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Numerical Advection Algorithms and Their Role
in Atmospheric Transport and Chemistry Models

RicHARD B. Roop!

Applied Research Corporation, Landover, Maryland

During the last 35 years, well
described and tested. This review summarizes

over 100 algorithms for modeling advection processes have been
the development and improvements that have taken place.

The nature of the errors caused by numerical approximation to the advection equation are highlighted.
Then the particular devices that have been proposed to remedy these errors are discussed. The extensive

literature comparing transport algorithms

is reviewed. Although there is no clear cut

“best” algorithm,

several conclusions can be made. The judicious use of simple finite difference schemes {second-order time

differences and even-order (>2) spatial

differences) provides a minimum level of accuracy that is suitable

for many atmospheric applications. More complex schemes can yield a significant improvement in
accuracy. but sometimes at great computational expense. Spectral and pseudospectral techniques consis-

{ently provide the highest degree of accuracy,

but expense and difficulties assuring positive mixing ratios

are serious drawbacks. Schemes which consider fluid slabs bounded by grid points (volume schemes),
rather than the simple specification of constituent values at the grid points, provide accurate positive

definite results. The computer

memory requirements of the volume schemes can be excessive. Recent

attempts to maxmize accuracy while keeping cost low have lead to such useful schemes as the one

proposed by P. K. Smolarkiewicz.
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. INTRODUCTION

\ivective processes are of central importance in all aspects
'ty namics. Because modern computing machines have
“Lite  nossible to build realistic numerical models, there has
heen cvtensive work in the development of numerical algo-
“thms 1o model advective processes. This effort has been mul-
“disaaplinary with well more than 100 numerical algorithms
“eing reported from the fields of plasma physics, meteorology,
wcanography, and computational physics.

Ml he realization that man-made alterations of the atmo-
"here by trace gases might significantly affect the global bio-
Prere has generated great interest in the development of con-
" .ransport and chemistry models. In particular, the dis-
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tribution of trace gases by the atmosphere is of importance in
studies of stratospheric ozone depletion, acid deposition by
rain, and climatic changes caused by radiatively active trace
species. Large-scale, two- and three-dimensional transport and
chemistry models are a fundamental tool in understanding
these environmental problems and in projecting what the
impact of additional contamination will be. It is necessary to
model advection accurately within these models.

The numerical modeling of advection, however, is plagued
with difficulties. All schemes have numerical errors, and it is
commonplace for unrealistic negative constituent values to be
generated. The most simple. straightforward schemes have
such large errors associated with them that the inadequacies
of the advection algorithm quickly dominate the model, and
the model bears little resemblance to the physical situation
that the model was built to represent. Furthermore, efforts to
correct one error in an algorithm are frequently met with the
magnification of another error: for instance, it is easy to devise
a scheme that does not generate negative constituent densities,
but it is likely that the numerical diffusion in the “corrected”
scheme is intolerably high.

When faced with the prospect of choosing an advection
algorithm, the scientist confronts a very large field of literature
from which no clear best algorithm can be defined despite
numerous intercomparison studies. This review is aimed at the
practitioner who needs to incorporate advection into a con-
stituent transport and chemistry model. It is not addressed at
the numerical scientist. and it is not an original comparison
and evaluation of all transport routines. A particular goal is to
show how the errors in transport algorithms arise and what
attempts have been made to reduce these errors.

The paper is divided into six sections. In section 2 the ad-
vection problem is defined, and the classical problems that are
encountered when attempting to model advection are dis-
cussed. Also. the desirable physical and computational at-
tributes of advection algorithms are considered.

In section 3 the numerical approximations used in modeling
advection are presented. The section is divided into two sub-
sections. The first subsection discusses four simple schemes
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that serve not only as a paradigm for the errors encountered
in transport modeling but also serve as the fundamental
schemes on which many of the more complex schemes are
based. The second subsection then attempts to list and classify
many of the more complex schemes. The classification is
somewhat artificial, but it is an attempt to create order out of
the literature in such a fashion as to elucidate what has been
attempted in the effort to reduce errors in advection models.

Section 4 discusses comparisons of transport schemes.
Much of the section is based on the work of Chock [1985] and
Chock and Dunker [1983]. Aside from the papers explicitly
devoted to comparison studies, the papers that introduce new
schemes invariably contain comparisons to other accepted
schemes. It will be seen that there are a few very good and a
few very bad schemes and a host of schemes in the middle
ground that are difficult to distinguish from one another in
terms of general performance. It is difficult to determine which
scheme is best. Part of the indetermination is due to the fact
that some schemes do well when evaluated by restricted cri-
teria, and part of the indetermination is due to the fact that
there is no definitive, quantitative method of evaluation.

In section 5, sections 2-4 are discussed in light of the partic-
ular problems associated with atmospheric chemistry models.
The detailed numerical problems of combining chemistry and
transport are deferred to a second paper in preparation by this
author. A summary is offered in section 6, and the most prom-
ising algorithms are highlighted.

It is necessary to limit the scope of the current review. Orig-
inally, an attempt was made to review the literature of plasma
physics, meteorology, oceanography, computational physics,
applied mathematics, and air pollution research. Well over
100 schemes were found, and during the research for this arti-
cle, at least 10 new algorithms were introduced, and at least
four new comparison studies were published. Many of the 100
or more schemes are just a reformulation of other schemes,
sometimes obvious, sometimes subtle. Many of the schemes
work well only for the special application for which they have
been designed. An attempt is made here to limit the discussion
to transport schemes which might be appropriate for two- and
three-dimensional global models of the atmosphere.

The interested reader is referred to a survey by Thompson
[1984] that was received after this review was finished in draft
form. Thompson’s work is an attempt at an exhaustive compi-
lation of transport algorithms and studies of transport algo-
rithms. The work is much more numerically oriented and
touches on a wider range of material than contained in this
review. In the final section of Thompson’s survey, desirable
features of transport algorithms are listed. The reader will find
both the focus and the conclusions of these two reviews to be
somewhat different.

Good introductory material to the advection problem can
be found in the works of Richtmyer and Morton [1967],
Roache [1976], Haltiner and Williams [1980], Peyret and
Taylor [1983], and O’Brien [1986], among others.

2. MODELING ADVECTION

2.1.  Advection Equation and Mixing Ratio

In the absence of sources, sinks, and viscosity the rate of
change of a constituent in a fixed volume in a fluid is equal to
the amount of constituent transported across the boundaries
into or out of the volume. This is expressed by the constituent

continuity equation

oC

—+V:uC=0 i

ot
where C is the constituent density and u is the fluid veloci:,
(for instance, see Gill [1982, p. 67]). The quantity uC is deﬁn::;
as the constituent flux. Equation (1) is a particular form of t-.
nonlinear conservation equation [Courant and Hilbert, 19¢:
p. 147].

Equation (1) is the flux form (also called conservation forr

of the constituent continuity equation. The equation can -.
rewritten in the advective form

dac oC

s o +u-VC=—-CV-u
where dC/dt is the substantive or material derivative. Adve..
tion is represented by u-VC. For incompressible flows (or {--
pressure coordinates in the atmosphere) the velocity field
nondivergent, the right-hand side is zero, and the constitue:
is conserved following a fluid parcel.

A quantity frequently used in constituent transport moc-

eling is the mixing ratio

u=Clp
where p is the density of the fluid. By substituting pu into «!
the continuity equation can be rewritten as

é 0
—fl+u-Vu= —ﬁ<——ﬂp+V~pu>
ot p\ ot

The quantity in the parentheses on the right-hand side is .
mass continuity equation for the fluid and is formally equal :

zero. Thus written in terms of the mixing ratio, the advect::

and flux forms are equivalent. Including all processes, the cor
stituent continuity equation is written as

dy  du

+uVu=P—-L+V- &V
dt ot 4 vH YR

where P and L represent chemical production and loss, anc
is a “diffusion” coefficient which is meant to represent subgr::
scale irreversible processes.

Much of this review will concentrate on the analysis of =
one-dimensional advection equation with constant positive "
locity, namely,

With the assumption of constant positive velocity, (3) repr
sents the shape-conserving movement of an initial distributi.
toward positive x. Since the analytic solution is known in
simple case, the numerical solution can be critically evaluate.
Varying velocity fields, multidimensions, and nonrectangu..
coordinate systems all increase the difficulties in modeling -
but if an algorithm cannot model (3) correctly, then it will
of little use in more complex situations.

The advection equation is often classified as a hyperbc
differential equation. The classification of differential eqt.
tions as hyperbolic, parabolic, or elliptic is generally reser:
for second-order differential equations. The classic secon
order wave equation is hyperbolic and can be expressed -
coupled system of two first-order advection equations.
advection equation allows propagating solutions like the w.
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\tion. but some care should be taken in assigning all of the
s of the advection equation to hyperbolic equations
o peneral and vice versa [Book, 1981]. Grotjahn and O’Brien
{1976] and Sod [1978], for instance, investigate the problems
:‘, caleulating the numerical solutions of hyperbolic equations,
0 most of their results are pertinent to the advection equa-

‘ o orant and Hilbert [1962, chap. 5] offer a complete
w1 of the conservation equation and hyperbolic equa-

qul.
Pmpcrtle

RRSETENIN
nons in general.

I'he fundamental property of the advection equation that
makes it more difficult to model than parabolic or elliptic
equations is the formation and maintenance of fronts (shocks).
Inaccuracies and instabilities in numerical methods are often
mdden or corrected by numerical or artificial diffusion that
.mooths out the errors. In parabolic and elliptic systems this
.muothing out has the same effect as the fundamental math-
Lmaties and therefore does not cause great difficulties. Diffu-
won counteracts the fundamental nature of advection to form
.hocks. Also, the fact that the numerical mechanisms that
torm shock fronts are similar to the mechanisms that cause
numerical instability makes it difficult to write absolutely
\tuble advection schemes for long-time integrations.

s Flux Form and Advective Form

rhere has been some discussion in the literature about

.+ “he flux (or conservative) form rather than the advective

' model constituent transport (see section 2.1). The

st rudimentary argument is that with the flux form it is

ampier to assure that total mass is conserved. This is particu-

iarly obvious for a no-flux boundary condition. Gordon [1981]

compares flux and advective formulations of spectral general

arculation models and discusses many of the aspects of the
two methods.

It hus also been argued that by using the flux form it is
«i~ter 1o avoid the numerical nonlinear instabilities of the type

ried by Phillips [1959]. Very specific numerical methods

« ised to calculate the flux up [Lilly, 1965; Arakawa, 1966;
ilrr. 1968 Piacsek and Williams, 1970; Zalesak, 198la;
Orszug. 1971b: Arakawa and Lamb, 1977; Gary, 1979] (see also
section 3.2.3). The methodology proposed by Hirt [1968] and
discussed by Zalesak [1981a] demonstrates that one type of
nonlinear instability is proportional to the truncation error,
and the differencing techniques proposed by these authors
sssure that the truncation errors will not grow exponentially.
ncamilar vein, Smolarkiewicz [1985] shows that extra accu-

. «un be acquired by reduction of the truncation error
+nen the Hux form is used.

In nonrectangular coordinate systems the flux form might
.x.ctunll_v prove more difficult to code than the advective form
I Thompson, 1984, p. 232]. Differences between the flux form
and the advective form will not be stressed here. In terms of
?hc mixing ratio the two formulations are analytically equiva-
«L‘!}l. In the consideration of (3) with constant velocity, many
wfvantages of the flux form are not realized. Also, because
et of the schemes that will be discussed intrinsically avoid
Coane ir instability, some of the motivation to use the flux
©rm s lost. Actual implementation of a transport algorithm
might benefit from consideration of the flux form.

Equation (3) states that u is conserved following a fluid
parcel. and most of the algorithms considered here conserve
miss, '.»\lso, all of the moments of u are conserved in the
"'\“‘dl.\"llc cuse. In the development of numerical algorithms,
Mrticular interest has been given to the second moment, T

In a highly diffusive scheme the second moment will be
damped; hence the second moment is indicative of the diffu-
sion in the scheme. Conservation of u? is fundamental in A.
Arakawa’s differencing techniques to avoid nonlinear insta-
bility [Arakawa, 1966; Arakawa and Lamb, 1977). Mahiman
and Sinclair [1977] discuss how the conservation of various
moments of u benefit the numerical solution.

2.3.

Two fundamental properties of a transport algorithm are
stability and accuracy. In general, stability requires the esti-
mated solution to remain bounded as the integration time
extends to infinity. Accuracy requires that the calculated solu-
tion closely represents the actual solution of the differential
equation. It will be assumed that all of the transport schemes
to be considered in this paper are stable (or in some cases very
weakly unstable) and that accuracy is the basic quest in the
development of complex algorithms.

The classic problems of numerical dissipation and disper-
sion are illustrated in Figure 1 for the one-dimensional advec-
tion of rectangular and triangular distributions by a constant
positive velocity. The analytic solution to this problem is the
distribution simply moving to the right while preserving its
shape. In Figures la and 1b the transport has been modeled
using second-order centered spatial differences and centered
(teapfrog) time differences (see section 3.1.4). Small-scale waves
appear and rapidly dominate the solution. The production of
the small waves is caused by dispersion, that is, different Fou-
rier components of the original distribution propagating at
different phase speeds.

In Figures lc and 1d the same problem has been solved
using the donor cell or upstream differencing scheme (see sec-
tion 3.1.2). In this situation, no ripples, or dispersion errors,
are generated, but the original rectangular distribution is rap-
idly dissipated until the field is constant throughout the entire
domain. Because the dissipation error shows the qualitative
features of diffusion, and because the dissipation error can
frequently be shown to have the mathematical form of diffu-
sion, the words dissipation and diffusion will be used syn-
onymously.

Dissipation and dispersion are seemingly conflicting inaccu-
racies which arise in numerical estimates of (3). Much of the
effort that has gone into the development of improved advec-
tion algorithms has simply been aimed at reducing dissipation
and dispersion. The papers of Leonard [1979] and Gresho and
Lee [19817 offer interesting discussions of the sources of errors
in transport algorithms and the philosophy of how to deal
with the errors.

Closely related to dispersion errors is the concept of mono-
tonicity. For the special case that the velocity in (3) is con-
stant, monotonicity implies that the finite difference scheme
does not generate any new maxima or minima [Godunov,
1959; van Leer, 1973, 1974; Boris and Book, 1973]. In other
words, for a constant positive velocity, if it is assumed that
advection over more than one grid point in one time step is
not allowed, then if g;" is the value at time ¢ of p at grid point i
and g, ," is the value at i — 1, then the new value of u at time
t + At at grid point i should be equal to, or lie between, u;'
and g,_," (this demonstrates the close relation between inter-
polation and advection modeling). Hence if the original distri-
bution is positive definite, as will be the case for constituent
fields, then the estimated solution will also be positive definite.
Examination of Figure la shows that the dispersion errors

Errors: Diffusion, Dispersion, and Monotonicity
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Fig. L. Advection in one dimension. with constant velocity, cyclic boundary conditions, and ¢ = 0.5, for 100 time steps.
(a) Rectangular distribution, using leapfrog time differences with second-order centered spatial differences {equation (15)).
(b) Triangular distribution, using leapfrog time differences with second-order centered spatial differences {equation (15)). ©)
Rectangular distribution, using donor cell (equation (1 1)). (d) Triangular distribution, using donor cell, (equation (1 1)).

lead to a lack of monotonicity and hence the production of
nonphysical negative mixing ratios. (Monotonic and positive
definite are not synonyms; positive definite means that posi-
tive mixing ratios are assured.)

A universally useful transport routine should transport all

shape distributions with equal accuracy. Many of the schemes
specifically designed to transport shocks quickly change other
distributions into rectangular waves. Other schemes prefer to
transport triangular-shaped distributions.

There are several practical reasons that influence the choice
of a transport algorithms, for instance, applicability to more
than one dimension, nonrectangular coordinate systems, and
the ability to function under a wide variety of dynamical situ-
ations. Also, any transport scheme should be efficient in both
its use of computer time and storage. These considerations are
discussed in sections 5 and 6.

24. Lagrangian and Eulerian Methods

The use of Lagrangian (particle) methods rather than Eu-
lerian (field) methods [Lamb, 1945; Dryden et al., 1956; Augen-
baum, 1984] eliminates the problem of advection per se, but
because of the stretching and shearing of the original fluid

parcels, it is necessary to either tag more parcels to resolve
scales of interest [Mahlman and Sinclair, 1977] or to reinitic
lize the problem after 2 certain number of time steps. Tk
reinitialization process introduces many of the same trunc:
tion errors that would be present in Eulerian finite differens
schemes [Morton, 1971]. Lagrangian transport algorithms ¥
be made very accurate, but generally at the expense of havir
to transport an arbitrarily large number of particles. Still. L.
grangian schemes are useful for studying the evolution of pr
cesses that are much smaller than finite grids can easily ©
solve (for example, turbulence) and for simple flows or she’
time length integrations. For most global atmospheric pre”
lems, however, the time integration is sO long that the init:
parcels become SO intertwined and contorted that it &

" become difficult to interpret the results [Hsu, 1980]. Theref®

the current emphasis is on Eulerian methods.
3. NUMERICAL MODELS

3.1. Classic Schemes

The formation of many transport schemes simply invol
the method chosen to handle the derivatives in (3). In relat
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to the spatial derivative, a small number of methods are used
(o estimate the time derivative. Therefore a great number of
the recorded transport algorithms are merely different repre-
wentations of the spatial derivatives. One of the basic philos-
ophies invoked in deriving advection algorithms is to generate
o luebraic representation of the spatial derivative and
vy reduce (3) to an ordinary differential equation in time
M'.:m. well-known numerical techniques can be used. One
_ommon way of estimating the derivatives in (3) is to consider

(he Tuvlor series of u about ¢ (or x):

ou(x, t
_‘ug_Z_*_%

O uix, ¢
ax. 1+ AN = X, )+ At P Afz—‘(—z*'"'

or?
4

\ nme scheme (spatial derivative) is first-order accurate if the
“ . lor series is accurate to the term in At (Ax). It is second-
rder accurate if the Taylor series is accurate to At?, and so
on. In general. advection schemes that are accurate to an odd
order are diffusive, and even-order accurate schemes tend to
we dispersive [Anderson and Fattahi, 1974] (see particularly
Tukacs [1985]).

Another common (and often quite similar for the advection
problem) method for generating estimates of the time deriva-
mve 1s the Runge-Kutta technique [Carnahan et al, 1969;
ior.id 19787 In this technique, rather than calculating high-

‘erivatives as might be required in (4), more and more
«oufale approximations are developed by requiring that the
«wilution be estimated at a number of intermediate steps
Juring the time integration. Many of the methods in common
usage are or can be interpreted as Runge-Kutta techniques.

The time integration of (3) can be carried out either ex-
phently, in which case the spatial derivative terms are only
evaluated at known times, or implicitly, in which case the
patial derivative is evaluated at the same time at which the

1 s being sought [see Haltiner and Williams, 1980].

patial derivatives can also be calculated at a combi-
aation of known and advanced times (for example, Crank-
Nicolson and semi-implicit).

The characteristics of explicit and implicit time stepping are
quite different. Explicit time stepping is conceptually simple,
and the cost per time step is generally low. The source of the
errors that arise in explicit time schemes are often readily
«denntied and therefore can be alleviated or remedied. It is
cmetimes necessary to take prohibitively small time steps to
s-wute thut un explicit scheme is stable.

Imphcit schemes are stable for any time step. However, im-
phett schemes are either iterative or require the inversion of
matnices that reflect the size of the spatial grid. These tech-
Mques make the cost per time step high. Using computational
f‘mnse as the criterion of decision can require comparing a
Mrge number of relatively cheap explicit steps to a smaller
“umber of expensive implicit steps.

' Implicit schemes tend to have dispersion errors caused by

: j.!"u‘:‘mon of shortwave features. These errors are partic-
)L‘”K'ﬂ;’:\hcn long Fi.me steps are 'taken. Therefore despite
“'<5CT;1(|()11H(IK;HA'1 stability Qf implicit .schemes, cz}reful clon-
. 'lo .t e 1mportant. time scales in the flow is required

*Ure an accurate algorithm.
dc::l:lp][‘;f:n(?mel'Sthep;')ing will .be ?onsi(.iered.in muc‘h ‘more
meant. h‘owlen.lp Icit time steppmg in this revxew..Th1§ is not
"“”“-lmpl‘ici[\?r‘ to underestimate the value of implicit and
time schemes. Very accurate results can be ob-

tained from implicit schemes [Chock and Dunker, 1983; Long
and Pepper, 19817, and there are situations where their use is
attractive.

From (4), rudimentary estimates for space and time deriva-
tives can be derived, depending upon whether the series is
expanded in Ax or At. By truncating after the first-order term,
the following estimates are obtained:

0 ottt
“_lu_ ~ ux+1 Aux (Sa)
0x Ax
or
Oou ' =ty
e o B ek 5b
0x Ax (55)
du uiwm —u
—_—— ——— forward 6a
ot At (forward) (6a)
or
A t__ At
7” =~ s e B (backward) (6b)
ot At

The index i represents the spatial dependence. Equations 5)
and (6) form what are often called one-sided or uncentered
differences.

Second-order centered differences can be derived from (4) by
subtracting the form of (4) written with the plus sign from the
form written with the minus sign to yield

a t__ t
O Hies — Hioa
r

7
0x 2Ax @

6,1 ‘uil"‘At . llil'At

_— leapf 8

2 AL (leapfrog) (8)

In order to discuss the nature of the numerical diffusion in
the schemes detailed below, it is useful to derive the canonical
form for the finite difference estimate to the second derivative.
If the form of (4) using the plus sign is added to the form of (4)
using the minus sign, then an estimate for the second deriva-
tive follows:

OM iy = 2 oy o)
oxr Ax?

This derivation of estimates of the derivatives in (3) serves
as a basis for the discussion of the classic transport schemes
below. Details on numerical analysis and the derivation of
higher-order schemes can be found in many numerical analy-
sis textbooks [e.g., Ames, 1977; Lapidus and Pinder, 1982, Hal-
tiner and Williams, 1980; O’Brien, 1986].

Below, what may be considered classic techniques will be
reviewed and discussed. When known, other names for a
scheme will be given. As a note of caution, several of the
schemes are equivalent when the velocity in (3) is constant;
however, they are different in problems with nonconstant ve-
locities. In this event the alternative name serves more as a
reference to identify a similar scheme rather than to connote
identity. There are many other schemes which could easily be
interpreted as classic finite difference schemes for integrating
nonlinear hyperbolic equations (see, for instance, Kurihara
[1965], Rubin and Burstein [1967], Emery [1968], Young
[1968], Tavlor et al. [1972], Richtmeyer and Morton [1967],
and Haltiner and Williams [1980]).
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3.1.1.  Euler, forward in time. The Euler scheme is simply
a first-order Taylor approximation (also a first-order Runge-
Kutta technique) and is represented by combining (6a) (for-
ward) with (7):

A =y — (l‘i+1'_/‘i—1')
(10)

&

uAt
A

This scheme is unstable. Though unstable, the addition of
diffusion to the Euler scheme stabilizes it, and the scheme is
used in transport studies [ Leonard, 1980; Clancy, 1981 Garcia
and Solomon, 1983; Gidel et al., 1983] (see also section 5.3).
Hirt [1968] shows that the truncation error of (10} has the
appearance of an exponential growth term (negative diffusion).
The addition of too much diffusion to the scheme will also
lead to instability [Hirt, 1968; Clancy, 1981]. The quantity ¢ is
frequently called the Courant-Friedrichs-Lewy (CFL) parame-
ter, or sometimes simply the Courant number.

3.1.2. Upstream, one-sided, donor cell scheme. This
scheme can be viewed as (6a) (forward) combined with the
particular specification that the spatial derivatives are evalu-
ated as one-sided (equation (5)) from the direction of the flow.
It is written as

w =yt — % [1 —sign ()41 — 1)
— 5 [+ sign @ = misy) (D)
where
sign () =1 Yy =0
sign ()= —1 ¥ <0

The donor cell scheme is very diffusive, and the diffusion can

be shown clearly by rewriting (11):
Y (//H- v 2#.",{""" Hi-1") )

‘(12)

,.

(3]

LK A=t — 5 (#@;}‘

I /7) 0
oo \F)

The last term on the rlght hand side has the canonical form of
diffusion (equation (9)). The amount of diffusion in (12) is the
least that can be added to the Euler scheme to assure mono-
tonicity [van Leer, 1973). For advection with a constant ve-
locity this scheme is the same as Courant et al’s [1952]
scheme [see van Leer, 1977a], Lelevier’s scheme [Richtmeyer
and Morton, 1967], and Godunov’s [1959] scheme [see van
Leer, 1973].

3.1.3. Lax-Wendroff scheme. The scheme of Lax and Wen-
droff [1960] is a second-order accurate Taylor series approxi-
mation in time and is derived most generally by substituting
—udp/ox from (3) for the time derivatives in (4) to yield

FETRING uix, t)

ulx, t + At) = —
ox

G t o?
ux, 1) — ude 2=
x

(13)

Now by substituting (7) and (9) into (13), the Lax-Wendroff

scheme is obtained (for instance, Gadd [1978b]):
2
(#ivr —

t+ At

K = (ﬂ.+1+/‘: 1)+ = 24+ fimy)

(14)

As with the donor cell, this scheme appears to be an Euler
scheme stabilized by diffusion, but as discussed by Haltiner
and Williams [19807, this interpretation is somewhat mislead.
ing, since (14) is in fact second-order accurate in time and (11)
and (12) are only first-order accurate. The amount of diffusion
in this scheme is the minimum amount to stabilize the Euler
scheme, but this extensively utilized scheme is still quite diffu-
sive [Morton, 1971]. The Lax-Wendroff scheme was also inde-
pendently discovered by N. A. Phillips and C. E. Leith [Gadd.
1978b7 and by Godunov [1959] (the tripod scheme).

3.14. Leapfrog, centered time differences. The above
schemes can all be written as two-level schemes (one step):
that is, only two time levels are involved, ¢ and t + Atr. All
Runge-Kutta schemes can be written as two-level schemes no
matter what order accuracy is required. The leapfrog scheme
is second-order accurate, like the Lax-Wendroff scheme, but
requires three time levels (two step): 1 — At, ¢, and ¢ + Az It s
written as

t+ At

=y (13)

A — ey — 1)

This scheme is nondiffusive (see Table 1). The leapfrog tech-
nique has the disadvantage of producing not only a physical

but a computational mode. In the linear case (constant u) the |

computational mode can be eliminated by the proper choice
of the initial condition. In general, for long wavelengths the

amplitude of the computational mode is small, and the physi- §
cal mode dominates the solution [Mesinger and Arakawa, §
1976; Haltiner and Williams, 1980, pp. 114, 118]. The compu- §
tation mode may cause difficulties in problems. rich'in short- £

wave features, and some effort may be needed to suppress it
[Zalesak, 1981b].

The leapfrog scheme exhibits the “weak instability” of pro-
ducing two independent solutions at even and odd time steps.
These split solutions can be brought together by occasionally
averaging the even and odd time step solutions (for instance.
Orszag [1971b, p. 80]) or by occasionally using a two-level
scheme. The Asselin time filter is also frequently used to com-
bine the split solutions and reduce the computational mode
[Haltiner and Williams, 1980, p. 147; Asselin, 1972] (see also
Deque and Carriolle [1986]).

The leapfrog scheme requires, as do all multistep schemes. 8
separate startup scheme, because p is only known at one time.
For advection it is not necessary to store three arrays in
memory with the leapfrog scheme. However, when combining
advection with chemistry and diffusion, it may prove neces:
sary (or at least conceptually simpler) to store all three levels.

TABLE 1. Dissipation Error for a Fourier Component of Wavt

Number k

Square of the

Algorithm  Order Amplification Factor Comment
Theory o 1
Donor cell 1 1 — 2Je(1 — Je[1 — cos (kAx)] strong dampint
Lax-Wendroff 2 1 — (e — &¥)[1 — cos (kAx)]* weak damping
Leapirog 2 1 no damping
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distribution using Euler forward scheme (equation (10)) for 20 time steps: this scheme is unstable. (b) Rectangular

distribution using Lax-Wendroff scheme (equation (14)) for 100 time steps. () Triangular distribution using Lax-Wendroff

scheme (equation (14)) for 100 time steps.

thus increasing memory requirements in relation to those of
two-level schemes.

Equations (10}-(15) will be considered the classic transport
schemes. These schemes have been used by themselves, but
more importantly, for this discussion they have been the con-
ceptual basis for the development and interpretation of more
sophisticated transport algorithms.

Comparison of the schemes (equations (10), (11), (14), and
(15)) for one-dimensional advection by a constant velocity of a
rectangular and triangular distribution is shown in Figures !
and 2. The Euler scheme (equation (10)) is unstable, and the
solution rapidly grows beyond the bounds of the graph
(Figure 2a). The donor cell (equation (11)) does not generate
negative densities, is highly diffusive, and rapidly diminishes
the amplitude of the rectangle or triangle (Figures lc and 1d).
The Lax-Wendroff scheme (equation (14)) is not as diffusive as
the donor cell but because ol dispersion generates ripples that
follow the distribution (Figures 2b and 2¢). The leapfrog
scheme (equation (15)) is not diffusive but like the Lax-
Wendroff scheme is dispersive, and because of the lack of
diffusion, the scheme is quickly dominated by the shortwaves
(Figures ta and 1b). None of these schemes adequately models
the advection equation.

The dissipation errors and phase shift and phase errors (dis-
persion errors) for schemes (11), (14), and (15) are shown in
Tables 1-3 [from Boris and Book, 1973} In these tables the
propagation of a single Fourier component is considered so
that the amplification and phase errors can be analytically
calculated. The donor cell has a first order in & (=uAt/Ax)
dissipation error, and the Lax-Wendroff scheme has a second-

TABLE 2. Phase Shift for a Fourier Component of Wave Number
k During One Time Step

Phase Shift x,

Algorithm Order in One Cycle
Theory Bl kx, = keAx Xy = uAt (correct answer)
D I I tan (kx,) = e sin (kA9

onor ce an (kX) = T el — cos (kAX)]}

tan (kx.) = g sin (kAx)

an (kx,) = {1 — g2[1 — cos (kAx)}}

(1= [ = (s3/2) sin? (kAX))?}
[1 — (g*/2) sin? (kAx)]

Lax-Wendroff 2

Leapfrog 2 tan (kx,) =




T TABLE 3. Relative Phase Error for a Fourier Component of Wave Number k During One Time Step

Algorithm Order Relative Phase Error
— vAt
Theory o« To — P2 Atv =0 no error
v,
x, — vAt 1 g &
D 11 1 2o = O (2B T Ve2AK? 4 Okt AXS
onor ce e (6 2+3 k*Ax?* + O(k*Ax*)

o

Lax-Wendroff

Leapfrog 2

x, — vAt 1 &
% = *(g - %)szxz + O(K*Ax*)

x, — vAt 1 &
lLv—AT"— = —(5 - —;Z)szxz + O(k*Ax*)

The x, is the phase shift given in Table 2.

order dissipation error (see (12) and (14)). There is no dissi-
pation error in the leapfrog scheme.

The phase shift and the relative phase error are shown in
Tables 2 and 3. None of the schemes propagate the shortest
resolvable wavelength (the 2Ax wave, kAx = n) for all &. For
long-waves, all of the schemes do an adequate job, but the
phase error increases as the wavelength decreases. The donor
cell and Lax-Wendroff schemes have no phase errors for ¢ = 1.
Also, the donor cell scheme has no dispersion error for ¢ = 0.5,
and for values close to 0.5 the linear term in the dispersion
error tends to cancel the constant term. These features lead
Boris and Book [1973] to conclude that the phase character-
istics of the donor cell are acceptable.

Hirt [1968] proposed expanding each term of the finite
difference equation in a Taylor series in order to reveal infor-
mation about the stability and error characteristics of a partic-
ular scheme. Application of Hirt’s method frequently reveals
the cancellation of truncation errors so that a scheme may be
more accurate than it would appear to be by the methods
considered in the production of Tables 1-3. Hirt’s method is
not considered in detail here. Clourman and Fullerton [1978]
discuss automated analyses based on Hirt’s method.

The phase errors associated with space and time finite dif-
ference approximations are shown in Figure 3 [from Zalesak,
19815]. In the upper part of the figure the phase error derived
from leapfrog time differencing and an exact spatial repre-
sentation is shown. The time differencing errors have a tend-
ency to advance the phase (as opposed to implicit methods
which retard the phase). The phase advance associated with
shortwaves is larger than the phase advance associated with
long-waves.

In the lower part of Figure 3 the phase error caused by the
spatial truncation error is shown. It is seen that all schemes
propagate the long wavelengths accurately. As the order of the
spatial truncation increases, shorter and shorter wavelengths
are more accurately propagated, but none of the finite differ-
ences schemes or the pseudospectral scheme (see section 3.2.3)
propagates the shortest wavelength (2Ax wave). Because the
phase errors that arise from finite difference approximations
are worse for shorter wavelengths, it can be argued that the
short wavelengths should be selectively diffused to eliminate
those modes which are not accurately modeled [Zalesak,
19847

The schemes that have been labeled as the classic time
schemes have several valuable attributes on which to base the
development of more sophisticated schemes. The Lax-
Wendroff scheme represents the minimum amount of diffusion

that must be added to the simple Euler scheme to yield stabili-
ty. The donor cell scheme represents the minimum amount of
diffusion that must be added to the Euler scheme to make it
monotonic. The leapfrog scheme has no diffusive errors but
has large dispersion errors. The donor cell has large diffusive
errors but has relatively good dispersion characteristics. It is
easily seen how a wealth of transport schemes could be de-
vised by weighing the various advantages and disadvantages
of these basic schemes.

Godunov [1959] [see van Leer, 1973] proved that no linear
scheme of second-order or higher accuracy can be made free
of dispersion errors. Therefore the development of a perfec:
transport algorithm implies some sort of nonlinearity which
usually involves a “filtering” algorithm that goes through the
grid and searches for areas where dispersion errors are a
danger and then prevents these errors from occurring. It is
such nonlinear schemes that are the subject of sections 3.2.5
and 3.2.6.

ALIASING CUTOFF
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Fig. 3. *“Plot of the relative phase error as a function of the Fou-
rier wave number kAx for various schemes applied to the linear ad-
vection equation. The upper and lower halves of the plot refer to two
distinct families of idealized schemes: the upper half to a scheme
discretized in time but continuous in space, and the lower half to a
scheme discretized in space but continuous in time” [from Zalesak,
1981b].
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T TABLE 4. Transport Algorithms

Classification Reference

Comments

Finite difference
Centered

Burstein and Mirin [1970]
Clark and Hall {1979]
Crowley [1967]

Fromm [ 1968]

Gadd [1978a, b]

Harten [1978]

Kutler et al. [1972]
MacCormack [1969]
Rusanov [1970]

Schneider [1984]
Smolarkiewicz [1982]

Bates and McDonald [1982]
Crowley [1968]

Quasi-Lagrangian,
upstream, and
upstream biased

Godunov [1959]

Krishnamurti [1962]

Pudykiewicz and
Staniforth [1984]

Robert [1981, 1982]

Schlesinger [1985]

Takacs {1985]

van Leer [1973, 1974, 1977a]

Christensen and Prahm [1976]

Fleischer and Worley [1978]

Orszag [1971a, b]

Orszag [1972]

Wengle and Seinfeld [1978]

Wengle et al. [1978]

Chock [1985]

Gelinas et al. [1981]

Hasbani et al. [1983]

Hughes [1979]

Pepper et al. [1979]

Piva et al. [1980]

Tavlor and Hood [1973]

Boris and Book [1973]

Book et al. [1975]

Boris and Book [1976]

Smolarkiewicz [1983, 1984]

Expansion function

Finite element

FCT (antidiffusive)

Zalesak [1979, 1981b, 1984]

Egan and Mahoney [1972]
Pedersen and Prahm [1974]
Pepper and Baker [1980]
Pepper and Long [1978]
Hain [1978]

Russell and Lerner [1981]
Prather [1986]

van Leer [1977b, 1979}

Volume

Colella [1982]
Colella and Woodward [1984]
Woodward and Colella [1981]

Third-order in space and time; Runge-Kutta.

Hybrid scheme with nonlinear switch.

Improved Lax-Wendroff,

Zero average phase error.

Improved Lax-Wendroff, fourth-order accurate.
Hybrid of low- and high-order schemes with switching.
Combined Rusanov [1970] and MacCormack [1969].
Noncentered Lax-Wendroff

Third-order Runge-Kutta, like

Burstein and Mirin [1970].

Square root scheme; avoids negative constituent values.
Improved Crowley [1968] scheme.

Similar to Krishnamurti {1962].

Quasi-Lagrangian, three- and five-point interpolation.

Monotonic schemes; a classic paper.
Quasi-Lagrangian.

Robert’s method with an emphasis on

iterative methods.

“Semi-Lagrangian.”

Upstream-biased Crowley scheme.

Empirical error reduction; upstream bias.
Monotonic versions of Fromm’s scheme.
Pseudospectral.

Orthogonal collocation.

Spectral and pseudospectral.

Comparison of spectral and pseudospectral.
Orthogonal collocation.

Orthogonal collocation.

A comparison paper with a variety of formulations.
Moving element, very accurate, one-dimension only.
Combined characteristics and finite elements.

A book on advection and finite elements.

Chapeau functions.

Reduction of dispersion by considering element details.
A fairly early application to advection.

SHASTA.

Generalization of FCT beyond SHASTA.

New flux limiters to reduce diffusion.
Antidiffusion.

Multidimensional Smolarkiewicz [1983].

Fully multidimensional FCT.

High-order and pseudospectral spatial differences.
High-order Lax-Wendroff with and without FCT.
Second moments.

Second moments with width correction.
Three-dimensional second moments.

Second moments with and without width correction.
Partial donor method.

Slopes scheme.

Extension of slopes scheme: uses second-order moments.
Linear representations within slabs.

coupled with monotonicity algorithm.

MUSCL; generalization of van Leer [1977b, 1979].
Piecewise parabolic method.

Piecewise parabolic method.

3.2, Transport Schemes

Transport schemes that have been specifically developed for
modeling advective processes are listed in Table 4. These are
all Eulerian schemes which have been classified according to
whether they are straightforward finite difference algorithms,
expansion function algorithms, flux-corrected transport (FCT)
algorithms, volume algorithms, or finite element methods. The
classification is somewhat arbitrary and is meant to convey
the feature intrinsic to the scheme that is supposed to yield a
significant improvement over the classic schemes discussed
above. As is mentioned in section 1, it is impossible and im-

practical to expect that all advective algorithms have been
included. Table 4 represents what sort of algorithms are avail-
able, and by discussion of the entrants in Table 4 demon-
strates what methods have been tried in the improvement of
advective schemes.

3.2.1. Finite difference schemes. 1In the algorithms that are
classified as finite difference schemes in Table 4, much of the
effort has gone into reducing the errors caused by dispersion.
A straighitforward way to improve the simple schemes (section
3.1) is to go to higher-order accuracy. Rusanov [1970] and
Burstein and Mirin [1970] have considered a third-order
Runge-Kutta method that is consistently accurate to third
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order in both Ax and At. One feature of the Runge-Kutta
technique is that for “n”th-order accuracy there are n + 1 pa-
rameters. Therefore there is one arbitrary parameter that can
be chosen by the user. This parameter can be chosen to mini-
mize some measure of error such as dispersion (see Anderson
and Fattahi’s [1974] evaluation of the Rusanov scheme, for
instance).

The idea of using a tunable parameter to reduce errors is
carried further by Wesseling [1973]. Wesseling assumes that
the solution of (3) can be written in the following finite differ-
ence form:

k2
pi A = Z Gl si (16)
ki
Wesseling calculates the error in (16) associated with the prop-
agation of a single Fourier component and then in conjunc-
tion with Parseval’s theorem generates an algorithm for pro-
ducing finite difference schemes that minimize the error with
regard to some weighting function. Wesseling shows how the
schemes of Lax and Wendroff [1960], Courant et al. [1952]
(see section 3.1.2), and Fromm [1968] can be derived as meth-
ods to reduce a particular form of error in the finite difference
estimate. Fromm’s scheme, called the “zero average phase
error,” is the second-order scheme that minimizes dispersion.
The most accurate scheme derived by Wesseling was a modi-
fied version of the Rusanov-Burstein-Mirin third-order
Runge-Kutta technique.

Takacs [1985] uses the same expansion as (16}, truncated to
be second-order accurate. Takacs then includes one more
point than needed to ensure second-order accuracy, yielding a
free parameter that is used to empirically minimize errors by
comparing estimated solutions to known analytic solutions.
Takacs® scheme is upstream biased (see section 3.2.2) and is
third-order accurate in the case of constant velocity.

Several schemes have been introduced that explicitly
address inadequacies in the Lax-Wendroff scheme [Gadd,
1978b; van Leer, 1974; MacCormack, 1969; Kutler et al.,
1972]. Crowley [1967, 1968] developed a popular second-
order scheme that avoids some of the problems of the Lax-
Wendroff scheme. Smolarkiewicz [1982] has considerably im-
proved Crowley’s [1968] scheme and applied it to non-
constant velocities in two and three dimensions. Schilesinger
[1985] investigates improvements to the Crowley scheme by
adding third-order upstream-biased terms (see section 3.2.2).

Increasing the order of accuracy of the spatial derivatives in
(3) reduces the dispersion error and can lead to dramatic im-
provement in an advection algorithm. This has been clearly
demonstrated by Roberts and Weiss [1966] and Mahlman and
Sinclair [1977] with fourth-order spatial derivatives combined
with the leapfrog time scheme (see also Kreiss and Oliger
[19727). A caveat pointed out by Zalesak [19815b] is that for
distributions which are rich in high wave number components,
use of high-order accurate differences may actually reduce the
accuracy of the solution.

3.2.2. Quasi-Lagrangian, semi-Lagrangian, upstream, up-
stream-centered, and upstream-biased methods. Another ap-
proach for using finite difference schemes to model advection
is the quasi-Lagrangian method as discussed by Krishnamurti
[1962]. In this technique the question is asked (assuming posi-
tive velocity), what is the value of the advected function up-
stream at the point x; — uAt? This should be the value at the
grid point on the next time step. In practice, an interpolation

technique is used to estimate the required value residing be-
tween grid points. Because of the interpolation requirements,
quasi-Lagrangian schemes are expected to have the same
characteristics as normal finite difference algorithms. In the
techniques discussed by Krishnamurti [1962], Crowley [1968],
and Mahlman and Sinclair [1977], the numerics are centered
around the grid point of interest, and both upstream and
downstream points are used in this interpolation.

Recent quasi-Lagrangian schemes have developed around
the work of Robert [1981]. These schemes are biased to in-
clude points upstream from the grid point of interest. Such
schemes are classified as “upstream biased.” Pudykiewicz and
Staniforth [1984] investigate many quasi-Lagrangian schemes
and show that their technique of using multiple iterations to
determine the departure point significantly improves the accu-
racy of the calculation (see also Bates and McDonald [1982,
19857 and Staniforth and Pudykiewicz [1985]). These methods
have received much recent attention in general circulation
modeling because they can be run with a much larger time
step than conventional finite difference techniques [Robert et
al.. 1985: Ritchie, 1986; McDonald, 1986]. Staniforth and Tem-
perton [1986] have applied upstream-biased techniques to the
method of finite elements (section 3.2.4).

The difference between the two types of quasi-Lagrangian
methods discussed above is detailed by van Leer [1977a], who
discusses upstream-centered (i.e., upstream biased) and centra!
difference schemes. In upstream-centered methods, attention is
focused away from the grid points onto the point x; — uAs,
that is. the point from which the particle has been advected. In
central difference schemes the new values of the advected
quantity are centered on the old values at the grid points. In
upstream-centered schemes the choice of grid points to calcu-
late the advection is dependent on the direction of the flow.
Upstream-centered schemes are known for their intrinsically
small phase errors. The donor cell technique (section 3.1.2) is
the upstream-centered scheme derived using linear interpola-
tion.

3.2.3. Spectral and pseudospectral global expansion function
techniques. The most accurate way to estimate the spatial
derivatives is to use expansion functions to estimate the distri-
bution of u and then calculate the derivatives in (3) analyti-
cally. Expansion function techniques can be applied in either a
global fashion or in the finite element method (section 3.2.4).
Much of the theory and discussion of expansion function tech-
niques was introduced by Orszag [1971a, b]. Excellent reviews
are given by Gottlieb and Orszag [1977], Machenhauer [1979],
and Merilees and Orszag [1979].

In the expansion function techniques it is assumed that p
can be expressed as a summation of basis functions:

N
Hx, 1) =3 A 0Y,(x) 6%
(4]

where the Y represent a complete set of orthonormal basis
functions and are presumed to be chosen suitable for a partic-
ular domain and boundary conditions.

Expansion function techniques are traditionally classified in

three ways, depending on how the errors are handled. The

spectral or Galerkin method requires that the error in (3),
arising from representing p by (17), is orthogonal to the basis

functions Y,. The orthogonality requirement is equivalent to g

requiring that the mean square integral of the error be a mini-
mum [see Machenhauer, 1979].
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" The pseudospectral or collocation technique requires the
expansion functions to equal u at a finite number of points
jcollocation points or-grid points). For constant velocity the
spectral and pseudospectral representations of (3) are identical.
In essence, the pseudospectral technique uses the basis func-
ons Y, as a high-order accurate interpolation function to
~cpresent the constituent field. The spatial derivatives are cal-
culated analytically from the basis function fit. The pseudo-
spectral technique does not propagate the shortest wave (2Ax),
pecause there is no phase information at this wavelength for
an even number of collocation points (an odd number of
points does not allow determination of a 2Ax component at
alb).

A major difference between the spectral and pseudospectral
rechnique involves the treatment of the aliasing errors
[Orszag, 1971b, 1972]. Aliasing errors are those errors that
rise when it is attempted to resolve high wave number fea-
tures on a grid that is too coarse to resolve the features. High
wave number features arise naturally in (3) because of the
product of the velocity and the constituent field. In Galerkin
or spectral methods the aliasing errors are identically zero
because of the requirement that the error be orthogonal to the
basis functions. In the pseudospectral method the aliasing is
included in the estimated numerical solution.

In some problems the aliasing terms can cause inaccuracies
~r cven instabilities [Phillips, 19597]. Spectral techniques avoid
(his instability by eliminating the aliasing errors. In spectral
methods the second moment is exactly conserved. In pseudo-
spectral models the presence of aliasing errors can cause long-
term stability problems. Pseudospectral techniques are easier
to apply to nonlinear problems. Peyret and Taylor [1983, p.
1037 list among the advantages of the pseudospectral ap-
proach (compared to the spectral approach) ease in prescrib-
ing boundary conditions and ease in application to compress-
ible flow.

Both the spectral and the pseudospectral techniques can be
viewed as particular cases of the method of weighted residuals
[(Zienkiewicz and Morgan, 1983]. If the error is defined as e,
then an attempt can be made to reduce the error according to

JeNWN dx =20 (18)

where W, is some weighting function. The choice of Wy as the
basis functions themselves leads to the Galerkin technique.
The choice of Wy as the Dirac delta function, d(x — xy) where
x, are N points in the domain where the series approximation
exactly equals the data, leads to the pseudospectral or col-
location technique.

A third classification of expansion function techniques is the
“tau” approximation [Gottlieb and Orszag, 1977} This
method differs from the spectral technique in that the ex-
pansion functions are not required to satisfy the boundary
conditions explicitly. Instead, a series representation is used to
meet the boundary conditions.

Of the schemes listed in Table 4 as expansion function tech-
niques, most of them would fall under the classification of
pseudospectral. Most are time advanced using leapfrog time
stepping,.

32.4. Finite element method. In the expansion function
techniques discussed in section 3.2.3, the expansion functions
were used to represent y over the entire domain. In the finite
element technique the domain is divided into many subdo-

mains called elements, and then an expansion function repre-
sentation is used within each clement. With this technique,
very accurate results can be obtained with series expansions
that use very few basis functions. Excellent descriptions of the
finite element method are offered by Zienkiewicz and Morgan
[1983] and Lapidus and Pinder [1982].
One of the most commonly used basis functions is the
chapeau function (hat function) which is defined by
Yix)=0 x> (i + DAx (19a)
Y,(x)=0 x < (i — DAx (19b)
Y(x)=[x— (- DAx]/Ax

Y.(x)=[(+ DAx — x]/Ax

(i — DAx < x < iAx (19¢)
iAx < x < (i + DAx (19d)

A sample chapeau function is shown in Figure 4. The chapeau
functions are not orthogonal, so that the neighboring cells are
not independent of each other.

The general application of the finite element method in-
volves using a small number of basis functions (for instance, a
single chapeau function) to represent the constituent within
each element. Therefore accuracy is not achieved by using a
large number of basis functions as would be required in the
expansion function techniques discussed in the previous sub-
section, but accuracy is achieved by increasing the numbers of
elements used to resolve the domain. Traditionally, the great-
est advantage of the finite element method is flexibility. There
is no restriction upon the choice of the element shape or size.
Therefore elements can easily be made smaller in regions
where high resolution is required, and complex boundary con-
ditions, such as an accurate topography, can be formulated in
the same fashion as the interior points. The disadvantages
frequently cited include complexities in coding and a relatively
high cost of computer time and memory in comparison to the
increased accuracy. As will be shown in section 4, however,
finite element methods can be accurate and efficient.

Like the global expansion function techniques, finite ele-
ment methods are applied by the method of weighted re-
siduals {equation (18)). Another technique that appears in the
finite element literature is the Petrov-Galerkin technique
[Hughes and Brooks, 1982]. In this technique the weighting
functions are not the same as the basis functions, and in par-
ticular, weighting functions are chosen such that the short
wavelength features of the distribution are selectively damped,
thereby reducing dispersion errors.

Finite element methods have a long and successful history
in modeling of parabolic and elliptic equations, and only rela-

CHAPEAU FUNCTION
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Fig. 4. Sample chapeau function (equation (19). A single chapeau

function is frequently used in the finite element method to represent
the constituent field within each element.



tively recently has the method been extended to hyperbolic
equations. The development of accurate finite element schemes
is proceeding in a similar fashion to that followed by finite
difference algorithms, with the advantage that the long history
of finite difference methods can be used as a guide.

There are many similarities between finite difference and
finite element schemes, particularly in applications that have
regular grid spacing. Runca et al. [1985] compare finite differ-
ence and finite element formulations of the advective diffusion
equation (equation (2)) and obtain similar results with the two
methods. The entries in Table 4 under finite elements do not
reflect the amount of literature available on finite elements.
Finite element techniques are relatively rare in atmospheric
tracer applications (particularly nontropospheric applications).

3.2.5. Monotonicity, flux-corrected transport, filling, and fil-
ters. As was mentioned in section 2.3, one approach to deal-
ing with numerical dispersion is to develop special algorithms
that force a numerical scheme to be monotonic. The fact that
dispersion errors are present even with very high order ap-
proximations for the spatial derivatives means that monotoni-
city cannot be obtained just by increasing the accuracy of the
numerical techniques [Godunov, 1959].

The upstream-centered schemes of van Leer [1977a] (see
section 3.2.2) are based on an extension of the method of
Godunov [1959] (see also Richtmyer and Morton [1967])
which requires that a scheme be expressed not only in conser-
vative form but also be monotonic. Because of the favorable
phase characteristics of upstream-centered schemes, the choice
of such a scheme in the development of advanced transport
algorithms is logical, but special effort has to be made to
assure monotonicity.

Monotonicity algorithms are not as straightforward as pure
advection algorithms. The monotonicity algorithm has to
identify danger zones where monotonicity might be violated
and then keep the rippling from occurring. The suppression of
high wave number structure in certain regions by monotoni-
city algorithms has the same effect as nonlinear diffusion. Van
Leer [1974] uses Fromm's [1968] scheme to develop a new
conservative, monotonic method with very small phase errors.
This scheme requires the calculation of a smoothness function
to determine the danger zones. In these danger zones, ad-
ditional terms are added to Fromm’s scheme in order to
insure monotonicity. In a method similar to van Leer’s [1974],
Harten and Zwas [1972] introduce the self-adjusting hybrid
technique. In this method a high-order, accurate scheme is
used in the smooth regions of the constituent profile (where
dispersion is small because of a lack of high wave numbers),
and a low-order routine (such as the monotonic donor cell
scheme) is used in regions of sharp gradients. A switch, similar
to van Leer’s smoothness parameter, automatically switches
from one scheme to another. To deal with the excessive diffu-
sion of the low-order scheme in regions of large constituent
gradients, Harten [1977, 1978] has introduced the artificial
compression method which is similar in concept to flux-
corrected transport discussed below.

Flux-corrected transport is more of a philosophy of how to
develop a transport scheme than a particular numerical algo-
rithm [Boris and Book, 1973, 1976; Book et al., 1975]. FCT
has been applied to ordinary finite difference transport meth-
ods and to pseudospectral techniques with varying degrees of
success. The basic concept is to use an accurate, but disper-
sive, high-order scheme in conjunction with a monotonic, but
diffusive, low-order scheme. The two schemes are combined
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with an “antidiffusion” operator to produce a high-order
monotonic scheme. The formal algorithm, taken from Zalesak
[1979], is in the following steps (where i represents the spatia
grid):

1. Compute F,,,,," the transportive flux given by a low.
order scheme guaranteed to give monotonic results (such ag
the donor cell).

2. Compute F, " the transportive flux given by some
high-order scheme (such as the leapfrog scheme with high.
order spatial derivatives).

3. Define the “antidiffusive flux”:

L

— H
Bi+1/2 = F.'+1/2 - Ff+1/2

4. Compute the transported and diffused solution:

TD

1P = gy = (Fragpn™ = FioynN)/AX

5. Limit B from step 3 such that y'**' to be computed in
step 6 is free of extrema not found in u"” or u":

Bi+1/2C =Cis1n2Bir1p 0<Cirypsl
where C,, ,,, is called the flux limiter.
6. Apply the “limited antidiffusive flux” calculated in step

5 to yield

= (B 1/2C — Bi_2)/Ax

The scheme of Harten and Zwas [1972] mentioned above
when combined with artificial compression (read antidiffusion)
incorporates both the idea of van Leer [1974] to identify re-
gions where monotonicity might be violated and the idea of
antidiffusion to correct this violation.

The FCT algorithm can be interpreted as the nonlinear
average of a high- and low-order accurate finite difference
scheme. The algorithm described above suggests that this is
not a simple averaging technique and that the averaging oper-
ator is a function of grid location. Clark [1979] and Clark and
Hall [1979] describe a simple hybrid scheme which is the
weighted average of the donor cell and Crowley’s [1968]
scheme.

The choice of the flux limiter in step 5 above requires inter-
vention by the developer of the transport algorithm and is 2
highly nonlinear procedure. The original FCT codes devel-
oped by Boris and Book [1973] used a flux limiter that pre-
served square wave distributions almost perfectly. Unfortu-
nately, this limiter quickly turned other distributions into
square waves. Zalesak [1979, 1981b] has developed a line of
flux limiters that do not distort the profile as much as the

original flux limiters and thus lead to very accurate transport

routines. In an attempt to develop flux limiters that preserve
peaked distributions, care must be taken not to violate the
monotonicity constraints.

Smolarkiewicz [1983, 1984] has developed a fast positive
definite advection algorithm that calculates an antidiffusion
velocity to correct implicit numerical diffusion. This anti-
diffusion counteracts most of the numerical diffusion, and ac-
curate results are obtained. Book et al. [1975] offer a detailed
discussion of antidiffusion.

The preceding schemes are general in that they can be ap-
plied to any fluid advection problem. Two other approaches,
specific for constituent transport, prohibit the generation of
negative mixing ratios but not in a monotonic manner. The
square root scheme [Schneider, 1984] is a positive definitc
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«cheme but has dispersion errors. In the scheme the square
}oot of the concentration is advected using a quadratic con-
srving modification of the Lax-Wendroff scheme. Then the
square is taken, which removes the negative densities gener-
ated in the first step, but also generates high-frequency noise.

The second approach for dealing with negative densities is
(ke tilling process discussed by Mahiman and Sinclair {1977]
wnd Mahlman and Moxim [1978]. Filling algorithms require
(hat when negative densities are generated, mass is borrowed
jrom the surrounding grid points, in a user-determined way, to
remove the negative constituent value. This method is not
monotonic and can be very time consuming. Filling is a non-
jinear diffusive process.

One filling algorithm, called “downstream borrowing,” was
described by Mahlman and Sinclair [1977]. In this filling
wheme a time step is completed, and then negative constituent
«alues are identified. If a negative value is found, then mass is
norrowed from a downstream point to fill the negative region.
If there is not enough mass at the downstream point, then
mass is borrowed from an upstream point. If the hole has still
not been filled, then mass is borrowed from more distant
points. Downstream borrowing attempts to fill locally, that is,
from the vicinity of where the negative value was created. A
characteristic of local filling is that many decisions have to be
made by the transport routine; therefore local filling is fre-
quently expensive.

Two global (as opposed to local) filling algorithms that are
less time consuming are what might be called the subtractive
and multiplicative methods. In the subtractive method, nega-
live constituent values are searched for, and then these values
are corrected in some fashion {for example, they are set to
sero. or the absolute value is taken). The extra mass added to
this system is then uniformly subtracted from all of the grid
points from which the mass can be subtracted without pro-
ducing negative constituent values. Once again, this method
requires quite a bit of comparison to assure that the new
distribution is positive definite.

The multiplicative method is positive definite by its very
nature. The negative values in the transported distribution are
found and corrected. The total mass of the corrected distri-
bution is calculated, and then the corrected distribution is
multiplied grid point by grid point by the ratio of the mass of
the original distribution to the mass of the corrected distri-
bution.

Once again, both the subtractive and the multiplicative
methods are diffusive. Their intrinsic value lies with the use of
very accurate transport schemes, so that negative constituent
values are small, and therefore the redistribution of mass over
the entire domain is small and rapidly computed.

A potentially attractive method for filling can be derived by
observing the general nature of the inaccuracies generated in
cither the triangular or rectangular distribution advection
problem (Figure 1). The amplitude of the ripples following the
main part of the distribution decreases with distance from the
rectangle or triangle. The negative value nearest the distri-
l?mion is either the largest or second largest of the ripples. The
lirst step in the filling algorithm is to identify and set all of the
Negative values equal to zero (this adds mass to the system).
Then all of the remaining constituent values are checked, and
the values with magnitudes less than the absolute value of the
Most negative grid point are set to zero (this removes mass
fr.om the system). This procedure provides a nonlinear diffu-
sion on the shortest wavelengths. The discrepancy in mass

that remains after the above procedure is then corrected by
the multiplicative method described above.

This filling algorithm is tested for leaplrog time differences
with both second- and [ourth-order centered spatial differ-
ences (Figure 5). As compared to Figure 1, the second-order
scheme has been improved tremendously. The superiority of
the fourth-order scheme over the second-order scheme is par-
ticularly evident in the square wave simulation. This filling
algorithm prefers to transport triangular distributions.

Monotonicity and filling algorithms can be viewed as a
subset of numerical filters that attempt to deal specifically
with numerical dispersion errors. Forester [1977] introduced a
filtering technique that like filling and the FCT algorithm can
be applied to transport routines in general. Forester’s filter is a
diffusionlike, iterative filter with two parameters for the
“highly discriminate smoothing” necessary in advection mod-
eling. The filter can be tuned to smooth out ripples with wave-
lengths less than some specified wavelength. The applications
of the filter presented by Forester [1977] show very promising
results which remove negative constituent values while pre-
serving peaks much better than the original Boris and Book
[1973] FCT (see also Chock [1985]).

3.2.6. Lagrangian schemes and volume schemes. In the
schemes that are classified as volume schemes in Table 4 the
modeling concept has been shifted away from the grid points
themselves to the boxes or elements defined by the grid points.
The constituent is assumed to be continuously distributed
within each grid box with discontinuities between the boxes.

Mathematically, the volume schemes have their basis in La-
grangian mass coordinates [van Leer, 1979; Russell and
Lerner, 1981; Dryden et al., 1956]; that is, the evolution of the
flow is written in terms of a coordinate system that is based on
the location of a particular fluid slab at some point in time. In
practice, the coordinate system is usually reinitialized at the
beginning of every time step. The attention is placed on fluid
slabs (ensembles of particles) rather than on individual fluid
“particles.” The algorithms classified as volume schemes in
this review are sometimes classified as Lagrangian. However,
no attempt is really made to follow the evolution of particular
slabs for long periods of time (there is frequent reinitialization
to model the interaction of slabs); therefore it is felt that a
classification distinct from the more particle-oriented schemes
is in order; hence the term “volume.” The volume schemes are
by their very nature upstream centered (section 3.2.2).

Consider the case demonstrated in Figure 6a. An ideal
transport scheme would simply move the square distribution
to the right (for positive velocities) the distance (eAx). The
donor cell scheme (equation (11)) can be rewritten for constant
positive velocities as

A = (1 — eyt ety (20)

For ¢ = | the donor cell scheme shifts the constituent distri-
bution one grid point to the right and is therefore an exact
transport routine. Referring to Figure 6b, for ¢ = 0.4 it is easy
to see from (20) that after the first time step a positive value of
jt is predicted at point i+ L. After the second time step a
nonzero value of y is predicted at point i + 2. In the analytic
solution. even after two time steps, the constituent should not
have reached the i + 1 point. This example graphically dem-
onstrates the numerical diffusion associated with the donor
cell scheme.

The basic premise of the volume scheme approach to mod-
eling advection is to produce a scheme that transports slabs of
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differences with fourth-order centered spatial differences. (c)

material in such a manner that the slabs maintain their orig-
inal shape. If it could be generally assumed that ¢ could be
maintained at 1, then the donor cell scheme would be ideal.
However, this restriction is not realizabie, and schemes always
have to deal with the movement of slabs some fractional dis-
tance of a spatial grid length. The variation of velocity in
space and time means that slabs will interact; that is, they will
overlap and spread out. It is the accurate interaction of slabs
on which is focused much of the effort in the development of
volume schemes.

The donor cell scheme can be interpreted as the simplest of
the volume schemes, with the assumption that the constituent
is distributed uniformly within a numerical box. In the partial
donor method [Hain, 1978] an attempt is made to produce a
simple, high-speed algorithm to yield that portion of the mass
that was moved from cell to cell at each time step. This tech-
nique reduces the diffusion of the donor cell method. As is
defined by Hain, essentially three simple estimates of u' A are
computed, and then one is chosen such that the transport is
monotonic. Operationally, the results of the partial donor

Advection in one dimension, with constant velocity, cyclic boundary conditions, ¢ = 0.5, 100 time steps, and
global filling algorithm described in section 3.2.5. (a) Rectangular distribution using leapfrog time differences with second-
order centered spatial differences (equation (15)); compare to Figure la. (b) Rectangular distribution using leapfrog time
Triangular distribution using leapfrog time differences with
second-order centered spatial differences (equation (15)); compare to Figure 1b. (d) Triangular distribution using leapfrog
time differences with fourth-order centered spatial differences.
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method are very similar to the early version of flux-corrected
transport (SHASTA [Boris and Book, 1973]).

The partial donor method, like the donor cell, is based on
the interpretation of the constituent being uniformly distrib-
uted within each numerical box. In the method of moments
[Egan and Mahoney, 1972; Pedersen and Prahm, 1974; Pepp&
and Long, 1978], not only the mean concentration in a bot
but the center of mass (the first moment) and the second
moment, which is used as a measure of width, are considered.

Assuming a box of width unity, the zeroth, first, and second
moments are defined as

0.5
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i+2

i+2

a
ANALYTIC DONOR CELL

Fig. 6. {(a) Idealized advection of a rectangle, with e =04. (b)
Donor cell advection for a rectangle, with & = 0.4. Note the diffusion
ussociated with the donor cell (adapted from Egan and Mahoney
(19721
where the mass coordinate ¢ is measured from the center of
the box. Figure 7 gives a graphical representation of the mean-
ing of each of the moments within a rectangular distribution.
Simple advection (u = const) should move the constituent a
distance of uAt, and all of the moments {equation (21)) should
ne conserved. In Figure 7 at the start of the advection the
righi-hand boundary of the cell is located at F; + Ry/2. As-
suming advection to the right (u > 0), then after the advection
the right boundary of the cell is at F; + R/2 + & The part of
the distribution that has moved into the i + 1 cell is F; + Ry/2
+ ¢ — 0.5, This quantity can be normalized by R; to yield a
porticning parameter (F,+RJj2+&— 0.5)/R; which repre-
sents the portioning of the constituent between the i and i + 1
boxes. Egan and Mahoney [1972] derive a scheme based on
the proportioning parameter that conserves the moments of
‘he initial distribution. As is originally derived by Egan and
Mahoney, the scheme is biased toward a rectangular distri-
bution; therefore the scheme has a tendency to turn all distri-
butions into rectangular waves. Pedersen and Prahm [1974]
developed a width correction algorithm in an attempt to
remedy the bias toward rectangular distributions. Pepper and
Long [1978] show that width correction degrades the method
of moments for generalized velocity ficlds. Pepper and Baker
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qu:l‘lg 7. Graphical representation o_f the m;lhod of moments [from
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mm.; orm value of C; (equation (21)). The portion of the slab that

nd 1; to lh.e next elemeqt is given by the portioning parameter P,
e portion that remains s given by (1t — P).

Fig. & Graphical representation of van Leer's [1977b] scheme
that represents the constituent within each grid element as a linear
function. This scheme is similar to the slopes scheme of Russell and
Lerner [1981]. Compare to Figure 7, where the constituent is con-
sidered to be of constant value within each grid element. The follow-
ing explanation is from van Leer [1977b]: “(1) approximating the
initial-value distribution (solid line) in each slab by a linear distri-
vution (broken line) with the same mesh integral. In this case the
slopes are determined by least-squares fitting. (2) The approximate
initial value distribution before (solid) and after (broken) convection
over a distance gAx. (3) Determining the new linear distributions
(broken) in each mesh by least-squares fitting to the convected distri-
bution (solid). (4) The initial values for the next step.”

[1980] discuss an accurate three-dimensional moments algo-
rithm. The computation of all the moments significantly in-
creases the storage requirements of the algorithms.

Van Leer [1973, 1974, 1977a] deduced that upstream-
centered schemes are the most natural schemes for modeling
(1). In the works by van Leer [1977b, 1979] and Colella
[1982], the emphasis 18 shifted away {rom the grid points to
the grid elements. In the volume schemes described previously,
the constituent was assumed to be distributed in rectangular
blocks within each cell. Rather than represent the grid boxes
as rectangular slabs, van Leer [1977b] uses a polynomial ex-
pression to represent the constituent within each box (Le-
gendre polynomials, for instance). Then a monotonic
upstream-centered conservative scheme is used to advect the
piecewise continuous function. A graphic example of this
scheme is shown in Figure 8. Higher-order polynomial
schemes are discussed by van Leer [1977b, 19793, and the
piecewise parabolic method has been developed and tested by
Woodward and Colella [1981, 1984] and Colella and Wood-
ward [1984]. The interaction of the slabs is treated as individ-
ual Riemann problems (shock fitting) {see also Roe [1981],
Colella and Glaz [1985], and Richtmyer [1978, p. 386]).

The slopes scheme [Russell and Lerner, 19817 is similar in
concept to the piecewise linear approximation version used by
van Leer [1977b] and Colella [1982]. In this scheme a linear
approximation is made to the constituent distribution. The
interaction between the squares is handled by a separate equa-
tion to transport the slope which reduces the diffusion that
would otherwise be in the system. The slopes scheme is not
monotonic.

Prather [1986] reports an extension of the slopes scheme
that models the tracer slabs with second-order polynomials.
Prather’s scheme conserves frst and second moments and is
stable for & close to L. Prather also presents & method to
assure positive tracer distribution.

4. COMPARISON OF TRANSPORT SCHEMES

There have been many papers devoted specifically to com-
paring advection algorithms. Also, with the development of a
pew transport algorithm the inventor generally evaluates the
new algorithm against one or more standard methods. Con-
sidering all of the various desirable attributes of any advection
routine (section 2), it is not surprising that there is no con-
sensus on which routine is best. The ever increasing power of
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computing machines also has its effects on advection algo-
rithm evaluation, because routines that were too costly 20
years ago are today considered to be rather primitive. An
interesting insight into the development of computing power
lies in the statement of Emery [1968] that the difficulties in-
volved with the Lax-Wendroff scheme “render it useful only to
those interested in numerical methods for methods for their
own sake.”

Two standard ways of evaluating routines have developed.
In the first, a complicated problem, such as a 24-hour weather
forecast, is verified against observations. If the forecast with a
new and improved numerical technique is better than the old
one, then the new transport routine is considered to be more
accurate than the old one. It then comes down to evaluating
the various cost benefits ratios to decide whether or not the
new algorithm is in fact “better.”

Another, more precise and more common, method of evalu-
ating routines is by comparing numerical solutions to known
analytic solutions. In this approach, therefore, transport algo-
rithms are evaluated by how well they represent one-, two-,
and three-dimensional advection of various geometric shapes
by a constant velocity or angular velocity. Three problems
have more or less become standard. The first is one-
dimensional advection of a triangular distribution (see Figure
1). The second is the one-dimensional advection of a rectangu-
lar wave or a step function (shocks; see Figure 1). The final,
more or less standard test, is two-dimensional rotation of a
peaked distribution such as a cone or a cosine hill [Pepper and
Long, 1978; Orszag, 1971b]. There are other tests that have
been used, but these three appear most {requently. Smolarkie-
wicz [1982, 19847 considers the three-dimensional solid body
rotation of a spherical distribution.

Frequently, when a new routine is introduced, it uses only
one of the one-dimensional tests. If the routine is meant for
general use, both one-dimensional tests and at least one multi-
dimensional test should be performed. Many schemes trans-
late a triangular distribution well and have a strong tendency
to generate peaked distributions out of rectangular waves (see
Figure 5a4). Similarly, many of the schemes that transport rec-
tangular waves well rapidly turn other distributions into rec-
tangles (see Figure 10a). Finally, most schemes transport long-
waves accurately, but this should be explicitly tested, particu-
larly those schemes that have been derived by forcing exact
agreement with a specific problem (see Figure 10a).

The one-dimensional problems provide stringent tests for
dispersion, diffusion, and accuracy. The two-dimensional-and
three-dimensional tests give some indication of how difficult it
is to extend a particular algorithm to multidimensional situ-
ations. These tests also allow for easy evaluation of computer
time and memory requirements.

Tables 5 and 6 represent a large cross section of the com-
parison studies of numerical advection algorithms. Table 5
summarizes those studies that are an evaluation or survey of
schemes that are different finite difference estimates of (3).
Table 6 summarizes the studies in which algorithms that are
fundamentally and philosophically different in their formu-
lation are compared.

The comments in Table 5 point out some of the more im-
portant schemes that carry different names depending on the
authors. Several of the schemes are derived as Runge-Kutta
techniques, and given the free parameter of the Runge-Kutta
technique, many of the two-level schemes can be shown to be
Runge-Kutta schemes.

The results summarized in Table 5 are not too surprising,
Basically, the more accurate the approximation of the time
derivative, then the more accurate the computed transport,
However, a third-order accurate Runge-Kutta scheme requires
more time to compute the solution than does a second-order
scheme. By looking at a paper such as Kurihara’s [1965]. it is
interesting to see how rather subtle changes in the time deriva.
tive formulation can change the numerical results.

The basic conclusion that might be drawn from these stud.
ies is that second-order accurate time derivatives are sufficient
for most atmospheric applications. If the leapfrog scheme is
used, then extra memory may be required over two-leve] &
schemes, some technique must be used to prevent splitting of
the solutions, and care must be taken to reduce the compu. |
tational mode. Second-order schemes such as Takacs’ [1985]
and Fromm’s [1968], which are two-level schemes which mini-
mize errors, and Gadd's [1978b] extension of the Lax-
Wendrofl scheme are perhaps more appropriate if it is impos-
sible to carry three time levels.

Of the schemes presented in Table 3, leapfrog in time with
fourth-order centered spatial derivatives (LF4) is about the
most cost effective [see Mahlman and Sinclair, 1977]. Tt is
conceptually simple and easy to program in three dimensions,
Gadd's [1978b] fourth-order extension of the Lax-Wendroff
method performs similarly to LF4. Neither method is mono-
tonic, so if the production of negative constituent values is a
danger, then some method of filling or a monotonicity algo-
rithm will have to be used with the transport routine.

The schemes presented in Table 6 are more sophisticated in
their approach to the advection problem than those given in
Table 5. Much effort has been made to insure monotonicity
and/or produce accurate spatial derivatives. The concepts of
FCT and artificial compression (see section 3.2.5) can be ap-
plied to any of the routines presented in Table 5 (for instance,
Smolarkiewicz [1982]).

The results of Chock and Dunker [1983] supply the best
starting point for evaluating the transport routines. The orig-
inal FCT algorithm (SHASTA) proved to be unacceptably
diffusive, as can be seen from Figure 9. The flux-limiting algo-
rithms defined in the original codes have a strong tendency to
produce square waves; therefore the peaks in the Chock and
Dunker tests are quickly removed. On the other hand, the
fully multidimensional FCT (MFCT) algorithms which use the
flux limiters derived by Zalesak [1979] are much less diffusive
and maintain the peak better than SHASTA. SHASTA is
strictly monotonic. The Zalesak flux limiters are not strictly
monotonic, but with the flux limiters used by Chock and
Dunker, negative constituent values are small. Flux limiters
can be derived that eliminate virtually all diffusion, but the
production of negative constituent values can become a prob-
lem.

The second-moment method (SM) is also positive definite
and consistently performed better than either SHASTA or
MFCT. However, in the version that Chock and Dunker ;
tested, SM required large amounts of storage and large
amounts of computer time. SM is still diffusive, and like tht )
FCT algorithms prefers to advect square distributions. L

Several authors describe orthogonal collocation methods
distinct from pseudospectral methods (Table 4). In general, the
distinction seems to be based on the selection of interpolatio
polynomials. Chock and Dunker [1983] compare three orthog %
onal collocation (OC) methods which differ by virtue of theif
time schemes (see Table 6). Chock and Dunker eliminate tht ¢




TABLE 5. Comparison Studies for Schemes Based on Finite Difference Techniques

Reference

Methods Compared

Comments

Anderson and Fattahi [1974]
Emery [1968]

Haltiner and Williams
[1980]

Kurihara [1965]

Rubin and Burstein [1967]
Taylor et al. [1972]

Young [1968]

MacCormack’s method, Rusanov’s method, and
Kutler-Lomax-Warming method.
Lax, Rusanov, Landshoff, Lax-Wendroff, and Richtmyer’s.

Euler scheme, upstream/downstream,

trapezoidal implicit

scheme (trapezoid in the work by Youny [1968]), Euler
backward/Matsuno, leapfrog/second order, leapfrog/fourth
order, forward/backward scheme, pressure averaging, time
averaging, semi-implicit, and Lax-Wendroff.

Backward implicit, trapezoidal implicit, partly implicit 1,
leapfrog, partly implicit 2, Euler backward iteration (Euler
method and backward correction), modified Euler backward
iteration (modified Euler method and

backward correction), leapfrog trapezoidal iteration (leapfrog
method and trapezoidal correction), and leapfrog backward
iteration (leapfrog method and backward correction).
Several variations of Richtmyer’s two-step methods
Godunov, Rusanov (first order and third order),
MacCormack, and Richtmyer.

Euler’s modified (trapezoidal), Heun (double forward),

method A (double forward, centered), method A’ (method A,
variable time step), method B (forward, centered), method C,
Kutta, method D (two forwards, latest values, reversed
variable order), method D', Euler (forward), Adams-Bashforth,
centered (uncorrected), and centered (correction A).

The Kutler-Lomax-Warming seems to be the best. All of the
schemes are diffusive and not positive definite.

Concludes Lax-Wendroff is best but too complex. Therefore
recommends Rusanov.

Textbook that outlines a lot of routines but does not explicitly
compare and evaluate the methods.

Modified Euler backward same as Schneider [1984] modified
Lax-Wendroff, Kurihara offers a comparison and evaluation
of all the listed schemes in tabular form. This is an interesting
paper because it tests the propagation of a sine wave instead
of a sharp shock.

Taylor et al. like the first-order Godunov scheme better than
the first- order Rusanov scheme. The third-order Rusanov is the
best tested but has twice the computation time of Godunov.
Euler’s modified is not the same as modified Euler [see Kurihara,
1965). Heun is a second-order Runge-Kutta; it is the same as
modified Euler for constant velocity advection. For method D,
see angled derivative scheme by Roberts and Weiss [1966].
Young likes method A and the Kutta method. However, these
schemes require more time than the single-step schemes. Of the
three-level schemes, the Adams-Bashforth is preferred. Young
recommends “multipart, one-step schemes probably from the
Runge-Kutta family.”
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TABLE 6. Comparison Studies for Schemes Based on Technique Differences

Reference

Methods Compared

Comments

Chock [1985]

Chock and Dunker [1983]

Crowley [1968]

Long and Pepper [1981]

Mahlman and Sinclair
[1977

Molenkamp {1968]

Pepper and Cooper [1983]

Chapeau function (forward Euler with balancing
diffusion (CF/FED)), chapeau function with mass
lumping (forward Euler with balancing diffusion
(CFML/FED)), Forester applied to CF/FED (forward
Euler with balancing diffusion (FCF/FED)), Forester
applied to CF/1 (implicit Crank-Nicolson

(FCF/T)), FRAM diflusion applied to CF/FED (forward Euler
with balancing diffusion (FRAMI1/FED), FRAM
diffusion applied to CF/I (implicit Crank-

Nicolson (FRAM1/1)), FRAM donor cell applied to
CF/FED (forward Euler with balancing diffusion
(FRAM2/FED)), FRAM donor cell applied to CF/I
(implicit Crank-Nicolson (FRAM2/1)), Hermite-cubic
orthogonal collocation (forward Euler with
balancing diffusion (HCOC/FED)), Hermite cubic
orthogonal collocation (implicit Crank-Nicolson
(HCOC/1)), and quadratic function {forward Euler
with balancing diffusion (QF/FED)).

Flux-corrected transport {explicit Euler (SHASTA)),
fully multidimensional flux-corrected transport
(explicit leapfrog trapezoidal (MFCT/LT) and
modified Euler predictor-corrector (MFCT/PC)),
orthogonal collocation (modified Euler predictor-
corrector (OC/PC), implicit Crank-Nicolson

(OC/N), and implicit backward Euler (OC/BE)),
second-moment method (explicit (SM)), pseudo-
spectral method (explicit leapfrog (PS/L)), and
chapeau function method (implicit Crank-Nicolson
(CF/1), implicit Crank-Nicolson (CFD/I), and
modified Euler predictor-corrector (CFD/PC)).
Interpolation on three points (second order),
interpolation on five points (fourth order),

upstream, and Crowley.

Donor cell, fally implicit, Crank-Nicolson, cubic
spline, Akima quasi-Lagrangian, chapeau function
(Galerkin), and second moment.

Polynomial algorithms (second order and fourth
order (LF4)), quasi-Lagrangian algorithms, cubic
spline algorithm, pseudospectral algorithms, and
Lagrangian trajectory algorithms.

Upstream (upstream N and upstream N + 1), leaplrog,
Lax-Wendroff, Roberts-Weiss, and Arakawa (Euler
and Adams-Bashforth).

Chapeau function, method of moments, particle in
cell, and pseudospectral.

Chock [1985] compares finite element techniques and finds
FCF/FED 1o be the best all-around method, considering
accuracy and computer resources. For problems with small
gradients CF/FED. CF/I is the chapeau function method with
implicit Crank-Nicolson time integration from Chock and
Dunker [1983].

CFD/PC has been eliminated only with respect to CFD/I1. All
the orthogonal collocation routines are eliminated. SHASTA
is eliminated. Chock and Dunker say it is dilficult to
evaluate the rest of the schemes. PS/L is the most

accurate, and SM is accurate, but requires a lot of computer
time and storage (but see entry for Pepper and Cooper
[1983]). There is a mild recommendation for CF/1,
particularly in problems with small constituent gradients.

Crowley notes dramatic improvement when using fourth-order
instead of second-order estimates of the spatial derivatives.

Cubic spline, Akima, second moment, and chapeau are
reasonable. Second-moment conserved mass is positive
definite but diffused. Chapeau a bit dispersive but small.
Cubic spline selectively damps dispersive waves. Spline

phase speed exceeds chapeau phase speed. Akima maintains
peak well but is inferior to cubic spline.

Second-order polynomial seriously inferior. Fourth order is
better. Fourth-order quasi-Lagrangian and cubic spline do not
show significant improvement over fourth-order polynomial. -
Pseudospectral shows the best results, but at high cost
because of high number of waves and small time step.
Molenkamp finds the Roberts and Weiss scheme, which is
second-order accurate in time and fourth-order accurate in -
space, to be the most accurate of these schemes.

In analytic tests, all of these schemes are good. In field

tests it is hard to evaluate them. A slight preference for

the method of moments because of computational efficiency
(see entry for Chock and Dunker [1983]).
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implicit schemes as being generally inferior to the explicit
Euler predictor-corrector scheme. While the diffusion in this
scheme is quite small, the dispersion errors are large, and large
negative concentrations are generated. The overall accuracy of
OC is poor in comparison to the other schemes, and OC
methods as distinguished in Table 4 will be eliminated from
further consideration.

Chock and Dunker eliminate the chapeau function finite
element method (section 3.2.4) which uses explicit time step-
ping with respect to similar schemes that use implicit time
stepping because the implicit methods allow for a much longer
time step without significantly reducing the accuracy of the
model. The most serious disadvantage of the chapeau function
method is the rippling and the formation of negative constit-
uent values. The chapeau function methods require relatively
small amounts of both computer time and memory. Consider-
ing all aspects of the code, Chock and Dunker conclude that
the chapeau function methods are perhaps the best methods
to use in the absence of large concentration gradients or when
there is a significant amount of physically derived diffusion in
the problem.

The most accurate transport algorithm tested by Chock and
Dunker is the pseudospectral method with leapfrog time dif-
ferences (section 3.2.3.). The pseudospectral method is not in-
trinsically monotonic, but even in problems with large gradi-
ents the ripples associated with the method are small if
enough expansion functions are used to sufficiently resolve the
constituent field. The most serious problem with the method
seems to be that very small time steps are required to make
the system accurate.

Chock »[1985] focuses on finite element methods. Chock em-
phasizes two time integration techniques, the semi-implicit
Crank-Nicolson scheme and the explicit Euler forward scheme
stabilized with diffusion (FED) (see sections 3.1.1-3.1.3; also
see section 5.3). Chock considers the chapeau function (CF)
finite element method, the CF combined with Forester's
[1977] filter (section 3.2.5), the CF combined with the filtering
remedy and methodology described by Chapman [1981] (simi-
lar to that of Harten and Zwas [1972]) and the finite element
techniques which use basis functions other than chapeau func-
tions.

Chock and Dunker [1983] concluded that CF with implicit
time stepping, while not the most accurate technique, might be
the best overall choice for advection modeling. Chock [1985]
finds CF using the explicit FED time scheme an attractive
alternative. The results of the two methods are very similar,
with the FED method damping the peak more but also pro-
ducing smaller negative values. The addition of Forester's
filter to the CF/FED method removes the negative constituent
values and does only minimal damage to the peak con-
centrations.

While some of the finite element schemes considered by
Chock were more accurate than the CF method, on consider-
ation of complexity in coding and time constraints, most of
the other methods are eliminated. The combination of Forest-
er’s [1977] filter with CF, according to Chock, is a method
with “high accuracy with good peak retention and minimal
requirements on execution time and storage.” These attributes
led Chock to strongly recommend this technique. These re-
sults also indicate the quality and power of Forester's filtering
technique, particularly when combined with an intrinsically
accurate advection algorithm.
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Fig. 9. Comparison of transport algorithms; abbreviations are given in Table 6. There are 72007 units per revolution.
Therefore 57 corresponds to & = 0.07; 151—¢& = 0.21; and 30n— ¢ = 0.42. (@) The ratio of the calculated to the initial
squared concentrations (mass distribution ratio) for time steps of 5=, 157, and 30m. This is a measure of dissipation errors.
(b} The absolute error averaged over all grid points for time steps of 57, 157, and 30m. (¢) The maximum absolute error at
any grid point for time steps of 5m, 157, and 30z [from Chock and Dunker, 1983]. Figures 94 and 9e are the same as
Figures 9a through 9c¢, but for the schemes from Chock [1985]). (d) The ratio of the calculated to the initial squared
concentrations (mass distribution ratio) for time steps of 57, 157, and 307. This is 2 measure of dissipation errors. (¢) The
absolute error averaged over all grid points for time steps of 5x, 157, and 30m. (/) The maximum absolute error at any grid
point for time steps of 57, 157, and 30r [from Chock, 1985].

Mahlman and Sinclair [1977] concluded that the program- The explanation that Mahiman and Sinclair offer for the
ming difficulties and time requirements of the cubic spline deterioration of the LF4 method with the reduction of & (i.e.
methods and the quasi-Lagrangian methods more than offset  reduction of At) lies in the cancellation of space and time
the small increases in accuracy gained over leapfrog time dif-  truncation errors (see Figure 3). When ¢ = 0.3125, the phase
ferences with fourth-order centered spatial differences (LF4). lag associated with the space truncation error nearly cancels
Mahlman and Sinclair also find that the pseudospectral tech- the phase advance associated with the time truncation errof.
nique is most accurate but requires many members in the When At is reduced, the spatial truncation error remains the
basis function expansion and requires the use of a much same while the time truncation error is reduced; therefore the
smaller time step. For & = 0.3125, Mahlman and Sinclair con-  balance ceases to exist. The same phenomenon explains why
clude that the pseudospectral technique is not significantly the results of the pseudospectral technique for ¢ = 0.3125 are
better than LF4. For ¢ = 0.03125 the results with LF4 actually  so disappointing. In the pseudospectral case the space trunca- ¢
deteriorate, and the results from the pseudospectral technique  tion error has been significantly reduced in comparison t0 g
are nearly indistinguishable from the analytic result. lower-order finite difference representations, but the time errof %
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has not been similarly reduced. The lack of cancellation be-
tween space and time truncation errors also explains the not-
able difficulties with dispersion errors found with implicit time
schemes.

Pepper and Cooper [1983] have tested the method of mo-
ments, the chapeau function method, the pseudospectral
method, and the particle-in-cell technique on both analytical
and field problems. All of these methods are accurate trans-
port schemes. The particle-in-cell method is a particle method
which follows the transport of particles between numerical
boxes [Sklarew et al., 1971]. The accuracy of the method ulti-
mately depends on the tagging of many particles, and the
method becomes prohibitively expensive. It is difficult to dis-
linguish as to which of the remaining schemes are best. The
method of moments algorithm used by Pepper and Cooper
fairs much better than the algorithm used by Chock and
Dunker [1983]. It is computationally the fastest, maintains
peak values well, and does not produce negative mixing ratios.
Once again, however, the pseudospectral method comes out as
the most accurate of the tested methods, though at the cost of
More computation time.
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Fig. 9. (continued)

There are several recently developed schemes that have not
been presented in the comparison studies above. The square
root scheme, the slopes scheme, Prather’s [1986] second-order
moments scheme, and Smolarkiewicz’s [1983, 1984] scheme.
Also, the schemes of B. van Leer and the new schemes based
on van Leer’s methods are noticeably absent.

The square root scheme [Schneider, 1984] compares very
favorably to the LF4 with filling as tested by Mahlman and
Sinclair [1977] but does not require the computer time needed
in local filling algorithms. The major disadvantage of the
square root scheme is that conservation of mass is violated of
the order of &*. In the implementation of the scheme this
generally small violation is calculated with no extra effort, and
when the violation reaches some small number (1 part in a
million. for instance), the entire mass distribution is adjusted
to conserve mass. There is the generation of small-scale noise
caused by the squaring operation, which may have an influ-
ence on the long-term stability of the scheme.

Prather's [1986] scheme is an extension and improvement
of the slopes scheme [Russell and Lerner, 1981]. Both schemes
are relatively difficult to code. Prather offers a comparison of
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both schemes to some of the schemes tested by Chock and
Dunker [19837. The second-order moments scheme produces
very accurate results.

The tests described by Smolarkiewicz [1984] show good re-
sults in two and three dimensions. Smolarkiewicz’s scheme is
cost effective and positive definite.

The tests with the simple rectangular and linear versions of
van Leer’s scheme show that the scheme changes distributions
into a square wave distribution in much the same manner as
FCT. The higher-order versions (i.e., the piecewise parabolic
method) are difficult to code because of the treatment of non-
linear Reimann problems at zonal interfaces but are very ac-
curate [Woodward and Colella, 1984; Colella and Woodward,
1984]. These schemes were originally derived for shock propa-
gation problems, and the coding necessary, balanced against
the gain in accuracy for the higher-order schemes, seems to be
beyond the level of effort necessary for natural atmospheric
phenomena.

5. DISCUSSION AND SPECIAL PROBLEMS

The material in the previous sections primarily focused on
the development of transport routines and their application in
idealized circumstances. The problems that have been solved
in the comparison studies provide very stringent tests, and it is
assumed that if a particular transport algorithm does not do
well in these tests. then it will not do well when applied to
realistic problems. Unfortunately, if a scheme does do well in
these tests, it does not assure that it is a generally useful
scheme. This section will address the basic numerical difficul-
ties of modeling advection when the constraints of a realistic
atmosphere are considered.

A subtle point to remember in building a chemistry and
transport model, which has a special algorithm for trace con-
stituents, is numerical consistency between the constituent
continuity equation and the equations used in the dynamical
model. This point is easily overlooked in an offline transport
model. Offline modes use wind fields from an independent
dynamical model for transport velocity fields [see Mahlman
and Moxim, 1978].

5.1. Conservation of Mass and Boundary
Conditions

Conservation of mass is the most basic requirement of an
advection algorithm. Given the situation of cyclic boundary
conditions, then the vast majority of the algorithms discussed
in the previous sections conserve mass without any special
effort. Some schemes such as BIQUINTIC [Schere, 1983] and
the square root scheme [Schneider, 1984] do not conserve
mass. If the errors in mass conservation are very small, then
the special attributes of a transport scheme might justify its
use. In such a scheme the lack of mass conservation should be
calculated as a diagnostic of how well the transport algorithm
is performing. When chemical source and sink terms are
added, it becomes more difficult to evaluate the role of non-
conservation of mass.

As a general rule, it is best to avoid algorithms that do not
conserve mass. In long integrations an appreciable part of the
total mass might be lost, gained, or redistributed arbitrarily
over the domain by a mass correction algorithm. This dam-
ages the credibility of the result. When a filling or monotoni-
city algorithm is needed, it must be carefully constructed to
conserve mass.

RoOD: NUMERICAL ADVECTION ALGORITHMS

Instrumental to the conservation of constituent mass is the
conservation of total fluid mass,

—+V.pu=20

= (22)

This equation relates the velocity field to the fluid density p,
and it has been tacitly assumed in all previous discussions that
(22) is satisfied. If (22) is not satisfied. then mass conservation,
both total fluid mass and trace constituent mass, will be vi01;
ated. Some finite difference algorithms that have been de.
signed specifically for constituent transport require that specif-
ic numerical approximations be used in (22). The choice of
such an algorithm may result in a tracer model that has, for
instance, a different vertical velocity field than in the original
dynamical model.

The choice of flux or advective form (section 2.2) can affect 1
the ease with which mass conservation is coded. When no fiux ¢
boundary conditions are given (uu = 0, at the boundary), the k
specification of the boundary condition is trivial in flux form,
Gordon [1981] discusses the mass conservation properties of a
flux form general circulation model. Smolarkiewicz [1985] dis-
cusses the high level of accuracy that can be obtained by using
the flux form.

The implementation of boundary conditions frequently
creates mass conservation problems. Most finite difference
schemes must be altered at the boundaries in order to close
the system. Therefore the symmetry amongst all of the grid
points is lost. Two frequent mechanisms used at boundaries
are one-sided differences [Lapidus and Pinder, 1982] and dif- ¢
ference schemes that are of a lower-order accuracy than those
used in the rest of the domain. Both of these mechanisms tend &
to generate errors, and since hyperbolic systems allow the
errors to propagate undamped, the errors can propagate
throughout the entire domain. An otherwise stable scheme can
be made unstable by the improper specification of the bound-
ary points.

By choosing a scheme that does not require a large cluster
of points to calculate the spatial derivatives, the application of
boundary conditions is simplified. Therefore the upstream
volume (see Table 4 and section 3.2.6) schemes which gener-
ally look only one point upstream may be simply applied at
the boundaries. Finite element methods (section 3.2.4) arc
known for their ease of application at boundaries. If the basis
functions exactly meet the boundary conditions, then spectral
or pseudospectral techniques have good characteristics.

5.2. Dispersion, Atmospheric “Shocks,” and
Locality

In section 2.3, dissipation and dispersion errors were por-
trayed as the two most fundamental errors encountered in
trying to numerically model advection. Attempts to correct
one of these errors frequently enhanced the appearance of the
other error (Figure 1, for example). Dispersion errors are most
important in regions of sharp gradients. Sharp gradients re-
quire short waves to resolve them, and it is a fundamental fact
of finite difference schemes that shortwaves are not modeled as
accurately as long-waves.

In natural atmospheric applications there are certain re- §

gions where sharp gradients are maintained, frequently due t0
the presence of a localized source or sink. Plumes from vol-
canos or power plants provide sharp constituent dis-
continuities which are very difficult to model. Ripples and
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however, it transports long-waves faithfully.

negative mixing ratios can appear around the plume. Attempts
1o reduce the ripples by adding diffusion might cause unrealis-
ue spreading of the source.

For photochemically active constituents a region of particu-

lar difficulty is the terminator between day and night. For a
constituent that exists only in light or dark, the terminator
represents a shock. Numerical errors in the area of such a
shock lead to the unrealistic presence of the constituent in an
area where it should not be.
For tropospheric/stratospheric models the region of the tro-
popause represents a stationary shock for some constituents.
(O zone. for instance. generally exists in much larger quantities
. the stratosphere than in the troposphere. A numerical
model has to be able to maintain this stationary shock with-
out unrealistically propagating the shock to other parts of the
Jdomain. Also, the presence of the tropopause cannot be al-
lowed to continuously generate negative mixing ratios.

The shocks discussed above are maintained by various pro-
cesses that can be viewed as external to the advection prob-
lem. The single fact of advection that makes it difficult to
model is that hyperbolic equations can form and maintain
regions of sharp gradients. An important mechanism of trans-
port of ozone between low and high latitudes is the advection
of ozone in tongues around the high- and low-pressure cells of
planetary waves. This transport manifests itself as the forma-
tion of tracer tongues that exhibit very large gradients [Leovy
et al., 19857. Observations therefore suggest that in order for a
transport scheme to accurately simulate the atmosphere, it
must be able to form and maintain shocks without destroying
the model with excessive dispersion €rrors.

1f the maintenance of shock fronts is of critical importance,
Ihen schemes like FCT, the method of moments, and the
piecewise parabolic method are perhaps appropriate (sections
3.2.5 and 3.2.6). Care, however, must be considered when ap-
plying these schemes. The most simple Ones like SHASTA
_[Boris and Book, 1973] quickly fracture the entire distribution
into a series of steps (Figure 10a). The more complex schemes
may require significant effort to code and significant computer
time. The method of moments also has a tendency to trans-
port rectangular distributions, but Figure 10b indicates that
the tendency to distort long-waves is much less than with
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Fig. 10. Two positive definite schemes and the advection of a wave of length 40Ax. {a) SHASTA (Boris and Book,
1973}, the original flux-corrected transport which was derived
for the scheme 10 fracture the distribution into 2 series of shock fronts. (b) The method of moments [Egan and Mahoney,
1972]. This scheme also transports rectangular waves exactly and has 2 tendency to square off rectangular distributions;

to transport rectangular shocks exactly. Note the tendency

SHASTA. The preference for many of the shock-conserving
schemes to transport rectangular waves is the reason that
many of these schemes preserve peaks so poorly (see Figure 9).

Another concern that frequently arises is the locality of a
scheme; that is, from how many grid points away is infor-
mation needed to calculate the spatial derivatives? If very
many grid points are needed, and a shock is present, then
constituent values that are unrealistic of the local situation are
used in the calculation of the derivatives. The upstream geo-
metric schemes only use local information and therefore avoid
the problems of such contamination. Pepper et al. [1979]
specifically discuss the disadvantages of the spline techniques,
because each derivative involves other node points to some
extent.

The view taken here is that based on the presence of sharp
gradients, locality is not 2 required attribute. Zalesak [1984]
explicitly shows that by going to higher-order accuracy, which
requires more grid points, the resolution and the modeling of
shock propagation is improved (see also Orszag and Jayne
[19741). The most accurate advection simulations are realized
with spectral and pseudospectral techniques. Pseudospectral
techniques draw information at each grid point from the
entire domain. The advantage of having a local scheme are felt
much more strongly when it comes to specifying boundary
conditions.

5.3. Diffusion

Advection has the capability of stringing out and shearing
off small-scale [eatures that may ultimately be mixed [see
Welander, 1955; Tennekes, 1978; Mied and Lindemann, 19841].
The formation of tracer shocks (fronts) by advection in a de-
formational velocity field is the instrumental mechanism for
generating small-scale mixable structure. Diffusive or viscous
processes are ultimately responsible for mixing the small-scale
features generated by sheared velocity field. The atmosphere is
not observed to generate and maintain shocks in constituent
fields away from sources and sinks. Furthermore, high-
resolution observations show the mixing of tracers to small
scales {for instance, Nastrom et al. [19861). Therefore diffusive
processes must be included to properly model atmospheric
transport.
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In a numerical approximation, once the flow reaches the
spatial scale of the numerical grid. some sort of parame-
terization has to be invoked to represent subscale processes.
This is generally assumed to be diffusion. The transport stud-
ies of Mahiman [1985] clearly show that once advection has
formed small-scale features, the subgrid parameterization
quickly mixes the constituent. Since the blobs and strings
caused by hyperbolic processes are not necessarily mixed [see
Clough et al, 1985), the specification of subgrid parame-
terizations remains largely an art.

While diffusion is a necessary physical process, it has been
shown in sections 2 and 3 that numerical diffusion is often a
great intrinsic source of error in an advection algorithm. Some
schemes such as the donor cell scheme are so diffusive that
numerical diffusion quickly dominates the solution. The donor
cell and the Lax-Wendrofl scheme have both been shown to
appear as the unstable Euler scheme stabilized by diffusion.
While the Lax-Wendroff scheme has the minimum amount of
diffusion to stabilize the Euler forward scheme, the amplitude
of a perturbation with wavelength equal to 6Ax is reduced by
one hall over 15 time steps for ¢ = 0.5 [Morton, 1971].

Not only is diffusion a necessary physical process and a
source of error in advection algorithms, it is frequently touted
as a necessary part of a transport algorithm to reduce disper-
sion errors. Finite difference schemes transport shortwaves
with less accuracy than long-waves. Therefore it has been
argued that since these waves are not accurately modeled, and
that since this frequently leads to the unpleasant formation of
negative mixing ratios, a highly scale dependent diffusion (or
some other type of filter that can be interpreted as nonlinear
diffusion) should be added to damp the shortwaves [ Thomp-
son, 1984; Zalesak, 1984]. Others argue that such corrections
should not be made [Gresho and Lee, 1981; Mesinger and
Arakawa, 1976].

The role of diffusion is confounded even more by the pa-
rameterization of transport processes in one- and two-
dimensional chemistry models. In these models, part or all of
the wave transport is modeled as diffusion. This is often a
poor assumption. Recent work has shed some light on how it
might be appropriate to use two-dimensional models to repre-
sent the zonal mean structure of the atmosphere [Plumb and
Mahlman, 1987; Strobel, 1981; Holton, 1981; Garcia and Solo-
mon, 1983; Stordal et al., 1985].

Figure 11 illustrates how numerical and physical diffusion
complicate each other. In Figure 1! the analytic problem
solved by Clancy [1981] is considered. In this problem a wave
of length 10Ax is being advected and diffused. In Figure 11g,
forward Euler stabilized by diffusion is used with second-order
spatial differences (sections 3.1.1-3.1.3). A very small ¢ is re-
quired in this case. The phase errors and the overestimation of
the amplitude by the second-order scheme are obvious. Part
of the diffusion must be used to stabilize the instability of the
scheme: therefore the real diffusion is underestimated. In the
event where there is little or no physical diffusion, Euler for-
ward stabilized by diffusion overestimatés the diffusion. Figure
11b shows that by using fourth-order differences (section 3.2.1)
the results are improved. The phase error almost disappears,
and even though this scheme is still unstable, the instability
grows at a much slower rate, and the amplitude of the wave is
more faithfully represented. Figure 1ic shows the numerical
results to be indistinguishable from the analytic result. For
this example, leaplrog time differences (no numerical diffusion)
have been used with fourth-order spatial differences, and the

time step has been increased by a factor of 10. The diffusion is
calculated using forward time differences.

Given that diffusion is a necessary physical process, and
that its quantification in the atmosphere is unknown and very
controversial, it must be concluded that numerical diffusion
has to be minimized when writing an advection algorithm,
The numerical scheme should be stable without a mechanism
that maintains the characteristics of diffusion. If the scheme is
held together by diffusion, then the task of assuring that the
diffusion only very precisely operates on the mechanisms of
instability must be undertaken. Smolarkiewicz [1983, 1984]
uses carefully prescribed antidiffusion to counter intrinsic nu-
merical diffusion. The addition of highly scale selective diffu.
sion to damp out improperly modeled waves is recommended,
but this diffusion must be carefully monitored and kept to a
minimum. If these steps are taken, then physical diffusion can
be added to the system in such a way that the magnitude of
the diffusion is known, and the constituent variance is proper-
ly modeled. ‘

There have been algorithms with small amounts of diffusion
discussed in all of the generic classifications in section 3.2. The
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Fig. 11. Comparison of the analytic and numerical solutions of
the “oceanic” advection-diffusion problem described by Clancy
[1981] using three numerical techniques. The wavelength is equal 10
10Ax. The numerical solution is denoted by the plus signs. (@) Eulef
forward stabilized by diffusion (same as Clancy [1981, Figure 20). b
Euler forward time differencing with fourth-order estimates of the
spatial derivatives. Note the significant improvement in the phase
estimate. (c) Leapfrog time differences (with respect to the advective
derivative, forward with respect to diffusion) with fourth-order cen
tered spatial derivatives and an increase in At by a factor of 10 over
that used in Figures 11a and 11b; note the nearly exact agreement
between the analytic and numerical solution.
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I;upfrog scheme (section 3.1.4) has no intrinsic diffusion. Some
of the shock-preserving, monotonic (sections 3.2.5 and 3.2.6)
«chemes have an unusual diffusion, because once peaked dis-
(ributions are converted into rectangular distributions, the
ransport is exact.

<. Multidimensions, Deformational Velocities,

und Spherical Coordinates

Many advection algorithms are derived for the idealized
constant velocity, one-dimensional cases depicted in Figures !
and 2. When the schemes are applied to realistic multidimen-
sjonal situations, the quality realized in the simple situation is
jost. Similar problems are found when nonrectangular coordi-
nate systems are used.

One method of generating codes for multidimensions is il-
justrated by Arakawd’s [1966] formulation of the two-
Jimensional advection equation. Basically, a two-dimensional
configuration of grid points is set up, and a numerical scheme
10 simultaneously calculate the spatial derivatives in both di-
rections is specified. Smolarkiewicz [1982] generates a com-
bined form of the Crowley [1968] advection scheme (that is,
the x and y advective are combined in one step).

A second method for performing multidimensional calcula-
tions is the method of time splitting (or the method of frac-
tional steps [Yanenko, 1971; Marchuk, 1974; Strang, 1968]).
Time splitting involves calculating each process in a procedure
separately and in a specific order. The modified results from
the first step are used as the input parameters for the second
step. In the comparison studies of Chock [1985] the two-
dimensional transport is calculated with a time-splitting algo-
rithm that calculates the x advection and then the y advection
during one step; then on the next step the y advection is
calculated first. Thompson [1984] discusses the various time-
splitting algorithms that have been proposed and tested. Smol-
arkiewicz [1982, 1984] offers an interesting discussion of time
spiit and combined formulations of multidimensional advec-
ton. Not all schemes take well to time splitting, and many
schemes lose either their accuracy or stability when simple
time-splitting algorithms are used [Peyret and Taylor, 1983].
Prather [1986] states that the cross terms, which consistently
describe the interaction between the advection operators in
each dimension, are necessary to the stability of his scheme.
Smolarkiewicz [1982] discusses the importance of cross terms
to the accuracy of the multidimensional Crowley [1968]
scheme. Overall, however, time splitting is a proven efficient
method for extending one-dimensional transport codes to two
and three dimensions.

The shape-conserving tests in one, two, and three dimen-
sions do not test the ability of an algorithm to function in
chormational (sheared) velocity fields. Accurate performance
in deformational fields is essential because deformational ve-
locities are responsible for building up constituent fronts
which may be mixed by irreversible diffusive processes. The
most {requent failure in the presence of deformational veloci-
ties is instability. Instabilities in deformational flow might be
expected because the numerical processes that build shocks
“fe very similar to the processes that cause instability. Smolar-
A:xewic: [1982] offers a discussion of deformational velocity
fields that is applicable to finite difference techniques.

The final generalization of a scheme is the jump from rec-
tangular to spherical coordinates. Conservation of mass and
possible advantages supplied by the flux form may be lost
when the metrics of the curvilincar coordinate system are in-

corporated into the numerical scheme. Also, the convergence
of the meridians of longitude at the poles effectively reduces
the spatial increment to zero, placing severe restraints on the
time step. Polar filters, which attempt to remove the unstable
modes while leaving the physical modes undisturbed, are fre-
quently used in general circulation models, but care must be
taken to assure that the filters do not unrealistically alter the
flow [see Takacs and Balgovind, 19837. A major advantage of
spectral methods is that no special consideration has to be
made at the poles (section 3.2.3). Some of the upstream
volume schemes (section 3.2.4) do not require ¢ < 1 and there-
fore may exhibit favorable properties at singular boundaries.
Implicit schemes remain stable near the pole.

5.5, Numerics of Combined Chemistry and
Transport

Some effort has been put into the numerics of transport and
chemistry, though the literature is not nearly as rich as either
the transport algorithm literature or the literature concerning
the integration of chemical equations. Much of the material
that is available exists in laboratory reports and seems to be
concentrated in the field of combustion [Oran and Boris,
1981]. As with the extension of advection algorithms from one
to three-dimensions, the entire numerical procedure can be
written as a single entity, or the process can be time split.

In time split techniques the chemistry and transport calcula-
tions are performed separately [McRae et al., 1982]. This is
sometimes referred to as process splitting and is a method that
is commonly used to add diffusion to an advection calculation
and to add radiation to atmospheric dynamics models. Pro-
cess splitting has also been used to calculate wave-wave inter-
action terms in atmospheric dynamic models and to separate
fast-moving wave modes from the slower-moving meteorologi-
cal waves [Chao, 1982; Gadd, 1978a, 1980; Bates and McDon-
ald. 1982].

Figure 12 shows the results of an idealized integration of
chemistry and transport. In the idealized problem, rectangular
distributions of odd oxygen (O, = O, + O) and N,O; with
concentrations characteristic of middle latitudes are being ad-
vected in an environment representative of high latitudes.
Total odd nitrogen is held constant. The background field in
which the rectangular distribution is advecting is found by
integrating the initial values for 10° s with a chemistry integra-
tor. For an integration of 10° s the constituent in the rectangle
is expected to approach the value of the initial background.
The original background value is expected to reach the value
obtained by integrating the initial values for 2 x 10% s. Only
the results for O_ are shown (see Figure 12a).

Three experiments are presented. In the first the integration
is represented schematically by

W7 = pt + Ar(advection)' + Ar(production — loss)' (23)
In the second experiment,
p* = pt + At(advection)
24

(8 = u* + Ar(production — loss)*

where the chemistry is calculated with the asterisked values. In
both of these experiments the Lax-Wendroff scheme is used
with & = 1 (the transport is exact). The third experiment is the
same as the first with & = 0.5.

Figure 12b shows that the straightforward method depicted
in (23) generates errors. Since the transport is exact, it is the
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Fig. 12. Odd oxygen concentration for combined chemistry and transport experiments. (a) The initial condition and
the expected solution. The expected solution is reproduced in Figures 12b through 12d. (b) Exact transport. Errors are
formed by calculating the chemistry and the advection terms at the same time. (c) Exact transport. Exact results are
obtained by calculating the chemistry with “advected” constituent densities. (d) Transport not exact. The diffusion and
dispersion errors of the transport scheme overwhelm the errors seen in Figure 12b.

treatment of the combination of the transport and chemistry
terms that produces these errors. For this experiment the os-
cillations become so large in N,O, that negative mixing ratios
are generated. The second experiment, equation (24), shows
that for this particular problem the process split method pro-
duces exact results (Figure 12¢). In the third experiment
(e= 0.5; transport is not exact) the errors associated with the
transport routine are seen to dominate the errors associated
with the combination of chemistry and transport (compare to
Figure 12b). The details of combining chemistry and transport
calculations are deferred to a later paper, in preparation by
this author.

6. SUMMARY

Of the multitude of schemes that are available, or that can
be effortlessly developed by permutating various meth-
odologies, the following general classification can be made. A
few schemes are bad enough that their use would certainly
invalidate any model results. A vast majority of transport

schemes fall into a category where it is difficult to judge one
scheme to be better than another. There are a select few
schemes that offer very accurate results. As a general con-
clusion, there is a certain level of accuracy that can be ob-
tained by the judicious use of simple finite difference algo-
rithms, and any additional increase in accuracy can require
great computational and human effort. This section will high-
light the most promising schemes. '

The question of computational time and memory is of some
interest. Many researchers argue that advection calculations
are cheap in comparison to the overall cost of running 2
model. This is a valid statement when the transport of a single
quantity is compared to the cost of an atmospheric general
circulation model. It is also generally true that the calculation
of the transport of a single constituent is small in comparison
to the cost of computing the chemistry production and loss.
Therefore the conclusion might be made that the cost of
making a super accurate transport scheme is small in com-
parison to the total cost of the model.
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“Theve is, however, a point of diminishing returns. A strato-

. spheric constituent model might be expected to have 40 or

more continuity equations, depending on the method used to
integrate the chemistry. The cost of transport is very expensive
and makes up a large [raction of the calculation. Therefore an
economic transport routine is very important. A scheme that
spends much of its extra computational effort in assuring that
step discontinuities are calculated accurately is not appropri-
ate for global atmospheric applications.

The question of efficiency of computer storage is more obvi-
ous. If it is desired to transport even 20 constituents on a (72,
36, and 30; grid points in longitude, latitude, and height,
which is a medium resolution troposphere/stratosphere gener-
al circulation model) grid, then the difference between a two-
and three-level time scheme is 1.6 x 10° words. To advect the
first and second moments of the constituent provides an even
larger expense. Constituents that are not transported also take
up considerable storage. Therefore a profligate attitude
toward computer time and storage can easily lead to a model
that cannot be run on any computer.

It is difficult to recommend any particular scheme for use in
all situations. Thompson [1984] offers a long list of general
recommendations. Aside from recommending odd-order
schemes (either third or fifth), Thompson recommends explicit,
second-order accurate time stepping with & well below unity,
an upwind bias, and a strong sharp filter on the shortest wave-
jengths. The convergence of the meridians at the pole might
require such short time steps that implicit schemes become
attractive. With implicit schemes, dispersion errors become
more prominent. An interesting conclusion of Smolarkiewicz
[1984] is that both space and time truncation errors should be
at least equal to the dimensionality of the problem.

Thompson [1984] recommends odd-order schemes, and sev-
eral recent studies investigate the virtues of odd-order schemes
[Schlesinger, 1985; Takacs, 1985]. The preference for odd-
arder schemes largely arises in the attempt to reduce disper-
sion errors. As is shown by Takacs [1985], going from an
odd-order scheme to the next higher even-order scheme does
not reduce the dispersion error but does require more multi-
plications. The even-order scheme, however, does reduce dissi-
pation errors. Many previous studies emphasize the problems
of modeling regions of sharp gradients; hence the reduction of
dispersion errors is most important. It has been argued in this
review that in particular, for middle atmospheric applications,
it is best to reduce dissipation errors. By reducing numerical
dissipation errors to a minimum, the modeler obtains maxi-
mum control over adding physical diffusion, an essential
mechanism in any transport model.

Therefore for straightforward finite difference applications,
reasonable minimum requirements are second-order accurate
time differences and fourth-order spatial differences. Leapfrog
time differences with fourth-order centered spatial differences
can be viewed as the minimum effort scheme. LF4 is not
positive definite, and a filling algorithm is a likely requirement.
The three time levels required with the leapfrog scheme may
he unattractive both from the point of view of computer stor-
age and the incorporation of chemistry. Smolarkiewicz’s
[1984] scheme is a positive definite finite difference scheme
that offers a good mix of accuracy and cost.

The recommendation from the most complete, up to date,
published intercomparison of transport algorithms by Chock
[1985] and Chock and Dunker [1983] is to use the chapeau
function finite element method with the Forester filter to

remedy dispersion errors (sections 3.24 and 3.2.5). This
scheme is not the most accurate that was tested, but, weighing
cost versus accuracy, it was chosen as the best. Chock [1985]
suggests forward Euler stabilized with diffusion (sections
3.1.1-3.1.3) as a good time-stepping method. However, il the
user wants to maintain control over the model diffusion, the
implicit method discussed by Chock and Dunker [1983] is
more appropriate for middle atmospheric models. Petrov-
Galerkin finite element techniques (section 3.2.4) have the po-
tential for producing very accurate results.

For absolute accuracy, though at the expense of short time
steps to reduce the phase errors associated with time differ-
encing, the pseudospectral (or spectral) technique is the best.
High accuracy requires that a large number of basis functions
be carried. Pseudospectral methods are most useful if the basis
functions identically meet the boundary conditions.

In practice, global applications of spectral or pseudospectral
methods generally involve modeling the horizontal transport
with expansion functions and the vertical transport with a
finite difference technique. The biggest source of negative
mixing ratios in such a model is generally due to the vertical
differencing. However, there are difficulties associated with
Gibb's phenomena near regions of sharp gradients. The
pseudospectral technique does not offer all of the advantages
of the spectral technique at the poles [Merilees and Orszag,
1979].

Perhaps the most accurate scheme developed to date is the
pseudospectral flux-corrected transport algorithm of Zalesak
[1981b]. The flux-corrected transport procedure provides a
method for making any scheme monotonic. However, the pro-
duction of a scheme that does not square off peaks is a diffi-
cult task that requires as much art as science. The adaptation
of pseudospectral flux-corrected transport to spherical geome-
try is not straightforward (P. Rasch, personal communication,
1986), and the combined cost of the pseudospectral technique
and the flux limiting make this a very expensive method.

From the discussion in section 5, local upstream volume
schemes (section 3.2.6) have many positive attributes: they are
monotonic, the time steps can be large, boundary conditions
are easy to apply, and absolute mass conservation is easy to
code. These schemes can have unusual dissipation character-
istics. Prather [19867 reports his scheme to be accurate and
stable in three dimensions. The method of moments can be
efficiently coded in three dimensions [Pepper and Cooper,
1983]. Coding difficulties and storage requirements prohibit a
wholehearted recommendation of these schemes.

Many adequate advection algorithms have been developed.
Many of these algorithms have not been tested or generalized
to the conditions necessary for atmospheric applications. The
choice of a particular algorithm for a model will depend on
personal preferences and model constraints. Even the most
accurate algorithms described will leave a numerical effect on
the computation. The most important consideration in
choosing an advection algorithm is to assure that numerical
constituent models are reflecting the physics and chemistry of
the system rather than the inaccuracies of the numerical meth-
ods.

NOTATION
CF chapeau function.
FCT flux-corrected transport.
FED Euler forward stabilized with

diffusion.
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i (subscript) space increment index.

LF4 leapfrog time differences with
fourth-order centered space
differences.

t (superscript) time index.
u velocity.

¢ Courant-Freidrichs-Lewy
number, uAt/Ax.
4 mixing ratio.
At time step.
Ax space increment.
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