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ECMWEF activities: the atmosphere

Forecasts for the medium range (10 days). Deterministic forecast and
ensemble forecasts.

The deterministic forecast is made twice per day at TL511.

An ensemble of forecasts are made at TL255 twice per day. (51
members to provide a pdf).

Forecasts for a month ahead (coupled atmosphere-ocean model).
These are made weekly, 51 member ensemble at TL159.

Forecasts for seasons ahead (coupled model). These are made
monthly, 40 member ensemble at TL95.

Atmospheric reanalyses (ERA15 1979-1993, ERA40 Sept1957-
Aug2002). ERA provides atmospheric initial conditions for both
monthly and seasonal hindcasts (needed for calibration and validation).
For seasonal, the effect is more indirect than direct. (ERA provides
better fluxes for producing better ocean analyses.)

Ocean reanalyses spanning ERA period. See ENACT later. Ocean
reanalyses are needed for calibrating the monthly and seasonal
forecasting systems, because of model drift (error).



he atmospheric analysis system is 4d-var.

his Is cutting edge, though some weather
centres are now following e.g. Meteo
France, UKMO.

It Is expensive. So simplifications have to
be made: an incremental approach Is used.

The same atmospheric analyses are used for
medium range, EPS, monthly and seasonal
forecasts, suitably truncated from T511 to
T255, T159, T95 respectively.




 In the early 80’s, the forecast system used
3x as much power as the analysis.

* Now, the analysis takes 3x as much power
as the forecast (deterministic, high
resolution).

o Of course analysis Is also used for EPS,
monthly, seasonal, (decadal).



The 4d-var incremental system

This consists of outer and inner loops.
— The outer loop defines the trajectory. This is done using the full
nonlinear model at highest resolution, currently TL511.
A tangent linear model is derived, based on the full model
but somewhat simplified. An adjoint is derived which is
an exact adjoint of the the TL model.

The cost function is minimised using the TL and its
adjoint. The nonlinear outer loop is done only twice (big
difference from the ocean strategy).

The cost function Is quadratic, giving faster minimisation.

The TL and adjoint are at lower resolution. Currently
TL159. Estimates are made of the Hessian.

The window is 12 hours. (There are variants on this which
| will not discuss).
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» Using spectral space makes it more difficult to
have a spatially varying correlations e.g. different
scales for tropics from extra-tropics.

« Can get low frequency variability generated by
changes in the model, the assimilation system or
the observing network. Reanalyses can reduce the
former two but not the latter since the same
version of the model and assimilation system are
used throughout. Observing system changes e.qg.
new satellites coming on stream, can cause
problems. See later.

» The strategy for 4d-var Is different from e.qg.
ECCO which uses a long window (10-40 years)
but includes other control variables than initial
conditions, e.g. forcing fields in the cost function.



 |s 4d var worth the extra effort-
computational and manpower? | will
show later the impact.

« ERA15 used an Ol scheme. (T106)

« ERA40 used a 3d-Var scheme with FGAT
(First guess at appropriate time).
Resolution is TL159 which gives same
surface grid as ERA15.



Quality control

This is a highly nonlinear process and an
Important one. Selecting which
observations to accept and with what
welight. See tropical cyclone example.

The analysis system is effectively lower
resolution than the forecast model, even
when formally the resolution may be the
same. As mentioned the analysis resolution
IS In fact considerably lower than that of the
forecast model.

You also have to deal with sampling error.



Medium range

e Currently there Is an atmospheric analysis at
“T511°, approximately 40 km but the atmospheric
structure functions are broader than this).

* This iIs 4d-var using an incremental approach. The
outer loop uses the full nonlinear model. There is
then an inner loop which uses a tangent linear
which is a smoother version of the full model and
which runs at a reduced resolution. The adjoint
must be the exact adjoint of the TL. Typically one
has 50 inner loops to an outer loop. The outer
loop updates the trajectory.



Polar WV winds from MODIS

Source:




Four AMSU-A Instruments
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Number of observational data used In the
ECMWF assimilation system (with AIRS)
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Comparison between centres of 500 hPa ht scores(Feb. 2004
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Anomaly correlation of 500hPa height forecasts
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Recent Improvement in the
accuracy of forecasts

Annual-mean r.m.s. err0rs against analyses from WMO scores
500hPa height (m) Northern hemisphere
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1D-Var results
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1D-Var+4D-Var SSM/I-RR Assimilation

Hurricane ISABEL
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Verification of TCs Charley

20040811 12 UTC
Probability that CHARLEY will pass within 120km radius during the next 120 hours
tracks: black=OPER, green=CTRL, blue=EPS numbers: observed positions at t+..h

L)

11 AM EDT Wednesday
MWS TPCiMational Hurricane Center
Advisory 9
Current Center Location 16.5 M 76.1 W
Max Sustained Wind 70 mph
Current Movement WNW at 18 mph
@& Current Center Location
® Forecast Center Positions
H Sustained wind = 73 mph
5 Sustained wind 39-73 mph
&_ Potential Day 1-3 Track Area
I Hurricane Warning

Hurricane Watch
mmm Tropical Storm Warning

From Federico Grazzini. Slide shows poor forecast trajectory of
TC cyclone Charley (small scale TC). Why?



Observed (green/blue) and analysed (A) positions of Frances and lvan

entral pressure not deep enough. Scale of analysis leads to rejection of data.
central pressure is point value, model is box-average. Difference can be 76mb.




Frances and Ivan plus dropsondes coverage at 250 hPa (25/08 - 13/09)




Frances and Ivan plus dropsondes coverage at 700 hPa (25/08 - 13/09)

Red indicates rejected data.




QSCAT passage on the same system
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Discussion/Summary

Dropsonde coverage Is increasing and for the last
three cyclones was very large.

Upper level obs were all successfully assimilated

Eyewall low level observations were rejected by
large departures with the FG (some with potential
high influence)

Often the analysis Is weakening the system
already present in FG. Sometimes minimization
problems are evident.

For Frances and Ivan (very large and intense
cyclones) it took ~7days to have a cyclone below
1000 hPa in the analysis



versus ECMWF

STDV ( QSCAS50 vs ANALYSIS ), 10-metre 30min, in m/s.
average from 2002020200 to 2002022818
GLOB:1.06 NHEM:1.23 TROP:0.96 SHEM:1.07 February 2002

Collocation error:
15 minutes
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4%
BIAS ( QSCAS50 vs ANALYSIS ), 10-metre 30min, in m/s. Data is assimilated:
average from 2002020200 to 2002022818
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CK of cross-isobar tflow
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EDA: towards a probabilistic analysis &
forecast system?

N-member EDA

N*M member EDA-SV EPS, Txxx(0:+d)>Tyyy(+d:+D)
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Ensemble Data Assimilation

The objectives of the study (based on 14-days TL159L.31 3D-

and 4D-Var) were:
= o investigate the impact of perturbations on the initial state, the observation and
the diabatic tendencies on analysis fields;

= to analyze the possible use of initial perturbations generated from Ensemble Data
Assimilation in the EPS.

Results have indicated that:

= the average distance between each perturbed analysis and the ensemble-mean of
an 11-member OBST-EDA is about 30% smaller than the corresponding distance
between analyses from 4 different centers (ECMWF, UKMO, DWD, NCEP).

= the use of only EDA-based perturbations would deteriorate the EPS performance.
The joint use of EDA- and SV-based perturbations EPS did not improve the
results.



ECMWE perspective: the ocean

e Ocean analyses and reanalyses used for
e Forecasts for a month ahead
e Forecasts for seasons ahead

» Forecasts for years ahead (ENACT,
ENSEMBLES)

 Forecasts of medium range using a coupled
model (to be assessed as part of MERSEA)




Coupled model initialisation.

* Currently this 1s done by a data analysis of both
media separately. Maybe it should be done
together.

* Maybe the reanalysis should involve an
adjustment to SST.

 Multi-annual forecasts might need a different
strategy to monthly forecasts. (Deeper ocean with
fewer data).



Nino12, Lon =[-90, -80], Lat = [-10, 0]
Nino4, Lon=[ 160, -150], Lat =[ -5, 5]
Nino3, Lon=[-150, -90], Lat =[ -5, 5]




NINO3 SST rms errors
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* Previous slide seems like good news vis-a-
VIS ocean data assimilation.

e Forecasts are better with d.a. than
without.

* The impact of different wind products Is
less with d.a. than without: 1.e. data
assimilation can offset errors in the winds.



System 2 coupled - month 1 - sstbias
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Seasonal Forecast INITIALIZATION

OCEAN INITIALIZATION

eRelaxation to observed SST (~2
days)

el of subsurface T, every 10 days

¢10 days assimilation window

eSaliniy Updates (T-S scheme)
eVelocity Updates (geostrophy)
eSubsurface 3D relaxationto T

and S Levitus 98 (~18 months)
eDaily forcing for mass,
momentum, and heat from NWP
e\Wind perturbations (SOC-ERA,
monthly values)

e11 days behind real time

ENSEMBLE
GENERATION

¢40-member ensemble forecast

o5 different ocean analysis
ePerturbations to the
subsurface

¢40 SST perturbations
eReynolds 2dvar-Ol
eTemporal resolution

eStochastic physics

Atmosphere
Initialization

oERA 15 (1987-1993)

eNWP 1994 onwards




Ensemble generation strategy

Perturb winds during analysis
Perturb SSTs at start of forecasts
Include stochastic physics throughout integration

How do these compare individually and
collectively and with the LA (lagged average)
approach used for example in S1?

How much does data assimilation control
spread?

Is the ensemble spread large enough?

Is there skill in the ensemble spread?



Nino12, Lon =[-90, -80], Lat = [-10, 0]
Nino4, Lon=[ 160, -150], Lat =[ -5, 5]
Nino3, Lon=[-150, -90], Lat =[ -5, 5]




Validation of Nino3.4 forecasts from System-2

NINO3.4 SST anomaly plume
ECMWF forecast from 1 Jun 2002

Manthly means plotied using HCEFP adjusted O W2 1971-2000 climatology

NINO3.4 SST anomaly plume
ECMWF forecast from 1 Jul 2002

Wonthly means plotied using NGEP adjusted Oh2 1971-2000 climatalogy

NINO3.4 SST anomaly plume
ECMWEF forecast from 1 Aug 2002

Wonthly means plotied using HGEP adjusted Oh2 1971-2000 climatalogy
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Plot of rms from analyses using wind perturbations
with and without ocean data assimilation
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Plot of rms spread and error in SST for months 3-5.
Spread Is too small
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ERA15/OPS versus ERA40

Uncertainty In Surface fluxes=Uncertainty In
ocean state

Equatorial Wind Stress Anomaly
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Data coverage for May 2002
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Data coverage for May 2003




Assimilation Increments
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Systematic error in
other systems
Weaver el al, MWR 2003

Time evolution of
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Balanced Currents Method
n,=n,+Q;u, =uU,+a

e To update currents / the velocity increment Is

partially in geostrophic balance with the density
Increments:

Q=0Q,+Q,;Q.=aQ,0<a<1

5u:_g8aQ ;5v:980[Q
f oy f oOx

*At the Equator:
2
ou=— 90 aZQ
p oy

ov =0



Temperature Increments

~ Temperature only
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ASSIM

Velocity

EQ2 SST error comparison Increments help
20 slad dates {rom 199680701 1o 20000101 . .
‘o Sk b LR forecast statistics
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' ¥
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s5au wins 15 times
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MERSEA

An EU project to develop high resolution global
and regional ocean analyses for operational
applications.

Science:

Use a global 0.25 deg ocean model and analysis
for seasonal forecasting (T159). (Quite expensive)
Test the impact of ocean resolution. (MF, INGV,
ECMWEF)

Use a global 0.25 deg ocean model and analysis
for medium range forecasting (T511). ECMWF



Quality of interannual variability: ERA40 v ERA15/OPS

Correlation of SL with Altimeter data

Equatorial Areas

ERA15/0PS =solid bars
ERA40 = dashed bars

Anomaly correlation with Altimeter
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Quality of interannual variability: ERA40 v ERA15/0PS

Correlation of SL with Altimeter data

Equatorial Areas Atlantic Ocean
ERA15/0PS =solid bars ERA15/0PS  =solid bars
ERA40 = dashed ERA40 = dashed
Anomaly Q@[t%n with Altimeter ba. rSAnomaIy correlation with Altimeter

- 100

A

AMMNNImmnmm e

S
ANl i i hh h i

| i
E15 E40 E15 E40 E15 E4D E16 E E15 E40

=
=]

EastPac WestPac EqAtl E
Ind Atl3  NsTrAtl SsTrAtl Natl

DIPOLE

0



BIAS correction schemes

Average Assimilation Increment
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1. Presence of Systematic
error

2. Part of the error is induced
by the DA method

3. Possibility of bias
estimation and on-line
correction?

f

Vertical Velocity

=
=

etres)

=

Death l’gm

L b 1o
Longitude

A generalized bias
correction scheme has
been formulated

It allows a slow time
evolution of the “bias-
term”.

Tests with different
covariance formulations



a)Impact of Gain Matrix and Balance
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b)Impact of Gain Matrix and Balance

Constraints
Vertical velocity (C.1=0.5m/day)
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NINO4 SST anomaly plume
ECMWTF forecasts from 1 Dec 2002

Manthly means plotted using MCEP adjusted Olv2 1971-2000 climatology
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NINO4 SST anomaly plume
ECMWF forecasts from 1 May 2003

Manthly means plotted using MCEF adjusted Olv2 1971-2000 climatology
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NINO3 SST rms errors

176 start dates from 19870101 4o 20010a01
Ensamblz sizesae 500010 and 5 (0001)

Fcast 52 /ml Fcast 52 fml] =r==:= Persistence ==-—= Ensemble sd
1.2
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EU.
=
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Forecast time (months)

Forecast System is
not reliable:

RMS > Spread

A) Can we reduce
the error? How
much?

(Predictability limit)

B)Or can we only
increase the
spread?

A) Improve the ensemble generation: Need to sample model error

B) Improve calibration: A posteriori use of all available information



NINO3 SST rms errors

176 start dates from 19870101 o 20010801
Emamble sizes are 10 (MM 3, 5 (0301 and 5 (s7u3)

Feast WMl ——— Feoast 52

Foast @3 === Fersistenoe ==-=-=- Enz=mble= sd

] {de% C)

Rms error
=

Forecast time (months)

ECMWF
UKMO

Multi-
Model

Multi-model:

RMS=SPREAD
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DEMETER

Development of a European Multi-Model Ensemble System
for Seasonal to Interannual Prediction

2m Temperature, RPSS over Tropics

Model: DEMETER | ECMWF UKMO LODYC INGV
Start dates: February

Avg. over 2-4 months FC (MAM)

60 |

40

“n ‘ i ! 1 1 ‘ “ |\| | | |

20
| I I 1 I I I I I I I I 1 I I I | I |
1987 1988 1989 1990 1991 19592 1993 1994 1995 1996 19597 1998 1959 2000 2001 average
Time [years]

http://www.ecmwf.int/research/demeter

RPSS




ensemble size versus multimodel

From DEMETER

RPSS

Precipitation, RPSS over Tropics
Forecast start month and years: May / 1987-1999
Average over 2-4 months FC (JJA) Multi-Model  Single-Model

Ma

o A N O

9 18 27 36 45 54
Ensemble Members

Provided by Doblas-Reyes




Comparison with Persistence of day 5-11 probabilities

Days 12-18 N. Extratropics 2mtm in upper tercile

ROC score: 0.67 0.62 Potential Economic Value
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BrierScote N. Extratropies

MOFC/PERS: 21/5

098 02 0P2 P4 N2R NPR N2 NA2 N34 NArR nha na

Monthly forecast Days 19-32
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NINOS SST mms errors
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DEMETER assimilation and no assimilation. 9 members, 4 seasons, 15 years

NINO3 SST mean absolute errors e The amplitude ratio is

Ensemble sizesare 9 (scwf and 9 (sowh)

T TR T e reduced In the case of

—

Y data assimilation. Is
P — this because the spread
Ay in the no data
L | assimilation case is t0o

large? This can be
. NINO3 SST anomaly amplitude ratio CheCkeC by IOOking
only at hindcasts
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The spread is comparable between the two experiments (da, no da), but
still the amplitude ratio is reduced in the da case, likely showing the
Impact of mean state. The correlation is higher in the da case.

NINO3 SST rms errors
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Data assimilation, no da revisited using S2
and Demeter

e The next slide will compare S2 and Demeter
hindcasts. The coupled models are the same.

* The ocean initial conditions are different: S2 uses
ERA15/0Ops winds while Demeter uses ERA40
stresses. The latter Is thought to be the better
product since It Is a more uniform product
produced using the same atmospheric assimilation
system throughout.



e For S2, the data assimilation (green) leads
to better forecasts than the no-da case

(gold).

e For Demeter, using ERA40 winds, the
Importance of data assimilation is reduced.



NINO3 SST rms errors
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Problems In existing ocean DA
systems:

o Systematic error:
— How optimal Is the analysis?

— spurious time variability: If observation are not
homogeneous In space/time

— Can i1t be estimated and corrected?

 Deficient multivariate covariances:
— Unconstrained variables can get worse



assimilation of Salinity

Motivations:
* Known drift in salinity
» Sof T scheme has improved not enough
* Number of salinity data recently increased (ARGO)

Idea: perform a second OI using T+S data to correct the T/S relationship

T/S T/S .
@[ﬂ@@ll#Ollqu : S
conserved co_Fserved a a
. T/S
77alt insitu 0| s I Ta | S .
Changed
T S

insitu ! ~insitu

Assimilation of S(T) not S(z)

Sa(Ta) — S;(Ta) T KI(SO (To) o HSb (To)) 2 (Ta_-l-o)z

K~e RR.g T®




assimilation of Salinity

New S(T) assimilation leads to 2 increments
(1) Balancing increment AS, associated with
T assimilation keeps S(T) unchanged

(already operational in system Il, Troccoli et al

2002)

(2) Salinity assimilation increment AS,
associated with observed S(T) changes
(under test, 40 year assimilation complete)

NPAC Averoged solinity aver the top 300m
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Depth {m)

assimilation of Salinity

Rms difference with data over 15 years:

eqatl-All in situ
Tonl S1 T48

AS, + /

AS; or

“Temperature

Mean Salinity
top 300m
Trop Pac box
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Latitude

Observing System Experiments

The Three main components of the in situ
observing network have been withdrawn
one after the other from our system, in
order to assess their impact.

Figures show the impact on the mean
temperature over the first 300m from:

50N

50S

Averaged Temperature over the first 300 m.: Al — NeMOORING 11 years mean (19930101-20040101)
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Anomaly 20010928
Sea level contoured every 0.02 m difference from
Time-longitude plot at .00 deg N 0
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Anomaly 20010928

X-Surface stress contoured every 0.01 Nim2 difference from
Time-longitude plot at .00 deg N 0
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a) Average of BmO and AmO
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