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Finite-Element Ocean
circulation Model (FEOM)
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Motivation:

o Complexity of coastal lines

* Need for very high resolution in
dynamically important regions

e Sloping bottom topography

Finite-element discretization provides a framework



Long history of using FE in tidal and coastal modeling
(QUODDY, ADCIRC) :

Main interest - surface
elevation

Main forcing — wind
and tides

U

Spatial scales o«c+ H
Typical integration —
a few months

QUODDY mesh for the Gulf of Maine,
the spatial resolution varies from 4 to 50 km



FE (unstructured) models

tides:
shallow water:
coastal:

engeneering
convection etc.
basin scale
atmosphere

FESXxX, Mog2D etc.
Untrimm, etc.

Quoddy, Adcirc, Ricom
~VVcom, SEOM, Elcirc...

Delft

COM

RAS, FEOM
ICON, Canda




Ocean GCM traditionally use Finite Difference approach

“... there are two general problems which have arisen when
attempting to use unstructured grid in climate models.

The first is that it is difficult to represent the geostrophic
balance correctly. ...

The second is that every change in grid spacing provides
an opportunity for unphysical wave scattering....

... Unstructured grids have proven to be impractical for
climate modelling.”

Griffies et al., Development in ocean climate modelling,
Ocean Modelling, 2000



10-years of FEOM on a grid with mean resolution of 0.5"

Dynamical topography
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Boundaries are important!

- Real Boundary i
. -~ Model Boundary

Munk gyre circulation:
elevation differs by

a factor of two due to
stepwise boundaries
(angle of rotation is
only 3.4 degree)

Dupont et al., 2003




Topography Is important!
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orizontal discretization with triangles or quadrilaterals:
- accurate representation of coastlines and bathymetry
- flexibility in local mesh refinement (no nesting)
- potential adaptivity (IOM)
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Horizontal discretization with elements

of different type

--- low order or high order polynomial
--- staggered grids

--- FE or FV

Vertical discretization
like any FD model
Z ,sigma, s, hybrid



Perspectives

(a) geometry

In many places the ocean circulation is sensitive to the geometry
and bottom topography of the ocean basin (e.g., Denmark Strait,
Drake Passage). Unstructured grids seem to provide a tool to
explore the role of these features.

(b) global model
Use a coarse global model with local refinement to avoid open
boundaries.

(c) adaptivity and error control
‘Dynamical’ adaptivity seems to be expensive, but ‘static’
adaptivity Is feasible

(d) sea ice modelling
potential for better sea ice rheology, ridging, adaptive refinement



Basics of FE numerics
Representation of variables

2D basis function Ansatz for SSH

(X, y)=Z_] &P, (%)

3D fields are expanded in series of analogous 3D
basis functions defined on tetrahedra



Basics of FE numerics
Discretize equations as in spectral methods

o Substitute the expansions for variables in
eguations

 Require residuals be orthogonal to the
basis functions

e Solve for unknown coefficients of the
expansions



Variational formulation of the
advektion-diffusion equation

O, T+v-gradT+divKgradT=0
project the equation onto piecewise

polynomial functions, multiply by
testfunction T and integrate

j@tTf+v-gradT"I:—divKgradT"I:dQ:O
Q)



Partial integration and Gaul3-Theorem

IMassmatrix
(symmetric)

Stiffnessmatrix
(unsymmetric

by v-entries)
@T T +gradT KgradT dQ-—
Q

_ boundary conditions
_ _[T K grad T.ndl =0 (thisintegral is evaluated
and put to the
St right hand side)




Basics of FE numerics

1D example:
« Equation
o, T+uo, T =0
o FE-discretization on a uniform grid with grid size h
T . +4T +T1 T ..-T
a n—-1 n n+1 + U n+1 n-1Y\ _— O
¢ ( ” ) + u( oh )

Central differences

© same stencil for all terms O reduced dispersion
necessity of matrix inversion



Basics of FE numerics
Advection scheme
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(a) — central differences, (b) QUICK, (c) — unstabilized FE, (d) —
stabilized FE, (e) — overstabilized FE; (f) — the exact dispersion



Finite elements vs. finite differences:

Need for assembling matrices
Need for effective preconditioners and solvers

On unstructured grids computing RHS is more
expensive than with finite difference method

Parallelization of matrix assembly and RHS
computation is relatively straightforward,
effective parallelization of factorization and
solvers Is feasible, but requires special efforts.



Vertical discretization

Full cells (generally used,
no pressure gradient errors)

At the cost of pressure gradient errors in
the lowest cells:

Partial cells (a few examples)

Shaved cells (not yet used
In climate studies)




Vertical discretization

Surface triangle defines
a prism

/

Possibilities to proceed.:
(a) full prisms and z-levels
(analogous to MOM, POP, HOPE,
MITgcm, OPA)

O stepwise bottom
(b) full prisms and terrain
following levels (analogous to POM,
ROMS)

O pressure-gradient errors
(c) cut bottom prisms, and z-levels
(analogous to shaved cells of
MITgcm)



Vertical discretization

A full prism is divided
Into three tetrahedra

AN

A prism cut by bottom
IS represented by one
or two tetrahedra

NoO errors in pressure gradients
due to variable horizontal
resolution

FEOM uses tetrahedra - the most
flexible yet expensive way



Advection of a
temperature anomaly

Gaulian temperature anomaly In a divergence free
velocity field in a regular and unstructured mesh




velocity field

3D, but
Temperature / horizontal velocity Temperature / horizontal velocity i n d e p e n d e nt
of depth

Depth: 0 m Time: 0 days Depth: 0 m Time: 0 days

20 21 22 23 24 20 21 22 23 24




Temperature l

Depth: O m Time: 0 days

Temperature

122.4

Depth: O m  Time: 0 days



application to the DOME setup
(Dynamics of Overflow Mixing and
Entrainment)
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x10




Surface grid
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Vertical discretization and initial
temperature stratification
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|sosurface of marker
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Isosurface T=18C, sea surface height [m]

Time: 0.250000 days



3D view of the North Atlantic mesh

Resolution 0.2° - 150 '
Mean res.olq_t_i_.on-"();';50
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Horizontal discretization with triangles:
--- accurate representation of coastal lines
--- flexibility in local mesh refinement

--- potentiality in adaptivity (not yet used)



Basic features of FEOM

Primitive equations

Rigid lid and free surface options
2D unstructured triangular mesh
Vertically aligned nodes
Tetrahedral elements

z-levels with inclined bottom (any level system can
be used In principle without modifying the code)

Backward Euler time stepping (to be replaced with
Cranck-Nicolson method)




Specific features of the NA version

Richardson number dependent vertical diffusion
Convection via enhanced diffusion (1 m4/s)
Smagorinsky horizontal viscosity

Background horizontal viscosity and diffusion 25 m?/s

0.2 ° - 1.5 ° resolution (16000 surface nodes)
23 z-levels ( 220000 3D nodes)

Time step 2 h for (u, v, ) and 1 h for (T, S) in the
rigid lid mode



Mean SSH

POP 0.1° >FEOM 0.5°>POP 0.28°

- 1™ eAzores Current
*Recirculation
NA current
*Sub-polar gyre

. FEOM 0.5
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-100

(a) LEVEL
(b) ISOPYCNIC
(c) SIGMA

(d) SIGMA (snapshot)

l Comparison with
L. DYNAMO models
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SSH variability MOM (Oschlies, 2002)




Meridional overturning
DYNAMO MOM DYNAMO MICOM
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Petawatts
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Zonal velocity cross-section at 30° W (Azores Current)
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Salinity section at 35° N: Comparison with DAMEE and A03

2 Salinity section Climatology _ MICOM
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Western boundary currents at 27° N

FEOM
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Core velocities are about
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g | FEOM 37 | 17
LEVEL 35 | 17
SIGMA 36 | 16
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Numerical cost and parallelization

MPI parallelization
Scalability:

| Speedup

measured |

Number of PE

Current cost 3.5 h per Vectorlzatlon --- future
model year on 32 PE perspective. It requires

of IBM pSeries 690 sparse vectorized solvers
(Hannover) and optimization of indirect

addressing



Conclusions

FEOM is the first 3D FE primitive equation OGCM based on
unstructured mesh
U

(1) Variable resolution and smooth coastal line
(1) Inclined bottom within z-coordinate

U

Finite-elements could be used in climate ocean
modelling
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