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The jlux integral method is a procedure for constructing an explicit single-step forward-in-time conservative 
control-volume update of the unsteady multidimensional convection-d@usion equation. The convective-plus- 
difjiiveJlux at each face of a control-volume cell is estimated by integrating the transported variable and 
its face-normal derivative over the volume swept out by the convecting velocityJie1d. This yields a unique 
description of the fluxes, whereas other conservatiue methods rely on nonunique, arbitrary pseudo$ux- 
d$erence splitting procedures. The accuracy of the resulting scheme depends on the form of the subcell 
interpolation assumed, given cell-average data. Cellwise constant behavior results in a (very art$cially 
difjiive) jirst-order convection scheme. Second-order convection-d@ision schemes correspond to cellwise 
linear (or bilinear) subcell interpolation. Cellwise quadratic subcell interpolants generate a highly accurate 
convection-diffusion scheme with excellent phase accuracy. Under constant coejicient conditions, this is a 
uniformly third-order polynomial interpolation algorithm (UTOPIA). 
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1. The flux integral 

Consider_ the cell-average value of the transported 
scalar, 4, at a reference (central) cell, C. In two 
dimensions, an exact single-step explicit update can be 
written for the “new” (superscript +) cell value: 

4: = 4, + FLUX,(i,j) - FLUX,(i + l,j) 

+ FLUX,(i, j) - FLUX,(i, j + 1) (1) 

using standard index and compass-point notation. Note 
that this is strictly conservative in that the east-face 
convective-plus-diffusive flux of cell C, at (i,j), is identical 
to the west-face flux at (i + 1,j); similarly for the 
north- and south-face fluxes. In equation (l), the 
west-face flux, for example, is given by 

FLUX,(I’, j) = (L/#L> - “(G(Z),> (2) 

where the angle brackets represent time averages over 
At, and, assuming (for convenience) a uniform square 
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mesh of side h, the west-face normal-component Courant 
number is 

u,(t)At 
C xw=-- 

h 
(3) 

and the west-face nondimensional diffusion param- 
eter is written in terms of the (scalar) diffusivity, D,, as 

D,(t)At 

c1 =h2 
w (4) 

with analogous definitions for the south face. 
The convective contribution in equation (2) is 

equivalent to the total “mass” of 4 swept through the 
west face along particle paths (or streamlines, in steady 
flow) over At. In principle, one could trace the particle 
paths backward to the earlier time level, for each face. 
This is shown, schematically, in Figure I. Then the (exact) 
purely convective contribution is equivalent to inte- 
grating 4(x, y) at the earlier time level over the area (or 
volume, in three dimensions) swept out by the particle 
paths: 

(c,,&> = 
JJ 

4(x, Y) KM) KG) (5) 

PPA 

where PPA stands for particle path area. 
The flux integral method now approximates equation 

(5) by replacing the particle path area by the flux integral 
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Figure 1. Schematic drawing of particle paths flowing into the 
west face of cell C is shown. 

b-c,, h-4 
mm------- 

Figure 2. The flux integral parallelogram in the vicinity of the 
west face of cell C. c,,, cvW > 0. 

parallelogram (FIP) by assuming the convecting velocity 
field to be locally constant (in both space and time) in 
the vicinity of the face in question. This is shown in 
Figure 2; note that the parallelogram is defined by the 
local (space-time-averaged) Courant number compo- 
nents, c,, and c,,,,, (taken as both positive in the case 
shown). The flux integral convective approximation is 
thus 

<c_XIv4,> = 
ss 

4(x, Y) 444 4ylh) (6) 

FIP 

A similar approximation for the diffusive contribu- 
tion results in 

where c(, is an appropriate average. If the subcell 
behavior at the earlier time level, 4(x, y), were known in 
complete detail, equation (6) would represent an exact 
flux due to pure convection by a constant velocity field. 
For nonzero diffusion, it turns out that equation (7) 

represents the diffusive flux to third order, provided the 
subcell behavior is known in enough detail. The major 
task in the flux integral method is thus an interpolation 
problem: 

Given a set of cell-average values, estimate subcell 
behavior in an accurate (and, ideally, shape-preserving) 
manner, while observing the cell-average constraint: 

ss 
4(x, y) d(x/h) d(y/h) = $ce,, for all cells (8) 

Cell 

with an analogous formula in three dimensions. 
For constant-density flow, the face-normal compo- 

nent Courant numbers used in constructing the flux 
integral parallelograms should satisfy a discrete contin- 
uity equation for each cell: 

c,,(i, j) - c,,(i + 1, j) 

+ c&j) - c&, j + 1) = 0 (9) 

Since the area of a flux integral parallelogram is 
proportional to the face-normal Courant number 
component (e.g., the shaded area in Figure 2 is cX,h2), 
an initially constant scalar field will remain constant 

everywhere (to machine accuracy). This can be seen in 
Figure 3, where the sum of the “inflow areas” equals the 
sum of the “outflow areas” (irrespective of the local 
individual face-transverse Courant number components). 
The appearance of “overlapping” characteristics in 
Figure 3 should be no cause for concern. The important 
thing to note is that the spatial extent of characteristics 
passing through any given face is uniquely defined. 

In the following sections, a number of different subcell 
interpolants are explored. A cellwise constant interpolant 
(locally equal to the cell average) results in a (very 
artificially diffusive) first-order convection scheme; 
modelled physical diffusion is absent, to a consistent 
order. This is not a viable scheme for practical CFD 
calculations. But, because of its simplicity, it is instructive 
to explore the flux integral method in this case. Bilinear 

Figure 3. Flux integral parallelograms on each face of cell C. 
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downwind-weighted subcell interpolation results in a 
two-dimensional analog of the Lax-Wendroff scheme.’ 
A cellwise quadratic interpolant over each cell generates 
a convection-diffusion scheme that is formally third- 
order accurate under constant coefficient conditions. 
These three methods are briefly compared using the 
well-known “rotating hill” test problem. 

2. First-order convection 

Fluxes will be calculated for the west face of cell C. 
Entirely analogous fluxes for the south face can be 
written down using appropriate (x, y) permutations. 
Unless otherwise noted, the Courant number compo- 
nents will be taken as both positive. Referring to Figure 
4, the west-face convective flux integral corresponding to 
equation (6) can be thought of as consisting of a 
combination of three separate integrals 

FLUX,(i, j) = I, - I, + I, (10) 

where I, is the integral over the rectangular area, 12461, 
in cell W; I, is over the triangular area, 1231, in cell W; 
and I, is over a similar triangular area, 6456, in cell SW 
Assuming 4 to be cellwise constant (equal to the 
respective cell average), the integrals in equation (1) are 
proportional to the respective areas times the local cell 
average value. This gives a first-order FIM of 

FLUX,(i, j) = c,,& - F &, + F &,@ 1) 

or, on rearrangement, 

FLUX,(i, j) = c,, (12) 
L L -I 

The term in square brackets can be considered the 
effective average convected face value. Note that it 

r ---- ---- 
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Figure 4. Twelve cells in the vicinity of the west face of cell C. 

GW. cyw > 0. 

consists of the one-dimensional, first-order upwind 
(“donor-cell”) value, &, modified by .a transverse 
gradient term proportional to the transverse Courant 
number component at the face. It should be clear how 
the formula changes for other combinations of signs of 

and c . To a consistent order, there is no (physical) 
&usive Gx, since cellwise constant behavior implies a 
zero gradient within each cell. 

Substituting equation (12) and the analogous formula 
for FLUX, into equation (1) gives an overall (constant 
coefficient) convective update equation: 

$2 = & - c,(& - &v) - c,(& - 8,) 

+ V,(& - & - 4s + &v) (13) 

This is identical to a semi-Lagrangian update,’ using 
bilinear interpolation around_ the departllre point, 
collocated at node values: &, &, +sW, and & (located 
at the centroids of the respective cells). (For cellwise 
constant, linear, or bilinear interpolants, node values are 
equal to the respective cell average values. This is not the 
case for higher order interpolants.) 

Using an appropriate upwinding strategy for other 
convecting velocity directions, it is not hard to show that 
the von Neumann stability condition for this scheme is 
given by a square region in the (c,, c,,) plane: 

ICXI S 1 and IcyI s 1 (14) 

3. Second-order methods 

Second-order convection-diffusion methods result from 
assuming cellwise linear or bilinear subcell behavior. In 
this case, it is convenient to introduce local, normalized 
coordinates in cell W: 

{=X-(i-l) (15) 

and 

(16) 

as shown in Figure 5. Note that the central cell, C, is 
located at (i, i). The ton of the flux integral oarallelogram ~ ,“I L (line 3 4 1 in Figure 2) is representedgy 

Y&(r) = 0.5 + F (5 - 0.5) xw (17) 

Figure 5. Definition of local normalized coordinates within cell 
W. 
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A general bilinear subcell interpolant within cell 
W takes the form 

The cell-average constraint, equation (8), implies that 

Cl = d&v (19) 

The slope constants, C, and C,, and the twist constant, 
C,, can be chosen in a number of different ways. For 
example, a two-dimensional analog of Fromm’s method3 
results from choosing 

c3 =+kv- &w, (21) 

and 

c, = 0 (22) 

Note that this involves a symmetrical node distribution 
with respect to cell w independent of the velocity 
direction. Upwind or downwind weighting can also be 
used. In the interest of brevity, only one second-order 
scheme will be considered here in detail. This is based 
on downwind-weighted bilinear interpolation. For 
example, throughout cell w the interpol_ant is col!ocated 
(for c,,, cYw > 0) at node values: &, &, and &W (in 
addition to &). This turns out to be a two-dimensional 
generalization of the Lax-Wendroff method. For positive 
Courant number components, the interpolant within cell 
W is 

459 4 = 4% + @C - A& + (AVIV - AVIV 

+ MN - &W - & + &iXrl 

with a corresponding normal gradient, within cell 

(23) 

K 

(24) 

Using local, cell-centered coordinates, similar formulas 
hold for each cell; in particular, cell SW formulas can be 
obtained from equations (23) and (24) by shifting all 
indexes “south” by one unit in equations (16), (23), and 
(24). 

As before, the convective flux integral is split into three 
geometrically distinct parts, in this case, 

0.5 0.5 

I,= j [ j $Kd&]dt (25) 

0.5-c,, -0.5 

0.5 

(27) 

When rearranged as 

1, = c,, 
[ 

: (6, + &) - ? (4, - &V) 1 (28) 
this will be recognized as the one-dimensional Lax- 
Wendroff fl~x.~ The second (negative) contribution over 
the triangular area in cell W is 

0.5 0.5 

-I,=- s [ {4KW’i]dr (29) 

0.5 -cm qfop(r) 

Using equation (17), this becomes, after some rearrange- 
ment, 

(30) 

Then, I, is obtained from I, by shifting all indexes 
south by one unit. 

The diffusive flux is computed in a similar way. In 
particular 

FIP 

This is also conveniently split into three parts. In this 
case 

-?I1 = -c(,(&-6,) (32) 
XW 

which will be recognized as the classical, second- 
order, one-dimensional expression for the diffusive flux 
across the west face. But there are also contributions 
from transverse convective coupling. In particular, 

and the corresponding I, term is again obtained by 
shifting all indexes south by one unit. 

The total west-face convective-plus-diffusive flux is: 
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BILINEAR DOWNWIND 

FLUX,(I’, j) = c,, 

The interesting feature of this formula is that (referring 
to Figure 4) every term is face-centered in both 
the x and y directions. In this case, the downwind- 
weighted subcell interpolation is “balanced” by the 
natural upwinding involved in the flux integral calcula- 
tion. The resulting convective-plus-diffusive flux is 
independent of the velocity direction, just like the 
Lax-Wendroff method in one dimension. The overall 
update equation involves the square, nine-point stencil, 
centered on C. For pure convection at constant velocity, 
the update is identical to that of a semi-Lagrangian 
scheme using a biquadratic polynomial collocated at the 
same nine-point stencil. 

Although the semi-Lagrangian convection scheme can 
be obtained from the flux-integral form, the reverse is 
not true. This is easily seen by writing out the complete 
update based on equation (34). Notice how the c,(c,cJ 
term from the east-west flux difference combines with 
the c,(ci) term from the north-south flux difference. 
The purely convective von Neumann stability region is 
again the square, given by equation (14). Stability regions 
in the (cx, c,,) plane for finite values of a have been 
established and will be discussed in a separate article. 

4. Uniformly third-order polynomial interpolation 
algorithm, UTOPIA 

Assuming a velocity-direction-independent cellwise 
quadratic subcell interpolation within each cell leads to 
a polynomial interpolation algorithm for convection and 
diffusion that is uniformly third-order accurate under 
constant-coefficient conditions. In a variable (but 
solenoidal) convecting velocity field, with possibly 
variable diffusivity, the algorithm is no longer formally 
third-order accurate; however, the practical accuracy is 
significantly better than that of formally second-order 
schemes. Phase accuracy, in particular, is excellent, just 
as in the case of the corresponding one-dimensional 
QUICKEST scheme. 5-7 

(34) 

Within cell w the quadratic interpolation takes the 
(velocity-direction-independent) form: 

(35) 

Note that this satisfies the cell-average constraint of 
equation (8). Also note that the nodal value, &, is not 
the same as the cell average; in fact, 

The x-direction gradient within cell W is 

$z(“l”-w) 
+ (6, - %v + &Vi& (37) 

4.1 Convective&x in the absence of difSusion 

For pure convection, the west-face flux is computed in 
the usual way. As is perhaps by now expected, the first 
component of the flux integral generates the one- 
dimensional (in this case, QUICKEST) formula: 

1, = c,, 
[ 

; (& + 6,) - F (4, - 6,) 

1 - 2 

-( ) 
xw 

6 
(6, - 2&v + &V,) 1 (38) 

Note the appearance of the upwind-weighted normal- 
curvature term (resulting from the natural upwinding 
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inherent in the flux integral). Integration over the 
respective triangular areas in cells W and SW 
introduces several cross-difference terms. The final form 
of the purely convective flux is (referring to Figure 4) 
QUADRATIC (CONVECTION) 

FLUX&j) = c,, 

It is instructive to identify the role played by each of 
these terms. The first three terms represent the 
one-dimensional (QUICKEST) contribution; note that 
all the remaining terms contain a cyw coefficient. The 
fourth term in equation (39) is the transverse gradient 
that previously appeared in the first-order scheme. This 
is, in fact, a second-order term, as is the normal gradient 
(second term). The fifth term represents twist, an 
interaction between normal and transverse convection. 
The next term is a transverse-curvature contribution. 
The final two terms in equation (39) are actually 
fourth-order contributions. Dropping these terms does 
not affect the formal (constant-coefficient) third-order 
accuracy of the overall update equation. However, they 
do affect the stability of the scheme. Without the 
higher-order terms, the purely convective stability region 
is approximately the diamond-shaped region 

I&I + IcyI < 1 (40) 

Including these terms (that arise naturally in the 
flux-integral formulation) results once again in the square 
stability region given by equation (14). 

4.2 Third-order di@iisive flux 

Applying the usual three-part-integral procedure to 
equation (37) results in the following diffusive flux: 

- 4,) - y (4, - 2$w + 

(39) 

The first term is the classical (one-dimensional) 
second-order first-difference across the face. The second, 
normal-curvature, term represents the effect of normal 
convection on the time-averaged normal gradient; this 
is a third-order convection-diffusion cross-coupling term 
that also appears in the one-dimensional QUICKEST 
formula.5 The third, twist, term represents the coupling 
effect of transverse convection; this is a (two- 
dimensional) third-order term. The final term is actually 
a (partial) fourth-order cross-coupling term, kept, once 
again, because of enhanced stability properties. 

4.3 D@kive contribution to the convectiveJlux 

The convectiondiffusion coupling terms just de- 
scribed represent the effects of convection in estimating 
the diffusive flux. They arise naturally in the flux integral 
formulation. For uniformly third-order consistency, one 
also needs to estimate the analogous cross-coupling 
effects of diffusion on the convective flux.’ Because of the 
assumed curvature in the subcell interpolation, diffusion 
changes the value of 4 over At as it is being convected 
through a particular cell face. As shown in Ref. 8, this 
change is given by (a/2)V2& Performing the usual 

6ww) I 
(41) 
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three-part flux-integral calculation leads to an additional 
dijkke contribution to the convective flux of the form 

t 4 L+ &w - 3&v + 3&w - &w, 

which must be added to equation (39) to give the total 
convective flux. The convective-plus-diffusive flux at the 
west face is thus the sum of equations (39), (41), and (42). 
A von Neumann stability analysis of the constant- 
coefficient overall update algorithm shows that the useful 
region in (cX, cY, a) space is given, as a minimum, by the 
“cylinder”: 

ICI I 1, 0 I u I 0.25 (43) 

5. Comparison with other methods 

Because fluxes are estimated directly, (for a given subcell 
interpolation) the flux integral method produces unique 
formulas for the fluxes. This is in contrast to other 
methods that have been used to construct conservative 
multidimensional convection (or convection-diffusion) 
schemes. For example, Ekebjzrg and Justesen’ devel- 
oped a nominally third-order, two-dimensional con- 
vection-diffusion scheme by successive elimination of 
truncation error terms arising from a lower-order 
scheme. The nonconservative single-step explicit update 
was then rewritten in a conservative pseudoflux- 
difference form. But the pseudofluxes chosen by 
Ekebjaerg and Justesen are not unique; except for 
first-order (and some simple second-order) schemes, 
there is, in general, no unique way of rewriting a 
nonconservative update in a conservative flux-difference 
form. 

Recently, Rasch lo has used, as a starting point, a 
(constant-coefficient) third-order semi-Lagrangian con- 
vection scheme, and then rewritten the update in 
conservative, pseudoflux-difference form. Recognizing 
the nonuniqueness problem, Rasch uses weighting 
parameters to generate a family of possible pseudoflux- 
difference algorithms. For certain choices of the weights, 
the (purely convective form of the) Ekebjarg-and- 
Justesen scheme can be retrieved. For other weights, 
Rasch’s convection scheme is equivalent to (the 
convective part of) that used by the present authors in 
Ref. 8; this is also the form used by Rasch. For still other 
choices of the weights, a nominally third-order 
convective flux equivalent to equation (39kbut with 
the last two (higher-order) terms removed-can be 
obtained. The conservatively rewritten semi-Lagrangian 
approach does not generate diffusive fluxes. 

In a very recent manuscript, LeVeque” has used a 
technique for purely convective flows similar, in some 
respects, to the flux integral method described here. For 
a constant convecting velocity field, LeVeque’s Method 
V is a lo-point third-order two-dimensional convection 
scheme. This is the minimum number of points needed 

(42) 

for third-order accuracy. The overall convective update 
is equivalent to the semi-Lagrangian scheme used as the 
starting point for Rasch’s method; it is also equivalent 
to that of Ekebjmrg and Justesen. LeVeque’s Method VI 
is equivalent to the purely convective portion of the 
flux integral method developed here, i.e., equation (39). 
LeVeque does not consider diffusive fluxes. 

6. Convective test problem 

The three schemes described here have been applied to 
the rotating Gaussian hill problem under purely 
convective conditions (c( = 0). The convecting velocity 
field is that of solid-body rotation at an angular velocity 
of 0.2 rad/sec, with the axis at the center of a 61 x 61 
square mesh. The Gaussian is initially centered at a point 
1% above the center of rotation, with c = 3h. Figure 6 
shows the initial state in a superfine-grid rendering. This 
is also the exact solution after an integral number of 
rotations. The cell-average initial data is shown in Figure 
7 as a two-dimensional histogram. The time step is 
chosen so that the maximum component Courant 
numbers (at the corners of the domain) are n/10. Figure 

Figure 6. Initial Gaussian distribution, 4(x, y), shown on a very 
fine grid. This is also the exact (purely convective) solution after 
an integral number of rotations. $I,,,,, = 1 .OOO. 
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Figure 7. Initial state of cell-average values, i,,, shown as a 
two-dimensional histogram on the 61 x 61 computational grid. 

8 shows the first-order cell-average results after one 
(anticlockwise) rotation, or 600 time steps. This also 
represents the (piecewise constant) subcell interpolants. 
The “Lax-WendroE” cell-average results are shown in 
Figure 9, with a close-up of the peak region, showing the 
(downwind-weighted) subcell behavior, in Figure 10. 
Note the discontinuities across cell faces and the change 
in behavior where cY changes sign. Figures 11 and 12 give 
the corresponding UTOPIA results. 

As mentioned before, the first-order scheme is far too 
artificially diffusive to even be considered for practical 
application. As in one dimension, the Lax-Wendroff- 
type scheme is excessively dispersive, showing significant 
phase-lag errors in the “wake.” By contrast, UTOPIA 
has good accuracy and excellent phase behavior, just as 
in the one-dimensional case.5s7 

Other extensive studies of purely convective and 
convective-diffusive test problems at a number of grid 
refinements have consistently shown the superiority of 
UTOPIA. Not surprisingly, it is more accurate than 
lower-order schemes. It is also more expensive, per mesh 
point calculation. The important conclusion, however, is 
that, for a prescribed accuracy, UTOPIA can be used on 
a much coarser mesh (with a concomitantly larger 
time-step); the overall cost is then much lower than that 
of lower-order schemes. 

6. Conclusion 

The flux-integral method has been shown to be a useful 
technique for estimating genuinely multidimensional 
convective-plus-diffusive fluxes in a strictly conservative 

Figure 8. Solution after one (anticlockwise) rotation for the 
first-order method. In this case, the histogram of cell-average Figure 9. Solution of cell-average values after one rotation 
values also represents the cellwise constant subcell interpolation. 

iIn,, = 0.152; &,,, = 0.000. 
using the second-order convection scheme. c$,,~ = 0.787; 

4 ml” = -0.149 
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Figure 10. Close-up of the downwind-weighted bilinear 
subcell interpolation in the peak region, showing discontinuities 
across cell faces. &,,, = 0.823; &,,, = -0.176. The horizontal 
scales have been expanded by a factor of four in each direction 

Figure 11. Solution of cell-average values after one rotation 
using the purely convective form of UTOPIA. &,,,, = 0.804; 
r$,,, = -0.008 

formulation of an explicit, forward-in-time, single-step 
update formula. The assumption of locally constant 
convecting velocities near each control-volume face 
means that the formal accuracy of the convection terms 
is at most second order, e.g., the convecting velocity field 
could be staggered in time by At/2 with respect to 

Figure 12. Close-up of the quadratic subcell interpolation in 
the peak region, showing (small) discontinuities across cell faces. 

4 max = 0.810; r$,,, = 
10 

-0.010 (not shown). Same scale as Figure 

transported scalars. Variable diffusivity would typically 
be lagged and therefore only first-order accurate in time. 
However, spatial accuracy is enhanced by using higher 
order subcell interpolation. Under constant-coefficient 
conditions, an Nth order subcell interpolation leads to 
an (N + 1)th order accurate convection-diffusion scheme 
in both space and time. 

For the purely convective test problem considered 
here, the following conclusions can be drawn: 

(1) 

(4 

(3) 

Cellwise constant subcell interpolation leads to an 
unworkable (artificially diffusive) first-order con- 
vection scheme. 
Cellwise linear or bilinear interpolants generate 
second-order convection-diffusion schemes. Down- 
wind-weighted bilinear interpolation gives a multi- 
dimensional analog of the Lax-Wendroff scheme. 
However, because of the velocity-direction-de- 
pendent weighting of the interpolant, this leads to a 
highly dispersive convection scheme with strong 
phase-lag errors, just as in one dimension. 
Cellwise quadratic interpolation (independent of 
velocity direction) leads to a very accurate con- 
vection-diffusion scheme with excellent phase beha- 
vior. Under constant coefficient conditions, this is a 
uniformly third-order polynomial interpolation algo- 
rithm (UTOPIA). Since highly accurate solutions can 
be obtained on relatively coarse grids, UTOPIA is 
much more cost-effective than lower-order methods. 

For simplicity, the present paper has been confined to 
two dimensions. It should be clear that the flux integral 
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method generalizes to three dimensions in a straightfor- 
ward manner. The technique can be used with even 
higher-order subcell interpolation (presumably using 
velocity-direction independent interpolants in order to 
minimize dispersion); higher order diffusive-diffusive and 
convective-diffusive cross-coupling terms are fairly 
complex but can be derived in a straightforward manner 
(e.g., using automatic symbolic manipulation). Further 
research is needed to extend the method to larger time 
steps. Finally, it should be pointed out that shape 
preservation in the subcell interpolation automatically 
results in a positivity preserving conservative multi- 
dimensional formulation, thus obviating the need for ad 
hoc flux-limiter constraints. This is an area of current 
research. 
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