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What are we really solving? 
How can we solve it?

OUTLINE
1. What is assimilation really solving?

a) Filtering vs Smoothing
b) Observability & Controllability
c) Data Error and Model Error

2. Examples and Practical Issues; e.g., ECCO 
a) A hierarchical approach
b) Practical derivation and implementation
c) Assessment 



What is assimilation really solving?

Filtering vs Smoothing

1. Kalman filtering and recursive smoothing are both 
least-squares inversions, but solve different parts
of the assimilation problem, 

2. Filtered solutions are physically inconsistent,

3. Smoothed solutions can be physically consistent,

4. Estimating model error sources is fundamental.
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The Mathematical Problem of Assimilation

: model state
: observations

: observation operator
, : model dynamics

: control (e.g., forcing,
    and model errors)
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Assimilation problem: Given 
observations, y, and a model (A, 
G, H), what are the model states 

(x) and their controls (u)? 

e.g.,

Observation Eqs

Model Eqs

Different times

wind
surface heat flux

interior flux error

sea level

temperature



The Mathematical Problem of Assimilation
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≈Ea b

This problem is essentially 
an inverse problem
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Least-Squares Solution
Almost all direct assimilation methods can be 

recognized as a form of least-squares.

≈Ea bFor a linear inverse problem

The least-squares solution is given by 
(Gauss-Markov inversion)

( ) ( )1

0 0ˆ T T −
= + + −aa aa bbEa R E E R b ER aa

( )ˆ ˆ
1T T −

= − +aa aa a b aaa a ba E E RERR ER R R

ˆ ˆ

0

: least-squares solution
, : first guess (prior solution) and its error covariance matrix

: error covariance matrix of 
:  Error covariance of 

ˆ
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a
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Kalman filter as Least-Squares
Linear inverse problem and its least-squares solution;
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Kalman filter estimate :
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“forecast”

“analysis”

There is a direct correspondence between the Kalman filtering 
algorithm and least-squares; i.e., Kalman filtering is nothing more 
than an inversion of the observation equation/operator      . H



Inverse Solution
( ) ( )1

0 0ˆ T T −
= + + −aa aa bbEa R E E R b ER aa

is the linear inverse solution of                 for any of following; ≈Ea b
1. Minimum (expected error) variance:

if    

2. Least-squares:
if 

3. Maximum likelihood: 
if Gaussian probability distribution

( ) ( ) ( )( )1 1
0 0exp ( ) ( )T T− −℘ = − − − − − −aa bba a a R a a b Ea R b Ea

( ) ( )( )0 0min ( ) ( )T T− − + − −a ba a W a a b Ea W b Ea

( )( )( )min Tdiag − −a a a a
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1 1,   − −= =a aa b bbW R W R

True a
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Least-squares does not necessarily assume Gaussian statistics.
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Kalman filter as Least-Squares
( ) ( )1
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• This is an inversion of the 
observation equation but NOT an 
inversion of the model equations.
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The estimate is the least-squares 
solution for the end state, but not 
at intermediate times. 

The virtue of Kalman filtering is 
that these inverted end states do 
not have to be recomputed over 
the entire period every time new 
observations are obtained.  



Kalman filter as Least-Squares
The temporal evolution of filtered estimates are physically 

inconsistent (e.g., budgets do not close). 
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Kalman filter estimate :

Combining the two steps give,
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Not associated with any particular 
physics (e.g., advection, mixing, 

external forcing) embodied in A and G. 



Consistency of Temporal Evolution

Because of the filter’s data increments, the temporal evolution
of the filtered state from        to       , etc, cannot be physically 

accounted for;  e.g., budgets cannot be closed.
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Example: Inconsistencies in 
Atmospheric Analyses

24% of mass change in NCEP’s operational 
analysis is physically unaccounted for.
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Smother as Least-Squares
Kalman filter estimate:
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A least-squares solution that exactly satisfies the inverse 
problem               can be obtained by setting                in 
the canonical least-squares solution;                                             
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Smoothing problem: Given the updated estimate         invert the 
model to correct the prior state         and control          that;

0=bbREa = b

By substitution, we have;

ˆ a
tx

1t−x 1t−u



Smother as Least-Squares
More generally, 
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to errors in 1ˆ s
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Least-squares solution;
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Smoother as Least-Squares

This is the Rauch-Tung-Striebel (RTS) fixed-interval 
smoother and is an inversion of the model equations.  
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This solves the entire assimilation 
problem by sequentially solving 
smaller calculations. 

Another virtue is its results’
physical consistency. 



Smoother as Least-Squares
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By construction, this satisfies the model equation, 

1 1ˆ ˆ ˆs s s
t t t− −= +A Gx x u

making it amenable to process 
studies.  This should not be confused 
with the “strong constraint” solution; 
In fact,                                1 1ˆ ˆ t

s s
t t− −≠ +xA Gux

Control estimates are of the essence. Smoothed state 
estimates can be computed from the control estimates.  

The model for model process noise must be physically 
based for the result to be physically sensible. 
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Smoother as Least-Squares
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The RTS smoother recursively carries information of 
formally future observations backwards in time.   

Utilizes all data within a fixed time-interval whereas the 
Kalman filter only utilizes data up to that instant.  

time

Kalman filterData

Smoother

More accurate than the filter’s estimate. 



Other Smoothers
Fixed-Interval Smoother; 

time

Besides the recursive RTS smoother, the adjoint method
and Green’s function optimizations are other commonly 
used fixed-interval smoothers.  

Fixed-Point Smoother; 
time

Fixed-Lag Smoother; 
time



What are we really solving? 
How can we solve it?

OUTLINE
1. What is assimilation really solving?

a) Filtering vs Smoothing
b) Observability & Controllability
c) Data Error and Model Error

2. Examples and Practical Issues; e.g., ECCO 
a) A hierarchical approach
b) Practical derivation and implementation
c) Assessment 



Observability & Controllability

Kalman Filter is an inversion of observation H. 
RTS smoother is an inversion of model evolution A and G. 

Identifies the problem the filter & smoother are 
solving (inverting). 

Observability identifies if the model state that can be determined. 
Controllability identifies if controls can be determined. 

Identifies the solution that could be determined.  



Observability
If there are no errors in the observations and no errors in the 
model (except state is unknown), can we determine the 
model state uniquely ? 

( )1 1 1 1 0 0= = −y H x H Ax Gu 1 1 0 2 0+ =y H Gu H Ax
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⎝ ⎠

H A
O

H A
Mwhere

If O is full rank (column), there is a unique solution for 
the state, and the system is said to be observable.



Controllability
Can we determine controls that can drive the model to an 
arbitrary state? 
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⎜ ⎟
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0
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x A x C

u
M

( )1t−≡C G AG A GLwhere

If C is full rank (row), there is a solution for the control that 
satisfies this equation, and the system is said to be controllable.



Observability & Controllability

These conditions are conceptually important.  But 
the physical state being observable does not mean 
any meaningful estimate can be made; i.e., 
Difference between       and        may be 
indistinguishable.     

aP fP



What are we really solving? 
How can we solve it?

OUTLINE
1. What is assimilation really solving?

a) Filtering vs Smoothing
b) Observability & Controllability
c) Data Error and Model Error

2. Examples and Practical Issues; e.g., ECCO 
a) A hierarchical approach
b) Practical derivation and implementation
c) Assessment 



What is assimilation really solving?

“Data Error” and “Model Error”

1. The two are better thought of as observation 
constraint error and model constraint error, 
respectively, as opposed to errors of the data and 
model, per se.   

2. “Data Error” includes representation errors, i.e., 
things that the models do not represent,

3. How to specify the two prior errors. 



“Data Error” & “Model Error”
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Kalman filter estimate :
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“forecast”

“analysis”

What are error covariance 
matrices R and Q? 

These two in effect define the 
inverse solution, and therefore, 
their understanding and proper 
specification are fundamental to 
solving the assimilation problem. 
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“Data Error”
R represents the error of the data constraint and 

includes model representation error.  

The true model state is a finite dimensional 
representation of the true state of the ocean,      

tx
tw

t t≡x Πw :  Function defining the model state.Π

Observations are related to the true state of the ocean by   

t t ε= +y Ew E: Function defining observation.
ε: Measurement error

{ }t t t t ε= + − +y Hx Ew HΠwIn terms of the true model state, 
(after Cohn, 1997, J. Met. Soc. Jap.) 

Error of observation equation tt =y Hx

t t−Ew HΠw : Representation error



“Data Error”

Π : Defines the model state.
E :  Defines observation.
H :  Defines model equivalent 

of data

Error-free 
data 

Error-free model 
equivalent of data

t t−Ew HΠw : Representation error

Examples; 

• Meso-scale variability for a non-eddy resolving model, 
• External tides for a rigid lid model,
• Skin temperature for model with thick surface layer,  
• Micro-structure for most models,
• Barotropic variability for a reduced-gravity model, 
• Baroclinic variability for a barotropic model, 
• Meteorologist do not force models too close to 

observations in numerical weather forecasting,
• Individual float & drifter trajectories for any finite difference 

model.



Examples of Drifter Trajectory
(Paduan and Niiler, 1993, JPO)

Example of diverging float 
trajectories 

Typical “spaghetti” diagram 



“Model Error”
Q represents the error of the model constraint.

( )0
1 ˆ,t tA+ =x x u

( )
( ) ( ) ( ){ }

1 1

0 0
1

,

ˆ ˆ, , ,
t t t t

t t t t t t t

L

A L A
+ +

+

= =

= + −

x Πw Π w v

x x u Π w v Πw u

Ocean evolution:

: Model Process Noise

Model evolution: t

( )1 ,t t tL+ =w w v

The true model evolution can be written as, 

Forcing, boundary condition, mixing 
parameters, model error sources. 

Error of the model evolution;

Functions describing the evolution

( )0
1 ˆ,t t tA+ =x x u

Real forcing & boundary condition.

( ) ( )0ˆ, ,t t t tL A−Π w v Πw u

Model evolution given 
true model state

True evolution 



: Model Process Noise( ) ( )0ˆ, ,t t t tL A−Π w v Πw u

“Model Error”

Examples; 
1) Differences in and v (errors in non-state variables);

forcing, boundary condition, model parameters,

2) Errors due to differences in A and L (errors in model 
algorithm); finite difference, interaction with scales and 
processes ignored

0ˆ tu

( ) ( ) ( ){ }
( )

0 0
1 ˆ ˆ, , ,

      = ,
t t t t t t t

t t

A L A

A
+ = + −x x u Π w v Πw u

x u

Collectively, sources of model process noise are 
modeled as elements of the model control vector.



Prior Error Specification
Covariance Matching (Fu et al., 1993, JPO)

Estimate  R &  Q from model-data comparison.

Data y and its model simulation equivalent m could be written as;
= +
= +

y s r
m s n
( )

( )
( )

:  true signal ,   :  data error,   

: simulation of  

:  simulation error 
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Prior Error Specification
0T ≈sn etc,If,

T T

T T T
sim

T

T= = −

= = −

rrR yy my

HP H mmn myn

R estimate.

Implicit Q estimate.

Adjust process noise Q to match the solution of the 
“Lyapunov Equation” to that of the <nnT> estimate.

1
T T

t t−= +P AP A GQGSolve P as t→∞

T T≈HPH nnThen choose Q such that 



Error variance estimate (Fukumori et al., 1999, JGR)
Prior Error Specification
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(c) Calibrated Model Process Noise
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I.Fukumori/JPL



What are we really solving? 
How can we solve it?

OUTLINE
1. What is assimilation really solving?

a) Filtering vs Smoothing
b) Observability & Controllability
c) Data Error and Model Error

2. Examples and Practical Issues; e.g., ECCO 
a) A hierarchical approach
b) Practical derivation and implementation
c) Assessment 



“Estimating the Circulation 
and Climate of the Ocean”

http://www.ecco-group.org

GOAL: Advance data assimilation into an operational 
tool to help understand ocean circulation.

• 3 groups: JPL, Scripps Institution of Oceanography, 
Massachusetts Institute of Technology.

• Employ as much observations as possible.
• State-of-the-art ocean general circulation model.
• Advanced assimilation (Kalman filter/smoother, adjoint, 

Green’s function) characterized by its consistency.
I.Fukumori/JPL



I.Fukumori/JPL

• Nowcasts every 10-days.

• Highlights @ 
http://ecco.jpl.nasa.gov/external

• SSH, Temperature profiles & time-
mean sea level.  

• Controls: winds, heat & fresh 
water fluxes and mixing 
parameters.

• Green’s function, Kalman 
filter & RTS Smoother,
Adjoint method)

• LAS server from 1993 to 
present: http://www.ecco-
group.org/las

ECCO Near Real-Time Analysis



ECCO Routine Assimilation
MIT General Circulation Model (MITgcm)

(Marshall et al., 1997, JGR)
• Nonlinear primitive equation model
• Adaptable to massively parallel supercomputers
• Advanced physics (e.g., KPP & GM mixing)
• Global, high resolution 
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Approximate Kalman filter & Smoother

The explicit evaluation of P (“Riccati Equation”) is impractical 
because of their large dimension and time-evolution.  

Kalman filter estimate :
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ˆ ˆ

ˆ

ˆ

f
t t

f f T f T f
t t t

t

a
t t

a

t t

−

−

−= +

= + + −H H

x A Gu

x H HP P R y x

x

x

( )
1

1

ˆ

ˆ

a
t

a
t

f T T
t

f f T f T f
t t t t t

−

−

= +

= − +

P A A GQG

P P H H HP R HP

P

P

ECCO employs three approximations of P;
1. Time-asymptotic
2. Reduced-state
3. Partitioned



ECCO Approximate KFS
1) Time-asymptotic approximation (Fukumori et al., JPO, 1993);

time
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ro

r f
tP

fP
ff ≈tP P

2) State reduction (Fukumori and Rizzoli, JGR, 1995).
,  dim( ) dim( )
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3) Partitioning (Fukumori, MWR, 2002).
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What are we really solving? 
How can we solve it?

OUTLINE
1. What is assimilation really solving?

a) Filtering vs Smoothing
b) Observability & Controllability
c) Data Error and Model Error

2. Examples and Practical Issues; e.g., ECCO 
a) A hierarchical approach
b) Practical derivation and implementation
c) Assessment 



ECCO Approximate KFS
1. Errors due to wind error (process noise) are estimated.  

2. Partition global domain into 8 different regions (basins)
• Global barotropic cell
• 7 Regional baroclinic cells

0 100 200 300

-50

0

50I. Tropical Indian (>40 ºS)
II. Tropical Pacific (40 ºS ~ 40 ºN)
III. Tropical Atlantic (40 ºS ~ 40 ºN)
IV. South Pacific (<20 ºS)
V. South Atlantic-Indian (<20 ºS)
VI. North Pacific (>20 ºN)
VII. North Atlantic (>20 ºN)

I.Fukumori/JPL



3. State and control reduction: Horizontal velocity and 
vertical displacement  in terms of vertical dynamic 
modes on a coarse horizontal grid.   The reduced 
control is wind error on the same coarse grid. 

ECCO Approximate KFS

I.Fukumori/JPL

( )

,   ,   ,   
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Reduced state (amplitude of 
dynamic mode on coarse grid)

Horizontal interpolation
(objective mapping)

Vertical projection 
(dynamic modes)
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ECCO Approximate KFS
3b.   Horizontal Interpolation: O

“Objective Mapping” (Bretherton et al., 1976, DSR)
Given measurements ϕ , the underlying field θ is estimated by

1ϕ−θ = CA Tϕ=C θ Tϕϕ=A

( ) ( )
1

0 0ˆ T T −
= + + −aa aa bbEa R E E R b ER aa

where

This is just another 
least-squares

Example of mapping of a 
perturbation at one coarse 
grid point;  

Horizontal interpolation, O, is defined as objective mapping 
from a coarse grid system to the model grid system.  

I.Fukumori/JPL



ECCO Approximate KFS
• Global barotropic cell: global 6º× 6º grid, barotropic UVH 

(966 ×3=2898 variables)
• Regional baroclinic cells: regional 5º× 3º grid, baroclinic 

UVD (5 gravest modes)
I. Tropical Indian (>40 ºS ; 308 ×3 ×5=4620)
II. Tropical Pacific (40 ºS ~ 40 ºN; 787 ×3 ×5=11805)
III. Tropical Atlantic (40 ºS ~ 40 ºN; 350 ×3 ×5=5250)
IV. South Pacific (<20 ºS ; 633 ×3 ×5=9495)
V. South Atlantic-Indian (<20 ºS ; 664 ×3 ×5=9960)
VI. North Pacific (>20 ºN; 271 ×3 ×5=4065)
VII. North Atlantic (>20 ºN; 198 ×3 ×5=2970)

0 100 200 300

-50

0

50

In comparison, the model’s state 
dimension is 8 million (2 million 
grid points). 

I.Fukumori/JPL



ECCO Approximate KFS
4. Compute P by formulating and explicitly 

deriving partitioned reduced-state models.  

4a. Formulate partitioned reduced-state models.

The reduced-state must form a closed system.  

A state and control perturbation δx, δu can be written as  
δ ′ +x = Bx Nn

Given the model                               the perturbation 
satisfies 

( )1 ,t t t+ ℑx = x u
( ) ( )1 , ,t t tδ δ δ+ ℑ + + − ℑx = x x u u x u% % % %

( ) ( )1 1
ˆ ˆ, ,t t t t t t+ +′ ′ ′+ ℑ + + + + − ℑBx Nn = x Bx Nn u Bu Nm x u% % % %or

: B, N : range & null space of reduced-state
ˆ ˆδ ′ +u = Bu Nm : The control equivalent of state reduction.



ECCO Approximate KFS

( ) ( )( )*
1

ˆ, ,t t t+′ ′ ′ℑ + + − ℑx = B x Bx u Bu x u% % % %

For this to be a model for the reduced-state we cannot have 
dependency on the null space, ;ˆ,t tNn Nm

Multiplying by the pseudo inverse of B, B* (            ,             )

( ) ( )1 1
ˆ ˆ, ,t t t t t t+ +′ ′ ′+ ℑ + + + + − ℑBx Nn = x Bx Nn u Bu Nm x u% % % %

( ) ( )( )*
1

ˆ ˆ, ,t t t t t+′ ′ ′ℑ + + + + − ℑx = B x Bx Nn u Bu Nm x u% % % %

* =B B I * 0=B N

This would be achieved if null (range) space perturbations 
remain in the null (range) space, because                 ; i.e., state 
reduction must form a closed-system for it to be effective. 

* 0=B N



ECCO Approximate KFS
4b. Derive partitioned reduced-state model in explicit 

matrix form to facilitate error evaluation.

( ) ( )( )*
1

ˆ, ,t t t+′ ′ ′ℑ + + − ℑx = B x Bx u Bu x u% % % %

1t t t+′ ′ ′ ′ ′= +x A x G u

and      can be derived as coarse grain Green’s functions;  ′A ′G

where  H is a function defining model equivalent of data. 

( ) ( ) ( )( )* , ,i ii
′ ′ ′= + = ℑ + − ℑA A e G 0 B x Be u x u% % % %

( ) ( ) ( )( )* ˆ, ,i ii
′ ′ ′= + = ℑ + − ℑG A 0 G e B x u Be x u% % % %

( ) ( ) ( )i ii
H H′ ′= = + −H H e x Be x% %

Similarly,     can be derived by,  ′H



ECCO Approximate KFS
( ) ( ) ( )( )* , ,i ii

′ ′ ′= + = ℑ + − ℑA A e G 0 B x Be u x u% % % %

Implementing requires some considerations;*B
1. is sparse but      is not.   Thus, we do*OO

( ) 1* T T−
=O O O O

is small and is, therefore, explicitly 
computed and stored.       is implemented as 
the transpose (adjoint) of     . 

( ) 1T −
O O

TO
O

2. η is evaluated by time-integrating vertical 
velocity instead of inverting 

,   
z z

δ δ δ δ∂ ∂
= =
∂ ∂
T ST η S η

which is singular where stratification is weak.



ECCO Approximate KFS
4c. Derive representative time-asymptotic limit of P. 

• Stationary solution to the Riccati Equation requires a stationary 
system, i.e., time-invariant A’, G’, H’, Q, R.  

• Approximate with a 3-day assimilation cycle;

If               is a 1-day integration.  Then               where  

( ) ( ) ( )( )* , ,ii
′ = ℑ + − ℑC B x Be u x u% % % %

1t t t+′ ′ ′ ′ ′= +x A x G u

( ),ℑ x u% % 3′ ′=A C

• Approximate all observing operation H’ and R 
with representative observations; e.g., 

Assume a full 10-day cycle of altimeter observations is 
available every 3-days but with 3.3 times the error variance. 



ECCO Approximate KFS

e.g., TOPEX/POSEIDON and Jason have a 3-day subcycle.



ECCO Approximate KFS
5. Implementation

a) Actual assimilation is conducted every 6-hours using all 
observations taken within ±3-hours of the assimilation instant. 

b) Filtering is performed using an alternate formulation of the 
Kalman gain;

( ) ( )( )1
ˆˆ f T f T f

t t t t
a
t tH

−
= + −∆ H H HP P R y xxK-filter increment

( ) 1 1T T T
t

f f
t t

a
t t

− −+ =P PH HPH H R R

This form minimizes computations involving  P and 
simplifies the matrix inversion that is needed.  

filter gain



ECCO Approximate KFS
( )( )1ˆ ˆa T f

t tt t t
a

tH− −∆ = P H R y xxK-filter increment

c) The K-filter increment is sum of partitioned increments;  

,ˆ ˆa
t

i

a
i t i′∆ ∆=∑x B x

using the adjoint of H in place of HT.

( )( )1
, ,ˆ ˆTa f

i t i ti tt t
a H−′ ′= −′∆ H R yx P xwhere

( )( ),
1

,ˆ ˆTa T f
i t i ti tt t

a H−′= −′∆ P B Hx R y xOr, 

These calculations are performed from right to left; 
There is no explicit computation of product
because it is computationally inefficient. 

1
,

Ta
i t i t

−′ ′P H R



ECCO Approximate KFS
d) Anomalies are assimilated for sea level and temperature 

profiles because of 
i. Unknown marine geoid,
ii. Temporally uncorrelated process noise assumption. 

( ) ( )( )( ) 1
,ˆ ˆa Ta f

t i t i t t tH−′ ′ ′∆ = −− −x P H R y xy m

where     and      are time-means of data and model 
(simulation) equivalent of data mean, respectively. 

y m

This choice of reference amounts to assimilating temporal 
anomalies of the data without altering the model time-mean.   

e) Integrate original model after state and diagnostic variables 
are updated; partitioned reduced-state model is never used 
to integrate state.



ECCO Approximate KFS
f) Smoothing is performed

i. Derive smoothed wind correction by,

( ) ( )
( )

1T T T

1T
1

1

1

ˆ

ˆ    

ˆ
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a a
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,
ˆˆ ˆs s
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′∆ ∆=∑u B u

( )1
, 1, 1,ˆˆ ˆT f s a

i i i t i t
s

t ii
−

+ +′ ′ ′ ′ ′= ∆ + ∆′∆ Q G P xu xwhere

In partitioned 
reduced-state;

ii. Re-run model simulation with smoother corrected wind 
because,   

due to approximations, but

( )1 1ˆ ˆ ˆ ˆ ˆ,a s a s s
t t t t t t+ ++ ∆ ≠ ℑ + ∆ + ∆x x x x u u

( )1
ˆ ˆˆ ˆ ˆ,s s s

t t t t+ ℑ + ∆x = x u u



Skill & Test of Assimilation
Assimilation should make models closer to data, 

both assimilated and independent. 

I.Fukumori/JPL

Data variance explained by models;  ( )( )TT − − −yy y Hx y Hx

Data not explained by model

Filters (forecasts) and Smoothers

Simulations



Skill & Test of Assimilation

T f T
sim −HP H HP H

Model-data residuals should be comparable to expectation
1st order match

simulation - forecast residual

forecast - analysis residual f T a T−HP H HP H

I.Fukumori/JPL



Skill & Test of Assimilation

Comparison to independent data: ECCO assimilation explains 
observed polar motion better than ocean simulation does.

Coherence of observed & modeled excitation

(Gross et al., 2003, JGR)



Summary
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1. Data assimilation is an inverse 
problem of observations & model 
with state & model controls as 
unknowns;

2. Data constraint error includes 
model representation error,

3. Kalman filters and RTS smoothers are recursive least-
squares inversions,

4. Kalman filters invert observations;  RTS smoothers invert 
model,



Summary

6. Temporal evolution of filters is not
physically consistent, but that of 
smoothers is,  

5. Smoother’s control estimates are fundamental in solving 
the assimilation problem,  filter

smoother

7. Various approximations & simplifications are possible
that make solving the assimilation problem tractable; 
ECCO KFS.  



Future Challenge
Modeling different model error sources by identifying 

effective corresponding reduced-state approximations B is 
a central issue in data assimilation. 

( ) ( ) ( ){ }0 0
1 ˆ ˆ, , ,

       = A
t t t t t t t

t t

A L A+ = + −

+

x x u Π w v Πw u

x Gu

Controls need explicit modeling for estimation;

Model evolution given 
true model state

True evolution 

What are the most effective basis functions B that would 
represent effects of various model error sources ? 

( ) ( )( )
( ) ( )( )

*
1

*

ˆ ˆ, ,

ˆ     , ,

t t t t t

t t

+′ ′ ′ℑ + + + + − ℑ

′ ′≈ ℑ + + − ℑ

x = B x Bx Nn u Bu Nm x u

B x Bx u Bu x u

% % % %

% % % %

Effective = Small dimension but closed system.


