. (118), one form
of the hydrostatic equation. However, because @ is not yet specified, Eq. (180)
must be considered at this stage only a definition of the symbol (gx),.

5. The Kinetic Energy Equation

Following (169), the acceleration term is written as

dv d
(+2) a2 9]
dt J, KL

|
h = [(060)k+1(Vesy — Vi) + (M6)— (v — V)] (182)
Oy

To have a flux form for v, * (7 dv/dt),, Eq. (176) is used with A = v; that is

Verr = 300 + Veua). (183)

This guarantees the conservation of total kinetic energy, insofar as vertical
advection is concerned. The finite-difference expression for the kinetic energy
i vertical column per unit horizontal area is

K
Y vl Ao, (184)
k=1

0 |
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To obtain the kinetic energy generation in finite-difference form, the pro-
cedure used in deriving Eq. (152) is followed:

-_T[A;“k " [V(D}. 'I_ (O—'x)k Vnk]

at

| ) . dn
=V (v, @) — D, [E?x {(TCG’J;.-H = (Tm')k—l} + '_k:]
— m (o) vy - Vg,

1 i
= =V (mvidy) - A—{(ﬂ(j)k+ld)k+1 = (’T&)J.-—l‘i’k—l}
ATy
1 a i
+ ey [ )s (Dysy — D) + () (D — Dy )]
Tk
Bnk

— O, - oREa mloa)yvy - Vg

1 ; = : -
= =V (mv,Dy) — A {(m)es \ Dy g — () - Dy}
k

on a |
-+ {Kk(ﬂ'ﬂ:]k w— (Dk} LT: — T [(O’G()k (EE + Vg V) Ty = . Aﬂ'k
X {(ﬂé)k+1(d)k+1 = Iy) + (m6)y, - (D = ‘f’k—t)}:l
1 im ) -
= =V (mvdy) — A'_cr,; [{(ﬂd’)ku + O)sn %} L
d
o {[mi)k -1+ Gg=y %} &k—lJ — mlwa)y. (185)

Here (wx), is defined by

(), = (oo, (gf + ¥ * V) 98

1

7y Aay {(nd)kd-l(d,k-l-] = @) + (1), - (P — (f’k- NiE (186)

At this stage, Eq. (186) is the definition of the symbol (we),.
From a finite-difference scheme for the first law of thermodynamics,
another expression for (wa), will be derived. With Eq. (186), this will deter-
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mine a form for (o), that, with (180), will fix the discrete form of the
hydrostatic equation.

6. Thermodynamic Energy Equation

In this subsection, a vertical differencing of the thermodynamic energy
equation is presented that maintains conservation of total potential enthalpy
and total entropy under adiabatic processes.

To conserve an analog of the global integral of the potential temperature
8 = T(py/p)* with respect 1o mass, the form given by (168) is used with
A = 0. Then,

d 1 .
2 (mbh) + V- (mvi0y) + A—ak [(né)k+1gk+l = (?Td')k-1ﬁk—:] =0, (187)

where the heating term is omitted for convenience. Here

i 0 = T,/P, (188)
and P, is an analog to (p/p,)* for the layer k. The actual form for P, used
in the model will be described later. Here it is sufficient to assume that P,
is a function of n;, @,_,, and &, ,, only.

The earlier versions of the UCLA general circulation model used ﬁHJ =5
1O, + 0,,,) following Eq. (176). The present model, however, requires
conservation of an analog of the global integral of In @ with respect to
mass., Equation (174) with A = 0 and F(A) = In 0 gives

= In 0k — In Gk-h'!
By & b e SBR, 189
LT Y0s 2 ~ 1/6, (189)

The corresponding advective form is given by
7 1 . ;
M =+ ¥V ) 0+ [N 4 1By 4y — 0y) + (m6), 1 (0, — D, - )] =0. (190)
at Ay,
Substituting Eq. (188) into Eq. (190) gives
d =X T, 0P, (0
T, (E-'- Vi V) Ty — HkF;'ﬂ—nk(tiﬂl- Vk'V) T

1 H -
E o Adk [{W.T]H:(Pk’gkn = Ty) + (ad) - (T) — Pkak—l)] =0, (191)



226 AKIO ARAKAWA AND VIVIAN R, LAMB

or, introducing T to make the left-hand side an analog of rd(c, T)/dt,

a - 1 ; N . , R
75&(5{"‘"‘k'V)C'pIH';&Jk[(HU]H1C'p(7n+1—7::)"!'(7“7)&—1";.”&“ Ty-1)]

i OB (0, o Y e [l sl By = Pl )
k P, om \ét k k Aoy ke 1Cpld ket EVE+ 1

+ (16 Y- 1cpPilli-1 = Th- )] (192)

The dependence of T on the odd index temperatures need not be specilied
at this point. The left-hand side of Eq. (192) may be written in flux form, as

é

C)I AO';,-

1. Total Energy Conservation and the Hydrostatic Equation

(ne,T) + V- (e, Te) + 2 (6n i Ties = w1 Tumn) (193)

In order that the total energy be conserved under an adiabatic, frictionless
process, the right-hand side of Eq. (192) must agree with ()., where
(), is defined by Eq. (186). For k < kj, m = my = consl and therefore
(@/ét + v, - Vym, = 0. For k > ki, (¢/0t + vy V)m, is generally not zero, so

that it is necessary to require

Comparison with Eq. (180) which also defines (g2), gives

= i e T, P
- pekTk

D, — A (Dpr 16141 — Pum1Ok-1) = RL—5— 3=
gy Pk Oy,

% Oy for k> k. (194

for k = k. (195)

This is the form of the hydrostatic equation that corresponds to Eq. (118).

It must also be required for all odd k that

el Tert = Pdiar) = O — sy (196)

and

Cp(Pkgk—l - T =&y — O (197

———— N e et g L e
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Rearranging the terms,
(e Thsy + Byyy) - (epTh + @) = Piey(fysy — 0,), (198)
and
(€T + D) = (¢, oy + Dy y) = Pcy(0, - 0,_), (199)
where 0, (and therefore §,_,) is given by Eq. (189). Equations (198) and

(199) are analogs of the form of the hydrostatic cquation given by Eq. (122).
Replacing k in Eq. (199) by k + 2 and adding it to Eq. (198) gives

(CFTR"Z + q}k+2) A (Cka + (bk)
= €[ Prs2(Oisz — Gisy) + Pl — 04)]. (200)

or, using Eq. (188),
Prsz = By = —c(Posz = PO, (201)

Equation (200) is an analog of Eq. (122) and Egq. (201) is an analog of Eq.
(120). Using Eq. (189),

Dysy — By = ¢, (llj%%:':_?;g:) (Pysz — By, (202)
Equation (202) is a finite-difference approximation of Eq. (121):
oD = ¢ [d In 0/d(1/0)]8(p/po)*
or of
P = el P/pa)t/é(1/0)]6 In 0.
Equation (202) is used 1o compute My for odd £. To do so, it is necessary
to Know @ at a single odd k, say k = K:and Eq. (195) can be used for this

purpose. From Eq. (195),

K ' K e F A

i i ¢, T; 0P
Y W Ag —bg= Y oq o kTTk L (203)
=k +1 k=ki+1 Py o
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However, }}% .+ | @4 Agy can be written as

K K
Y WA= Y Dylorey — 0uy) (204)
K=kt 1 k=kp+ 1
K-2
= @y + z' O (D — Dy ).
k=ki+ 1

Equations (204) and (203) then give

- Tedhy A7
O =0g+ Y m TEE T g (@~ By)  (205)
k=ki+1 Py om, k=hy+1

8. Summary of Subsections 5-8

A vertical difference scheme has now been constructed that maintains the
property of the vertically integrated horizontal pressure gradient force, total
energy conservation under adiabatic and frictionless processes, and conser-
vation of 0 and In 0, integrated over the entire mass under adiabatic processes.
The function P,, however, which is an analog to (p/po)* for the layer k,
remains to be determined. ‘

a. Pressure Gradient Force. From Eqs. (180) and (194), expression (177)
becomes

V(J‘Ekd’h) + (FI.'A E T e d’k) V‘J‘{k, (206)
k

where

oo Ju=P =P for k<k
: L = ps — Py, for k> k.

b. The Hydrostatic Equation. Equations (205) and (201) give

E' C Tk af’k K-'I

¢K = QJS + E L "EI'J" ;3"" = Z ak+lcpak+l(Pk+2 — Py, (207)
K=kt 1 kO k=ki+1

By — Opyz = (Prsy — P01, (207)

where

Iné, — Ind
B, = . AN 208
S ) — (1/0) (20%)

T T £ ey 1T R G o e (T B S T ST AT
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¢. The Thermodynamic Energy Eguation. Using Eq. (193) for the left-
hand side of Eq. (192), rearranging terms, dividing by ¢, and restoring the
the heating term gives

é 1 g
7 (mTy) + V- (v, Ty) + A“G_'; [{n&]k+1(},k6k+ 1) — (md), - ](Pkﬁk—l)]

Ty onm;,

:
-~+—(5-+-vk-v);u-+;qgkﬁ5. ' (209)

T
kPkC"?Th af

C. VERTICAL PROPAGATION OF WAVE ENERGY IN AN ISOTHERMAL
ATMOSPHERE

In this subsection, the effect of the vertical differencing scheme in current
use in the model on the vertical propagation of wave energy in an isothermal
atmosphere is examined. The material presented here is based on part of a
forthcoming paper by Tokioka. His study provided the foundation for our
choice of the depth of the layers and the function Py in the stratosphere.

1. The Vertical Structure Equation—Continuwous Case

The quasi-static system of equations, linearized with respect to perturba-
tions on a resting, isothermal basic state, may be written with the pressure
coordinate as

u : 12
W 06 sin ol 4 e 2P 210
% (202 sin @)v + Teee 0l 0, (210)
10
@ + (2Q sin P + - f;,é =0, (211)
at acy
8T e B (212)
at cy P
a¢fop = —RT/p, (213)
~ -
du i (v cos @) g Qa_) ~0, (214)

acoso i acosgdp ap

where 4 and ¢ are longitude and latitude, wand v are the eastward and north-
ward components of the perturbation velocity, ¢ is the perturbation geopo-
tential, e is the perturbation p velocity, T is the perturbation temperature,
« is the radius of the earth, © is the angular speed of rotation of the earth,
and T is the constant temperature of the basic state.
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Let us consider a solution of the form

U i
U ]

= i Ry [ ., - 5
o Re p expli(si + at)], - 213)
T T

where s is the Jongitudinal wave number, assumed positive, and ¢ is the
angular frequency. A positive ¢ then represents a westward-moving wave
and a negative o represents an eastward-moving wave. Using Eq. (215),
Egs. (210)-(214) become

is "
ioti — (2€) sin )i =

igii — (29 sin )it + P =0 (216)
iof -+ (2Q sin @)d + (1/a)(dd/de) = 0, (217)
isT — (RTy/e,p)éd = 0 (218)
éplap = —(R/p)T, (219)

A ¢ W0
L (220)

o ap

Following the theory of the atmospheric tides, &t and ¢ are eliminated
from Eqgs. (216), (217), and (220), giving ’

& (iod) = 4a*Q*(2d/dp), (221)

where the differential operator % is given by

é (1 —p* @ 1 s f* 4 pt s
e i e = O ,
Eﬂ(fz“!*15!¢)+f2-;£2(.1tj'—p1+ ] — p?

and
M= sin g and [ = a/2Q
Equations (218) and (219), on the other hand, give

dfopliod) = —(R>To/c,p?)éb. (222)
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Eliminating ¢ between Eqs. (221) and (222) gives a single equation for @,
L (D) + (c,p* /R To)4a* Q¥ @/p?) = 0. (223)

Let
o = F)W(p). (224)

Then Eq. (223) can be separated into horizontal and vertical structure
equations, given respectively by

#F =¢F (225)
and
d*W/dp* = —(kHo/h)(1/p*)W, (220)

where ¢ is the separation constant, h is the equivalent depth defined by
¢ = 4Q%*/gh, H, = RT,/g is the scale height of the isothermal atmosphere,
and k = R/c,.

Transformation of the dependent variable in the vertical structure equation
(226) [rom W to W = (p/pe)” V2 W gives

AW/ = —n*W, (227)

where [ is —In (p/po). the height scaled by Hy: pg is a standard pressure;
and n is defined by

n= (k(Hofh) — V2, (228)

The quantity n gives the vertical wave number and therefore a measure of
the index of refraction for vertical wave energy propagation. For a given
cquivalent depth, the vertical wave number 1 is constant in height. When n
is real, the waves are oscillatory in height (internal waves), and transfer
wave energy vertically; » is real for the range 0 < h < 4 kH,, that is, for
6> (Qa)/grHg (~10 for T~270 °K).

The thin line in Fig. 22 shows #n as a function of the parameter & Here
l'o = 270 “K and therefore Hy = 7.91 km. The vertical wavelength is ap-
proximately (49.7/n) km,
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Fig. 22. Comparison between the vertical wave number a in the differential case, defined
by Eq. (228), and that given by the vertical difference analog of the vertical structure equation
(243).

2. The Vertical Structure Equation—Discrete Case

That the vertical wave number is constant in height for a given equivalent
depth means that the index of refraction is constant in height, so that no
internal reflection of wave energy takes place. This important property of
an isothermal atmosphere is not necessarily maintained in a discrete model,
where vertical differencing is employed. It will be shown here that the vertical
differencing described in Section V, B maintains that property when the
depths of the layers are equal in log p and

Py = [(px-1Px+ D' pe]". (229)

Using the vertical index k of Section V, B, the discrete versions of Egs.
(216)-(220) may be writlen as

s -

ioi, — in b, + ——— ¢ = 0. 230
ioiy, — 20 sin 0, + —— iy i (230)
iot, + 2Q sin oi, + (1/a)(édi/ép) = 0, (231)
iaTy — (To/Ap)Qi' @y -y + Si'dnsy) = 0, (232)
b — rv2 = 83T + QfiaTis2) (233)

% (T cos @) (Dgsy — Opy)
fh, + ————— 4+ acosp——————= =10, 234

where S,!, S,.% 0,', and Q,* are coefficients which depend on the vertical

S ——————————e—— S e SR P - T
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differencing of the thermodynamic energy equation and the hydrostatic
equation.

With the vertical differencing given by Eqgs. (209) and (201), the coeflicients
are defined as follows:

Qk = (P/T o)~y — B), ' (235)
= (Pkilo)({}k - U,‘H),_ (236)

= (1/P)(Pes2 — Plr)(ﬁ@k-ﬁ:l/aak)a (237)

Qksz = (1/Pys 2 )(Pisz — P04 1/30,42), (238)

where the overbar denotes the basic state. For an isothermal basic state,
with the definition of ﬁkﬂ given by Eq. (208), these coeflicients become

L2 ,l” (P,‘ E“!‘)
O =@ = [I * 1 — (P Z/Pk)J 2%
In (Pyya/Py)

S = 82 240
= 0 = (PyaalPy) w0

The equations corresponding to Egs. (221) and (222) are then
Lliody) = 4> [(er1 — Dx—1)/Api), (241)

I T CoTol(Sk/Ap ) Qi -y + Sy q)
+ (Qui2/APxs 2N Qi 20y + Spazonis)], (242)

where the superseripts of § and @ can now be omitted. Equations (224),
(241), and (242) give a flinite-difference analog of the vertical structure
cquation (226):

Wies = Warr  Wir1—Wiss i CoTo
Apy APyia !]h

Sy .
[E\*—(Qm-l + Wi 1)
\ P
+ (th”kn""gs u”’iu)} (243)
When the even levels are chosen such that the intervals are equal in log p,

Prv1/Pr-1 = e’ (244)

for any odd k, where the constant d is the depth in { of each layer in the
model, With the choice of P, given by Eq. (229), P, ,/P, is then counstant
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and, therefore, the coeflicients §; and @, are constant. Fquations (239),
(240), (244), and (229) give

e * — 1 — xkd
= Qo = :
Qk 4 l fen e—xd (24?)
and
wd e
nEages {_ﬁ,‘_l"". (246)
In addition,
Pi+1 Pr+y l
Pevr  __ Pevr - 247
Apy Pevt = Pr-1 | ~e™* )
and
Py . Pero | (248)

A!’HZ_PHJ_MH el — 1

which are also constant. Multiplication of Eq. (243) by p,., and use of
Eqs. (247) and (248) gives a conslant coeflicient difference equation for W,
whose solution is formally identical to the solution of Eq. (227). As a result,
the vertical wave number n is constant in height for an isothermal atmo-
sphere, just as it is in the continuous case. Spurious computational reflection
of wave energy due to the discretization is thus prevented as far as a resting
isothermal atmosphere is concerned. For these reasons, an equal interval
in log p between even levels and the function P, given by Eq. (229) have
been chosen for the stratospheric part of the model (see Fig. 1). A value of
d = 0.657 is used, that is, ' = 1,93,

The heavy line in Fig. 22 shows the index of refraction obtained from the
discrete model for the same isothermal atmosphere as in the continuous
case. Although n is constant in height, there is some unavoidable error as n
approaches n/d, the highest resolvable wave number.

D. FINAL DETERMINATION OF THE VERTICAL DIFFERENCE SCHEME

Thus far, each layer of the model and its corresponding representative
temperature 7%, potential temperature @, and geopotential ¢,, have been
identified by an odd value of the index k. The variables 0,, ¢,, and T, arc
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uniquely related once the function P, is defined. For a time inlegration,
It is unnccessary to specify the particular levels within the layers at which
these variables are carried. However, when it is necessary to compare the
model results with observations or when it is necessary for the purpose of
actual numerical weather predictions to initialize the model from observa-
tions, levels must be chosen, somewhere near the center of each layer, to
which the values of Ty, 0, and ¢, can be assigned. The same odd index k
will be used to identifly such levels.
Once the function Py is specified, it is logical to define P by

(P/Po)* = Py. (249)

The odd levels p = p, determined by Fgs. (229) and (249) are constant
pressure levels (and, therefore, constant ¢ levels) centered in log p. Then,
with 0, = T\ (py/p)*, no discretization error exists in the definition of the
potential temperature.,

The discrete hydrostatic equation, however, given by Eqs. (207) and (207,
is generally subject to discretization errors. As Phillips (1974) pointed out,
these errors can be intolerably large unless the function P, is properly
chosen. The function P, has alrcady been defined for the stratosphere
(k < k) by Eq.(229), based on considerations of vertical energy propagation.
This choice turns out to be satisfactory from the point of view of the accuracy
of the discretized hydrostatic equation as well. The difference Dy — Dy s
given by Eqs. (207') and (208) is exact for an atmosphere that is isothermal
between levels k and k + 2.

For the troposphere, however, the function P, has not yet been defined.
The earlier UCLA general circulation models, incl uding the earlier version
of the 12-level model, used Eq. (249) with P, = [3pe-1 + Prsalpol™.
Phillips has pointed out that with such a choice, caleulation of 0, from
given &y (which is a necessary procedure for initialization of the model for
numerical weather prediction from an observed initial geopotential field)
shows a large amplitude oscillation in 0, from level to level, Phillips showed
that P, given by '

Yok - K
B _1 _1 Prey = Py (250)

Pchl K Prer = Pt

drastically reduced this deficiency. Tokioka shows in a forthcoming paper
that use of Eq. (250) does give the exact value of 0, from &, when the atmo-
sphere is isentropic. He also showed that the optimum choice of P, for a
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polytropic atmosphere, for which 7(py/py)" is constant in height, 1s
1 1 S )
Py = — | ——— \Pivt — Pr-1) . (251)
po" L1 + @ ey = Py

The current version of the model uses a = 0.205, which approximately
gives the normally observed stratification.

A

V1. The Horizontal Difference Scheme of the Model
A. The GoveERNING EQUATIONS IN ORTHOGONAL CURVILINEAR
COORDINATES

Let the orthogonal curvilinear coordinates be ¢ and 7. Let the actual
distances corresponding to d¢ and dy be (ds), and (ds),, respectively, and
define the metric factors m, 1 such that

(ds); = (1/m) d&, (252)
and

(ds), = (1/n) dn. (253)

n+an
a7

b/ T
3 af &g
m

Fi6. 23. A rectangular area element in the plane of the orthogonal curvilinear coordinates

(& n)

For the rectangular area element in the ¢ — n plane shown in Fig. 23,
the actual lengths of the sides are Ag/m and An/n, and the enclosed area is
thus A& An/mn. Let the component of v in ¢ be u and the component of
vin iy beun.

1. The Equation of Continuity

The divergence is

Se[u(An/m] + 95, [e(AZ/m)] g
(AZ/m)(An/n) 3 2
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where d, and §, are increments in the ¢ and n directions, respectively. In
the limit as A¢, Ap — 0, the divergence can be wrilten

3
V,: v =nm I:—,?, (E) + :— (i)} (255)
og \n anym

and the equation of continuity (126) thus becomes

ad(n é [ u ¢ v d (no ’
& (——) * 52 ( ) i ( ;;) b (;;;) =0 (9
2. The Equation of Motion

The equation of motion (136) may be written as

3 P
g—:+ a%+ (f+0kXxV+Y0?+®) +0aVr=F (257
[

where, by an argument similar to that for the divergence, the vorticity
{ =k*V x vcan be expressed as

¢ (v o fu
mn l:: (—) - = (—)] (258)
é& \n an \um

The & component of (257) is then

¢ G Bk ‘ on :
+ m— (Gu* + 70° + O) + moo — = F,. (259)
og a¢

Rearranging the terms,

du { au ; cu J . ou s J 1 g ¥y
— i ow— + 6§ — — +m|v—m——tu——)|v
ot ¢ oy o & n cnom

5 -
+ m trl + ou ETEJ = F,. (260)
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&

Similarly,
o I b Foh o i Ee -+ -f + mn |t 8. o1y
— k= N o+ 6+ be— — U—— ] |u
ot il on ‘o dén ay m
o an’
+ n [T' + ou _—-J = F,. (261)
an an

dfn d [nu T & (w6

——u|+ =l—u)+ —=—u|+—{—u

ar \mn IE\ R n\m co \ nmn
Jf

n| o Cn T
# —[‘. =~ + oa 2—,} = — Fy; (262)
n g nin

and the flux form for v is similarly obtained,
i f{n d [mu J {nv
sf=—=) | =) 2 == 0
it \ mn o\ n oy \m
f g.1 d 1
+ b V= = U =) 'Rl
mn aén oy m

| S

al

na
[ s
o\ mi

=™

| D on T
b | o t=—|=—F, (263)
m| an an mn
The general cireulation model uses the spherical coordinates £ = A
= «. Thus,

(longitude) and 5 = ¢ (latitude) where I/m = acos @ and I/n
from this point on, consideration will be restricted to those coordinate
systems such as spherical (or cylindrical) in which m and # do not depend

on¢.
From (262) the (relative) angular momentum equation can be obtained,

d/fnm u ¢ fnu u ¢ [fnv u ¢ fnd u
== | s = ) R e ] e | e e
at \mn m cE\nom an\om om da \mn m

f v F o d n r F; .
|| s—toag— | === (264)
mn m 0z mn G& mn mi m

e T T YT
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3. The Thermodynamic Energy Equation

The thermodynamic energy equation (143) can be expressed in curvilinear
coordinates as

dfn ¢ (nu ¢ (mv d (e
e o C 'r "l' e Y C T + bonr — 7 'r + ¥ T - [ 4 D
at (mn P ) d (n P ) anp\m " P a6 \onn ¢
i (n ue v én n
=nod| = |—|+-=5+——]+—0. (265)
ar \mn néé o méy mn

B. HoRIZONTAL DIFFERENCING OF THE GOVERNING EQUATIONS

Despite the introduction here of the use of the ¢ coordinate and the pres-
ence of metric factors, the manner of derivation of a dilference scheme for the
continuity equation and for the advection and coriolis terms in the u and v
momentum equations so closely parallels the methods presented in Section
[11, C that the representation chosen for these terms will be presented here
without elaboration. The new considerations introduced by the requirement
of total energy conservation in a three-dimensional domain will be explained
more fully.

1. The Continuity Equation

For the continuity equation (256) multiplied by AZAy, the following form
is chosen

a1 o g o o ! ,
.ﬁ.i + (8:F) ; 4+ (0,G) 1+ 73 (6,5% ; =0, (266)

where

1}
|

I-[ w(AE Ay/mn), F = wu(An/n),
G = no(A¢/m), S =[] (267)

The vertical index k now appears as a superscript on all variables except
and | . Although 7 and [] do have different definitions for k < k; and
k= k. the superseript is dropped for simplicity,



Bl ts wlonnie Bl LI b e e S il Pk SO PRt T i Ly 8 AR i~ 50 AL ot Qo N b S

240 AKIO ARAKAWA AND VIVIAN R, LAMB

af

wh

i

FiG. 24. A m-centered portion of the spherical grid showing points of definition of the Auxes
introduced in Eq. (266).

For the mass fluxes F and G, shown in Fig. 24, the following forms are used:

E An\F i
M‘H{z.) = (” _I) s 2. (268)
n vz,
vhere
[el@n/m)]Es 1ya,; = ubs ), (An/n); (269)
and
Gf jr1i2 = [AAL/m)TE o 1)2T0 44 1725 (270)
where
[U(ACU/?")]?. jviz2 = l’:‘.j+ 1,rz(£\tff"m]1+ 1/2+ (271)

The superior bar operator, which is a linear smoothing operator in &, should
be ignored for the present. The form and role of this operator will be deseribed
in the next subsection,
2. The Momentum Advection Terms

The form chosen for the terms

a AZ Ay .0 Ay
3 (nr o u) + Aé P i ? u

B i e e R i A B e e i i T e et
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from Eq. (262) multiplied by AL Ay is

a i
f‘!E (nt- i“,k)l 4 1

[é‘:(.g«,?(u)ﬁ:) J: (5,‘('.‘{?‘"}'17") i 54:-(..‘#[")1]{')
+ 4, {fﬂ(u ) + 'Al—f’ais‘"'u")}

k
272)
i

If the variables []* and §* at ¥ points and #, ¥, F and %" shown in

Fig. 25 satisfy the constraint
a o ) - - 1 e i

T + | 8.2 + 6,99 + 6, FY + 8,9 + — 5,5V | =0, (273)
Df A{Tk i,

then conservation of kinetic cnergy under a pure advective process is
maintained.

FiG. 25. A u-centered portion of the spherical grid showing points of definition of the flux
terms introduced in Eq. (272),

With F* and G* defined by

= (Ft)i,j! (‘i § (Gﬁ)[ i (274)
the following choice for the fluxes in Eq. (272) is guided by Eq. (95):
-"7”1;:,;:%(7 )¢+uzj
((:ufj!-llf.’_ i(("r }r‘rillfl
'y::r’u.‘e.j-'-nz = 3(G® + F¥) o), j+12
G s a1z = G — Fe 2, 541020 (275)

S



iy Lol i

TR o w e a f a

242 AKIO ARAKAWA AND VIVIAN R. LAMB
Then Eq. (273) is consistent with the continuity equation (266) if
“f”} = {ﬁ':"")a‘.j (276)
and
Sy = (35, : (277)
For the r-momentum equation (263) multiplied by A¢é Ay, a form identical
to (272) is used, but with v replaced by v. The definitions corresponding

to (275)-(277) are then

3 2 J
Fi s,y = §(F®0, 1/2. s
" 2 v Ll
G = 2GR, £ 142, J+ 123
3+ L =3 £
-955‘31;2.;41.'2 = (G* + FF, 1/2, j+1/2

{av—)uz.ﬁ 13 T §(GF — Fﬂ)r-uz.ﬁ 1/29 (278)
[T = AT (279)

and
S = (.‘f”"")f_,, (280)

3. The Coriolis Terms

From Eq. (262) the contribution from the coriolis force plus the metric
term to &(] [u)/ét is

AS Ay B d 1 '
[f—-— i AE Ap 565] T (281)

mr

and the corresponding contribution to ([ v)/ét is

_l: AcAy _ u AE An 5% }—?1' ] . (282)

mn

A variable Cf; is defined at « points by

Ci=1 (-A—i-é!) - @) ; 4, ('-A i:) (283)
i

mh H
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Then, the following form is used for (281) at a u point (i, j):
2
(nCO" ) ;3 (284)
and for (282) at a v point (i + 1/2,7 4 1/2),

—(F[Cﬁ‘; }:"4_ 1,‘1._.""1."2' (285)

This choice of differencing does not lead to any false generation of total
kinetic energy.

4. The Pressure Gradient Force
Asin Eq. (262), the pressure gradient foree in the £ direction can be written
as

- FE{ + oo cj—?::| (286)

n| dc il

The form chosen for the first term is

i oD\ 1 Ay ———
st (pe ik = ——— Uzt §.0%, iy
( ,)'_H!M AZ Ay n, (7 ‘.,D)|+U2.J (287)

Continue, for the time being, to ignore the bar operator.
Corresponding to the relation

Eq. (287) can be rewritten in the form

7 OO\ 1 Ay S
Y et P —————— T I O [ A 2
(” 65)(-»1.'2.J A An ny L84n®) = O 3tivuny e

To be consistent with Eq. (288), the following form is chosen for the second
term in Eq. (286),

o\ A e,
= — —— - = ey 22 B s A : 29¢
(n " (‘Af)uuz.j A& Ay n; [(mo2)* denliv s, (282}
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where, through the application of Eq. (194) at each grid point,
1 9P* .
(o) = mye, [}5"? il il.;’ (290)

where P} is defined by Eq. (251).
Adding (289) to (288) gives a form that corresponds to

R [a(ﬂ:ﬂ)) d (o) é‘n],

n| 0 " da B

from which it can readily be shown that the properties of the vertically
integrated pressure gradient force discussed in Section V, A are maintained.
In summary, the pressure gradient force which contributes to (d/ct) x

(l_[(”)“]h 1/2, ] is

A x £ i T e l
—T:_L [7* 8.0 + (nmow)® O]ty ya, e (91)
’ _

Similarly, the pressure gradient force which contributes to 8/t ([ ")} ;41,2
is

A¢

g2

[ﬁ’i (511(1)& + (T[UG!}" éun]?.j-r 1/2» (292.'

where (now)f; is given by Eq. (290).

5. Kinetic Energy Generation and the Thermodynamic Energy Equation
) gy Lg

The contribution of the pressure gradient force to the kinetic energy
generation, &/t (] ["“*3u® )i, 2, j» is obtained by multiplying Eq. (291) by
Uty 12, j» Then the kinetic energy generation is

An\* e
- (u -i) [7 5.0 + (mox) 6em)ts 10 (293)
n Jivyz.g

From the form of the superior bar operator, it can be shown that Eq. (293)
is equivalent to

An\F I
(u rl".) [7 8.0 + (now)® d.n)is 2, i (294)
n Jivyz2,

B e P B L o e L o roe Dt e B a8 £ AL T LN
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in the sense that the difference R; 4y, defined by
Riyy2 = (293) — (294)

vanishes when the summation over all i is taken; ie,

;an = 0.

Using the definition of F given by Eq. (268), Eq. (294) becomes
~[F 8@ + u(Ay/n)naa) 1] (295)

It can then be shown that

4

Y (295) = Z’:tbdfl-‘ = (u %’) (noa) o, Jk 2 (296)

i iJ

Similarly, the contribution of the gradients of ® and 7 to d/ar ([[V4v?)
is given by

— g

Y {(Dﬁ,,(? - (v %f—) (noa)’ 6,1 :l

k
(297)
: .

o

Now ¥, (296) + 3 (297) give the discrete form of the total kinetic genera-
tion by the pressure gradient force, — v - [Vo® + ox Vx]. It is useful to
note that ¥, [first term of (296)] + 2.i [first term of (297)], which gives the
contribution of @,* to the kinetic energy generation, can be written using
the eguation of continuity (266) as

[F[L. 1 . vl
—[' E"E_l + A—%(g:‘jl - Sf..rl)_] Of . (298)

The derivation given in Eq, (185) leading to a finite-difference expression
for wz can be followed exactly, but now with the horizontal differencing
specified as well. Using such an expression in a manner completely analo-
gous 1o the procedure in Scction V, B, 8, allows us to write the thermo-
dynamic energy equation given in Eq. (209), with the horizontal differencing
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incorporated, as

¢

£ (17 j+ [8(FT%) + S, (GTNE ; + R P 6,(S0); ;

p— L}

1 J i e : ’ Aé g
=— l:(rccm)—-;];] b (noe) o + v a% (now) o, + ]—[QJ . (299)
¢ dt n m 0

where (o) ; is defined by Eq. (290).
C. MaobiricaTtion oF THE HOR1ZONTAL DIFFERENCING NEAR THE POLES

1. Modification of the Difference Equations

The poles are singular points of the spherical coordinates and the velocity
components cannot be defined there; the poles are thus taken as n-points.
The value of 7 at the poles must change as a result of the meridional mass
flux G, defined by Eq. (270), at all the points on the nearest latitude circle
where the meridional velocity component v is carried.

Consider the case of the North Pole, identified by j = p in Fig. 26. To
simplify the computation, the pole is treated as if it were a group of points.
Each point has index i and represents the shaded area shown. Defining
[1i., and S, , based on that area, the equation of continuity (266) is applied
to j = p, omitting all horizontal mass flux terms except G:-‘IP_,_;. After
computing & ]/ét and S for all i, the average is taken.

At the grid point (i, p — 1/2, k), the form chosen for the first line of (263)
multiplied by AZ Ay is

P o O Ty R
7 (]—["lv)?,p‘-‘lfz + 84(F *(”L’")l’,p- 12 — [?;t”vn):{.p—l

— (FOEN_ s — (GO, 12,p-1 + ‘sd{s'ﬁﬂ)f,p-lfl' (300)

3
7
-?)-
/
~

FiG. 26. A polar segment of the spherical grid showing mass fluxes.

~

e T P T o1 T 1 S P T ST ST P IR  MAR [ ] A R L  e T SS gt [ 3l P SY e a1 2

et



i il

R I s i R BN W ol 3 B N NS e e A S MU ik i s L

THE UCLA GENERAL CIRCULATION MODEL 247

Invoking the consistency requirement that the global sum of [ [* be equal
to the global sum of | | gives

[10%-us = {15 + [i-1.p-1 + 2(0Tp + Tl p-1) + [Tews.s
+ Hf+l.p—l} + 4 x I{‘(ni—l.n + 21—[-‘.,9 + rli+l.p)' (301)

The definition of ) is readily obtained by replacing || everywhere in
Eq. (301) by S. The requirement for kinetic energy conservation during
advective processes alone given in Section 111, C can be shown equivalent
to the requirement that the new variable #* be chosen such that (300)
vanish when v is replaced by a constant value, which can be taken as unity.
The resulting equation can be shown consistent with the continuity equation
(266) and é/ét [ i, , = Gi -5 if

f?—wl'fl.n— 12 = }Ff_“m.p_l, (302)

where F* is defined by Eq. (274).
In a similar manner. at the grid point (i, p — 1, k), the form chosen for
the first line of Eq. (262) multiplied by A& An is

.
0 i k 5 (aa nil Ti
Er (] Jm“};, p-1 F Og(FHIgk p-1 — (FH p=3/2

= (1)=8* u)==n' 1 N
= (FYBN 1, pmapy — (GO0 Ns12, p-3/2 + Ea—{-‘—‘“ Jp-1- (303)
k

Again, it is required that the global sum of [ " be equal to the global sum
of [ ], which gives

:'f"::—i = '!l‘”___[i—uz.p + nf+1;2.p + E(HE—IM.P“I + ]—Ii*llz.p“l)
+ “1~|r1.p—z + nii-l,iz.p*l} 2p 'I!‘{3(nf~m.p + ni+l12.p)

+ I][..]I'z_pml + l_l[i+],‘2,p-'l}'
(304)

The definition of § is obtained by replacing [] everywhere in Eq. (304)
by §. For kinetic energy conservation during advective processes alone, it
B necessary that (303) vanish when u is replaced by unity. The resulting
“quation is consistent with Eq, (266) and @en [, =G, \,if

Flvmp-1 = HAFt 2, 0oy + Floyps, pes). (305)
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2. Longitdinal Averaging of Selecied Terms Near the Poles

To avoid the use of the extremely short time interval necessary for com-
putational stability due to the convergence of the meridians toward the
poles, a longitudinal averaging is done of selected terms in the prognostic
equations,

For the purpose of illustration, consider the simple system of lincarized
equations that governs a gravity wave on the spherical earth:

u e I 8(}')

3
dt acosg ai (306)
S ! .aff?.: 0, (307)
ot adep
] . | Al
o, _oH (_‘:‘_f + f.“.-.'i“"f'.?l!) e (308)
at acosg\d cp

where H is the equivalent depth. Other symbols are as defined in Section V,
C. Because our concern here is only with waves that have [requencies
sufliciently higher than the earth’s rotation rate, the coriolis force has been
omitted for simplicity.

With the grid shown in Fig. 26 and a space finite differencing consistent
with that of the model, the discrete analogs of Egs. (306)-(308) can be
written as follows;

iy g2, j l
ot acos @ A

(G3@iv12.5 =0 (309)

vy ez , 11
bt VR V) e = 0 310
ct +uA(p (@ @k j4 12 = 0 (319

0y _oH |1 _1_ . & 31
7 e ff’[ (5,u) + J,(v cos (f,n)]Jl = i (311)

Let us consider a solution of the form

Uisy2, ;5 = Re {@i;exp [i(s(i + 1/2) AL + at)]} (312)
'L‘i,]‘i' 1 = {’;j +1/2 :?.‘(p [;{.\l Af:. + UI)]: (313)
¢i.; = Re {¢; exp [i(si A/ + a1)]} (314

T EITIN T IR TG IR NS S A & TR ST T AT T e e e gy
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where 7 =-,/— 1. Substituting Eqgs. (312), (313), and (314) into Eqgs. (309),
(310), and (311), we obtain

. 7s sin (s AA/2)\
aity + cTt:Eh::_fﬂ ( S.—‘_\;/z_ ) -51( )ff)j =0, i (315)
i ]
Tﬂ'ﬁJ+|'r2 + “/.H Aqﬂ(‘ﬁ;*l —r &';J) = 0, {316)
o gl | _ [sin(s AZ/2) "
1o + @ cos [:N; ( s Aif2 SN,
I £

where S,(s) = 1 for present purposes. Eliminating @ and © [rom Egs. (315)-
(317) gives

_ 2 e
('l[ s “m“ANh).j{s)] Q'T, ) C -[(ﬁj—fﬁj—l)w_bmhwz

acoseg; (sAL2) cos @;

" ~  COS ;. e
= (B — b)) SuRens 2:| = 0P (318)

Cos @

which is the discrete analog of the meridional structure equation for ¢.
Here C? = gH.

For a given s, with the boundary condition c]; = 0 at the poles, possible
vitlues of o arc obtained as eigenvalues from the matrix equation represented
by Eq. (318) applied to all j interior to the poles. When s is large, the matrix
is very close to diagonal for j's near the poles and, therefore, the maximum
cigenvalue can be only slightly larger than the maximum diagonal com-
ponent, which is approximately the maximum value of the coeflicient of the
lirst term of Eq, (318), If S;(s) = 1, this argument gives

q

L2 1 \*A).

o % 23 |
i — s
max a A, {LO“ @ nin 2

(319)

For most conditionally stable time difference schemes, the stability crite-
fon s given by

lo| At < &, (320)
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where ¢ is a constant (g = 1 for the leapfrog scheme). From Eq. (319), this
stability criterion is approximately equivalent to

clae.. sA (e, .
o A7 sin 5 < 2(c0.5 @ )inin: . (321

To make the scheme stable for all resolvable waves, it is necessary to require

A 3
i L 2 (608 @i (322)

a A 2

Thus, since (€os ¢ ;)i < 1, an extremely small At must be used to ensure
stability.

The method devised to allow the use of a longer At in the model is to
smooth the longitudinal pressure gradient in the momentum equation and
the longitudinal divergence in the continuity equation with a longitudinal
averaging operator. If the amplitude of the longitudinal pressure gradient
and divergence are modified by the factor

Si(s) = (a Adjd*)[cos @;/sin (s AL/2)], (323)

where d* is a specified constant length, then Eq. (318) becomes

4C €* [.s COS @j- 112
T q’]" (a Ap)? l{f‘bj qb‘_ I e cos @;
= (951*1 ¢j) CO;;:'Q; ”Z] = szﬁu. (I324)

for all j. Thus the first term now contributes to the eigenvalue ¢* a constant
amount 4C%/d*?, The depende s 0N (€OS @), 18 €liminated, and a
At satisfying the stability criterion depends now on the constant length ¢,
In the model, d* is taken as the latitudinal grid size, a Ag.

In practice, it is sufficient to perform the smoothing only at higher latitudes.
Then

Si(s) = (Ai/Ag)[cos @ fsin (s AL/2)] (325)

when the right-hand side is less than 1; §(s) = 1 otherwise.

To apply the operator, the zonal pressure gradient and the zonal mass
flux are expanded into Fourier series and the amplitude of each wave com-
ponent reduced by the factor §;(s). This is the bar operation shown in

T Y S A T s T N T I L TP T T T T T T S L T T e
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Section VI, B. The form of the smoothing of the mass flux given by Eq. (268)
is chosen to maintain the energy conservation.

It is important to note that this smoothing operation does not smooth or
truncate the Fouricr expansions of the fields of the variables. It is simply a
generator of multiple point difference quotients in the space difference
scheme. For the example given above, the solution of Eqs. (313), (316), and
(317) is still a neutral oscillation.

VIl. Vertical and Horizontal Differencing of the Water Vapor and Ozone
Continuity Equations

A. VERTICAL DIFFERENCING

1. In g-Conserving Scheme

Let ¢ be the mixing ratio of water vapor or ozone. The corresponding
continuity equation is given by Eq. (145). The vertical differencing given by

1

'T,"' () + V- (mvage) + _1_ [(ﬂ'ﬂk p1@eey — (MO Gi— 1] = mS, (326)
ot ACr'k

guarantees the conservation of total water vapor or total ozone, when there
are no sources and sinks, for any choice of §.

The ozone mixing ratio varies in the vertical over a wide range of magni-
tudes and, as with potential temperature, shows a highly skewed “mass
density function,” Applying the considerations of Section V. B, 3 to the ozone
mixing ratio, a g can be chosen that leads to conservation of a discrete analog
of the global integral of In g with respect to mass. From Eq. (189), such a
¢ must be of the form

. Ing, — Inqp,s
(] = L3 327
Wt = Waew) = Waw) (3=7)

Further discussion of this scheme has been presented by Schlesinger (1976).

The same form for g, ., could also be used for the water vapor mixing
ratio. Release of heat of condensation, however, makes the choice of § for
water vapor more dillicult, as discussed below,

2. Moist Adiabatic Process—Continttous Case

Consider, first, a moist adiabatic process in the continuous atmosphere.
Let the air be saturated and remain saturated, and let there be no heating
other than the heat of condensation.
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Let ¢ be the mixing ratio and ¢*(T, p) be the saturation mixing ratio of
walter vapor. Then the water vapor continuity equation, when condensation
is occurring, is

dg/dt = dg*/dt = —C, (328)

where C is the sink of water vapor per unit mass of dry air. This can also be

writlen as
cq*\ dT Jg* D
(a.l.)',ﬁ 5 (S . = —C, | (34,)]

The thermodynamic energy equation is

(d/dt)e, T = wa + LC, (330)

where L is the heat of condensation per unit mass. Then Egs. (329) and
(330) give :

w f:(]* o ﬁq*)
C = —-—T—r—— mal e &L, . 331
L [(IJ/C',,)((.*(]'*MT)F] [( op )T p (“'T » (531)

Substituting Eq. (331) into Eq. (330) gives
dT/dt = w(3T/ép),,, (332)
or

[@/e1) + v+ V],T = w[(@T/p), — @T/2p)]. (333)

AT 5 ik i
GRS} R
op Jo & o \ep /sy e, \eT /o

Here &/ép without a subscript is the derivative under constant horizontal
coordinates and constant time.

The corresponding equation with the ¢ coordinate can be readily obtained
by using the [ollowing relations:

d ¢ d J
(Tﬂ.v) n(-;.w.v) ~(+V)
ct " ct s T\OL do

where

T T T T Y T TR T e T S T T e e i, e Y e TS T S e e A 5 ot S 5T TTE T RS TR T



~rmmanr 8 St e i D i 2 0 e

THE UCLA GENERAL CIRCULATION MODEL 253

and
.
(1) = g :;"‘V"V)H"—de‘.
o
With these, Eq. (333) becomes

2T J aT aT
(3 + v V) T = (i]) o (f + v V) T+ ng [((A_—) .- (T:, (335)
L‘r a f,‘P m Gr (;1, m (:"p

where

& 139

dp wméia

Now making use of the relation
=T Tk A i =]
i MY i W . .EI, (336)
ip ﬂp = al o ap
the last term in Eq. (335) can be written as
gy . 1, [& §r B
/e 1+ [(fdf‘c”p){f‘r.j*/ﬁT')p] & 0p ¢, Cp
I I g0 L fg*
. T— ‘[_(_P_) 2 Ea :, (337)
1 + [{L,-‘c'p)(uq /cfl)p] Po/ €p ¢, Cp
With this expression, Eq. (335) becomes
~ -F,]w -\'
(f + \'-V),, T = (‘,—) a([— + \'-V)n'
ot oeptn ot
I L L-:.-oe' In L [ fer*
8 (f) e [ !+ _(f) e
Po/ Cp ¢, dp ||| e, \¢7T J,

From the form of the hydrostatic equation given by Eq. (122) the following
equation can be derived

()
0

an ¢ .
('p( ) = {_}) (CF‘T + ‘D). (‘339)

p
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If the moist static energy h and the saturation moist static energy h* are
defined by

h=c¢T+ @+ Lg, h*=e¢T+ @+ Lg%, (340)
Eq. (339) can be written as

p\ o0 Log* 1 ok
(PU) ap J ¢, op ¢, dp’ (341)

Using this expression, Eq. (338) can be put in the final form

a & 8 ah*/ap
oLy =l i<l .Y - Lt T A
(0: ol ), (r}p)m % (0: Y )‘, g ¢, + L(éq*/éT), Rd, (342)

where dh*/dp = 0 when the lapse rate is moist adiabatic.

3. Moist Adiabatic Process—Discrete Case

The derivation ol the vertically differenced form of the water vapor con-
tinuity equation is completely analogous to that for the continuous case
presented in the previous subsection.

Let gif = ¢*(T,, p). When level k is saturated and remains saturated,
Eq. (326) may be rewritten as

a l : x . i -
(a + v V) qi + M—D_)k[(ﬂ'd]kn(ﬁﬂ —q¥) + ()1 (@¥ — G-1)] = —C,
(343)

and then as

dg* a . aq é
(aT)pk (Ff + \'k V) Tk ‘l (ap )Tk (’rk (E + vk V) nk

1
- (‘TEEBX [(mi')lw (dksy — qf) + (nd ) (gf — Qk—l)] = —C, (344)

(@)=l =G
0T Jox - \dT, pk’ ap Ju Py J v

where

I
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The thermodynamic energy equation is, from Eq. (209),

7 i 1 i 5
G‘; + ¥ \?) Ty + o Ao, [ 1(Pibisy — Ti) + (0N o (T — Pidi-1)]

A L
= —l- Oy (E_ o+ W V) m + Cxs (345)
¢ ct C

P p

where o, = ¢,06(CP/2m)/oy and 6y = (p — Pr)/7x. Eqs. (344) and (345) give

I aq* u, (8q* 3 '
o L [(L/e,)@q™/8T )y l:{( ap )Tk ¥ s (E’T pk 76\ ar + %V |m

q¥\ P ; y
- ({;{,:)Fk (n_AkEﬂ (Vs 1Oy — 04) + (@004 — Oy))

1 - : ; ”
+ T o (s 1(@s s — qF) + (moN—1(gd — de-1)}]- (346)

Substituting Eq. (346) into Eq. (345) gives

d aT 0
(—Lﬁ + V- V) Ty = ((‘p )mk ay ('é‘l + ¥ V) ),

1 1 .
1 ¥ [(Lfe,)(@q*/eT)y] (m Ao [‘“”’“ ‘ (P“g*“

L L L
+ -C_{ik"'l —_ l)kﬂk — ;—'qf) + (ﬂd’)k_| (1"'[\.0;‘ 4+ ‘E'qr

P P P

~ L
- POy —— qk_l)} (347)

“p

where

0T L {dg* B q*
P Sk € Cp\ 9P Jrx e \ 0T /o

Equation (347) is an analog of Eq. (338).
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The coeflicient of (), ,  in Fq. (347) is

. " L o | a, - .
PelOvir — 0 + —(Gxsy — q¥) = — [lepThss + Dusy + Liisy)
'."p f",

~ (e Te + O + Lag)]

l
= — (f!k-l 1 — hi),

where Fq. (199) has been used. Similarly, the coefficient of (m6),.-, in Eq.
(347) is '
(feg)hit = hy—y).

Thus Eq. (347) can be written as

a oT ¢
UL RIS

1 1 - . .
B Cp ‘+ L_(bq*/ﬁ T)pk (_7[_3-0:)1 [(,Ia)k+ I(ﬁk+1 = hk )
+ (m6)— (bt — ﬁk—l)]‘ (349)

Equation (349) is an analog of Eq. (342), but the choice of § (or equivalently,
h) at the even levels remains to be specified,

4. Choice of ¢ for Water Vapor

From Eq. (349) it is clear that a negative (né) has a warming effect for
fix . > h¥. This may occur even when hf, , < h¥, that is, when no condi-
tional instability exists between the odd levels k + 2 and k, which carry the
temperatures. (The same effect can similarly occur for a negative (), ,
when A > h_,, even when I < hf_,.) Any moist convective instability
produced by such a warming effect is the result merely of a poor choice of
Jx+ and should be regarded as a kind of computational instability, which
may be termed “conditional instability of a computational kind” (CICK).

The CICK phenomenon can be avoided if the choice of §,., and thus
hy 4, satisfies the following requirements when hf, , < h¥:

Bovi < 2 when r, =1
and (350)

hr.;; = ﬁk-i-l. Wheﬂ !‘,‘+z — 1,

B e e e O N M P 3 o [ T E T ey
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where r, is the relative humidity of the level k, given by

e = Qu/dK- (351)

One definition of fi,, , that satisfies the above requircments is

Py = U (/e Sier) + Seen (352)
where
Ser = Cpfu+1 + By, (353)

Py + Faa — 2y
- R 354
2—r =tz e

e+ =

and Jif,, is an interpolation of i* from the levels k and k -+ 2 to the level
k + 1 which guarantees hf,, < B, < hrif hfea < hf¥. Equation (354)
givesFy iy = 1(and, therefore, fi, = hif, ) wheneither i, = 1 orr,, = 1:
then ., < hy., < hff is guaranteed regardless of the form of f*.

The form of the interpolation used to obtain i* is important, however,
in relation to that chosen for §, , . Since

ht = Lg¥ + s,
an interpolation for ¥, ; independent of that for Si+q could in theory allow

the implicit generation of a negative ¢7, ,. To avoid this, the interpolation
for Iif, | is chosen proportional to that for S iyt

Blfﬂ — hf = Ay o1 — 5),

htva — Wy = A(Sgsr — Ske1h (355)
and
Wk
A= W (356)
Skrz — S

Recall that Egs. (198) and (199) give

Sier — 8§ = Pkfp“jkﬂ = Oy),

Skra — Spyq = ‘”J.-uf-'p(omz = Oy 1),
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and thus

Skt2 = S = Pk(‘p(ﬁk-l-l - 0) + Priacy(Ohyn — O+ 1),
where

s Ind,—Iéo,,,

T (10c12) = (1/0,)
Equation (352) gives
Grs1 = “/I—)Fkﬂ(ﬁfﬂ = S+ 1) (357)
There is no reason to choose this §, however, if the air is not near saturation.
Presumably, the application of Eq. (327) to water vapor mixing ratio is a

better choice for the relatively dry case. The final form chosen for use in
the model is a weighted mean of Eqs. (357) and (327), given by

. - 1 .
ey = Fryg [Z (ﬁfﬂ w= 3k+1):l

5 Ing, — Ing,,, J
I — Fey —=. |. 358
i Tir) [(U‘hﬂ.) = (1/q) (358)

The CICK is still prevented because Eq. (358) becomes identical to Eq, (357)
when Fpy = 1.

The use of Eq. (358) for §,. ,, however, does not guarantee that g at odd
levels remains positive or zero. For example, if g, = 0, §,.y > 0 and
(md) sy > 0, then the downward current removes a positive amount from
zero. To avoid generation of a negative mixing ratio, g, ., is replaced by
zero when (n6), 4 > 0 and g, < 0 [or when (n6)+, < 0and g;,, < 0]

B. HORIZONTAL TRANSPORT OF WATER VAPOR aND OzONE

The finite-difference scheme for the divergence of the horizontal trans-
port of water vapor and ozone is similar to the corresponding scheme for
temperature, given at the point (i, j) by the second term of Eq. (299), except
that g* and §" are replaced by the harmonic mean when the corresponding
mass flux, F or G, is outwardly directed from the grid point (i, /) under
consideration. This guarantees zero transport out of the grid points where
the mixing ratio is zero.

T T S T T 0 O T T T 0t 1T T g { TR, 5546 s e e ey o T T T ———
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C. LARGE-SCALE CONDENSATION AND PrecipiTATiON

In the model there is water vapor condensation and release of latent
heat not only by the parameterized cumulus convection, which does not
require that the air be saturated on the scale of the grid, but also when the
air becomes super-saturated on the scale of the arid; the latter phenomenon
is called “large-scale condensation.” The excess water removed from an
atmospheric layer in this way precipitates into the layer immediately below.,
The falling precipitation either cvaporates completely in that layer or
brings the layer to saturation and then passes to the next layer below,
Where the process is repeated. When the lowermost layer is saturated, the
condensed water precipitates onto the ground as rain or snow.,

Large-scale condensation occurs when q;;* is greater than aii, where g, *
is the provisional valuc of the water vapor mixing ratio predicted by the
advective process only, and gf* is the saturation mixing ratio at the tem-
perature TU" and the pressure p,-j".

Let € At denote the amount of condensation at level k per unit mass
of dry air when g;* > g#* Then

(‘Tu&)' = fiui - C A, (359)

(T =T} + Lem, (360)
Cp

(@'Y = ¢*[(T*), pf), (361)

where the primes denote values modified by condensation. Equation (361)
describes the saturation condition for the modified moisture and tempera-
ture. From these three equations an equation for the modified temperature
can be obtained

g G ae o e Ev
4" — fp [Ty — Ty = g*[ T b1 (362)

With q,-j", T,-J-‘, p,.j"' and the functional form of ¢*(T. p) given, the transcen-
dental equation (362) can be solved iteratively for (7.*). After (T is
abtained, € At and (q,-j*)' may be computed from Eqs. (360) and {359).

Choosing

Ty =T/} and do = qi, (363)
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(T,

v

1y @y i) are determined recursively by

Toer = Ty + (Llc,)Covy At
+ 1 ( /': p} +1 (36'”
Qv = ¢ — Cv-' 1 AI!
wherev =0, 1, 2 ,and
4 — q‘(? ) .
Cou A - — ;
A e O Ty, (365)
In summary,
I‘ imas
(Tfy =T+ =¥ ca (366)
p v=1 -
@ = af - 3 C.AL (367)
v=]

where v, is the maximum number of iterations in the laver. A value of
Vaay = 3 scems to give suflicient accuracy for present purposes.

The effect of evaporation of the falling precipitation on the layer im-
mediately below is incorporated in the following expressions

(T2 = TH? - Z B o At Dol sz B (368)
pyv=l
('Y = qfi"* + Z C, Atry Aoy /(T4 2 Adys2). (369)
v=1

If the layer becomes supersaturated due to the evaporation, the entire
process is repeated for that layer,

VIII. Time Differencing

To explain the pr mcdurc the equations can be written symbolically in
the following form:

d
T n = f(n, A), (370)

J
2l (rA) = g(n, A). (371)

e e e gy - e e L i e TR
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Cquation (370) represents the continuity equation and Eq. (371) represents
the prognostic equations for the other variables described in the previous
sections,

The leapfrog scheme (L) is given by

7[lu-l-l ey nn-‘l
"—EAW—;-— = .f(nns A")!

atlan+tl _ _n—=1an—=1
o mcn L g(n", A"),

where the superscript denotes a time Jevel. The Matsuno scheme (M),
which is sometimes called the Euler-backward scheme, is given by

(n+1)* n
n - T
— =S A
aelt+1)* 4 (a+ 1) (m* 4 (m)*
Iy A - a"A
1 = T gh_{n‘ A"),
nn‘i 1 _ n,n s 3
i =j'(n(H*IJIA(n+H)
At
+lan+1 nan
R OANT = A " y
___Er— — Q(TT("+ 1) : A(n +1) ).

The time differencing used in the model for the basic dynamical terms is
essentially the leapfrog scheme, but with a periodic insertion of the Matsuno
scheme, as shown in Fig, 27.

L 1 i I L
— d o, me——— e e ———. I t
(SRS —" S— S — T e [ e et
1 L L 1M L L M L. L ﬁ

FiG. 27, Schematie representation of the lime differencimg of the model showing sequence
ol use of leapfrog (1) and Matsuno (M) schemes, Arrows indicate caleulation of the heating
and friction 1erms.

AL present, the source and sink terms deseribed in the Introduction and
the vertical flux convergence term of the moisture equation are calculated
every five time steps, as shown by the arrows in the figure. Those calculations
Are followed by a single step of the Matsuno scheme.

it et
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IX. Summary and Conclusions

In this chapter, only the computational design of the basic dynamical
processes of the current UCLA general circulation model has been described.
To determine the heating and friction, the model includes many important
physical processes, such as those associated with radiation, photochemistry,
the boundary layer, the thermodynamics and hydrology of the ground, as
well as processes associated with grid- and subgrid-scale clouds. These
physical processes could not be adequately described in a single chapter
and, therefore, with the exception of the advective processes for water vapor
and ozone and the large-scale condensation processes, were not included
here.

Section 1 gives a brief outline of the model, whose 12 layers represent
both troposphere and stratosphere. The prognostic variables of the model
are the surface pressure, horizontal velocity, temperature, water vapor and
ozone of each layer; the planetary boundary layer (PBL) depth and magni-
tudes of the temperature, moisture and momentum discontinuities at the
PBL top; the ground temperature and water storage: and the mass of snow
on the ground. It should be noted that the degree of freedom added by
the PBL makes the model eflectively equivalent to a |3-layer model.

Section II describes the principles of mathematical modeling that were
followed in the computational design of the basic dynamical processes of
the model. The basic principle employed in selecting a space finite-difference
scheme from the many that share the same order of accuracy was a require-
ment that the scheme maintain discrete analogs of a number of physically
important integral constraints of the continuous atmosphere. Energy propa-
gation properties in physical space, as well as in spectral space, were also
considered in the selection of a scheme.

Section I11 describes space finite-difference schemes for homogeneous in-
compressible flow, with and without a free surface. Section 111, A shows
that the dispersion properties of inertia-gravily waves are highly scheme-
dependent and that from the point of view ol geostrophic adjustment there
is only one satisfactory distribution (staggering) of the dependent variables
into grid points. ‘

Section III, B discusses finite-difference schemes for nonlinear two-
dimensional nondivergent flow and replaces Part 11 of the paper by Arakawa
(1966), which was originally planned as a separate publication. A drastic
difference in the energy cascade exists between solutions obtained by
schemes that couserve enstrophy and by those that do not. Due to the
relatively small amount of energy in the high wave number range with
enstrophy-conserving schemes, the overall error is expected to be small.
This subsection also derives, for the cartesian grid, the momentum advection

TP o T T b {1 TR AATT S T L e T P I
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scheme consistent with the cnergy and enstrophy conserving vorticity
advection scheme for two-dimensional nondivergent flow. The total mo-
mentum is also conserved with this scheme.

Secuon I, C generalizes the momentum advection scheme for non-
divergent flow to a scheme that maintains conservation of total energy and
momentum for divergent flow. It should be pointed out, however, that this
generalization is not unique and is not necessarily the best choice from the
standpoint of potential vorticity advection when the lower boundary has
relatively steep topography. In general circulation models, horizontal dis-
cretization errors should be small for planetary-scale waves after they are
generated because their horizontal scales are sufficiently large compared
to the usual horizontal grid size. However, horizontal discretization errors
can be very serious for the generation of planetary-scale waves by longitu-
dinally narrow (but meridionally wide) mountain ridges. A search for a
generalization to divergent flow that is better from this point of view is
now in progress,

Section 1V describes the vertical coordinate of the model. It is a version
of the ¢ coordinate below 100 mb and the pressure coordinate above 100 mb.
The basic governing equations in terms of that vertical coordinate are
presented.

Section V describes the vertical difference scheme. Various integral prop-
erties are presented in Section V, A: Section V, B then discusses the logical
procedure for deriving a scheme that maintains discrete analogs of these
properties. Section V, C presents the final determination of the vertical
difference scheme based on considerations of accuracy in both the vertical
propagation of wave energy and the hydrostatic equation.

Section VI presents the horizontal difference scheme of the model. The
scheme for three-dimensional motion on a sphere is a generalization, al-
though not unique, of the scheme developed in Section I11, C. With the
current scheme, however, enstrophy is not conserved for two-dimensional
incompressible flow on a sphere, and solutions from the model show some
computational quasi-stationary noise near the poles that would seem to
correspond to a false production of enstrophy. The new generalization now
being sought should be better from this point of view also. Section VI, C, 2
describes the method devised to avoid the use of the extremely short time
interval required for computational stability due to the convergence of
meridians toward the poles. The method employs an operator to smooth,
- a longitudinal sense, selected terms of the prognostic equations that
involve longitudinal differences. The result is equivalent to the use of multi-
point finite-difference quotients and the space hinite-dilference scheme re-
mains energy uunauvmg

Section VIT gives the space finite-difference schemes for the advection of
water vapor and ozone. Special advection schemes are necessary both in
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that the mixing ratios of these atmospheric constituents vary in space over
a wide range of orders of magnitude, and also in that the release of latent
heat through condensation of water vapor can cause a false moist con-
vective instability, Our method for the calculation of the large-scale con-
densation is also described in this section,

In Section VIII is described the time differencing of the model. The
heating and friction terms are calculated every fifth time step. For the
basic dynamical processes, at the steps which immediately follow the cal-
culations of heating and friction, the Matsuno scheme is inserted; for all
other time steps. the leapfrog scheme is used.

Descriptions of physical and computational aspects of the model related
to those physical processes that determine the heating and friction will be
published separately elsewhere. The most complete documentation cur-
rently available for the radiation and photochemical processes is given in
Schlesinger (1976) and for the boundary layer and stratus cloud processes
in Randall (1976). The parameterization of cumulus convection is based on
the theory proposed by Arakawa and Schubert (1974). Some computational
problems associated with the application of the theory were discussed by
Schubert (1973). A more complete description of this aspect of the model,
including the more recent revisions, is now being prepared for publication,
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