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1. Introduction

Accurate representation of the Gulf of Mexico (GoM) circulation in nu-
merical models is of great importance for the scientific community and holds
operational significance for fisheries, hurricane prediction, and oil and gas
companies (Jaimes et al., 2016; Koch et al., 1991; National Academies of5

Sciences, Engineering, and Medicine, 2018). The GoM Loop Current (LC) is
part of the Atlantic western boundary current system and plays an important
role in the transport of heat from the Caribbean Sea to the Atlantic Ocean,
contributing to climate regulation. The LC also holds strong currents (up to
2 ms−1) (Forristall et al., 1992; Sturges et al., 2005; Hiron et al., 2021) and10

is very dynamic, shedding large (≈200-400 km) warm eddies at an irregular
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rate of 6 to 17 months (Vukovich, 1988; Behringer et al., 1977; Sturges and
Leben, 2000). Loop Current Eddies (LCE) affect oil and gas activities in the
GoM due to their strong peripheral velocities, and they can also fuel hurri-
cane intensification by releasing heat to the atmosphere during storm passage15

(Shay and Uhlhorn, 2008; Shay, 2010; Jaimes et al., 2016). Cold-core, frontal
eddies present in the vicinity of the LC contribute to the detachment of the
LCEs and can enhance activity across the trophic chain by pumping deep-
water nutrients to the upper ocean (Hiron et al., 2020, 2022; Suthers et al.,
2023). Although recent model advancements have improved the representa-20

tion of this complex system, a key limitation across ocean models remains
the scarcity of in situ data to effectively constrain the models.

Temperature and salinity observations are two essential variables to be
assimilated in numerical models, as density gradients, driven by these vari-
ables and pressure, govern large-scale ocean circulation. The ocean surface25

is well constrained in models, thanks to global satellite-derived sea surface
height (SSH) and sea surface temperature (SST) data. However, subsurface
observations are scarcer. The Argo program supports almost 4,000 floats
worldwide that provide valuable information about the subsurface tempera-
ture and salinity structure of the ocean since 2005 (Roemmich and Gilson,30

2009). In the GoM, the NAS-funded LC-floats and the UGOS 3 program are
significant initiatives in subsurface observation. The LC-floats, supported
by the National Academy of Sciences (NAS), are designed for oceanographic
research in the GoM. Since June 2019, these floats have played a key role
in collecting data on subsurface temperature and salinity structures. The35

UGOS 3 program, focusing on the GoM region, involves specialized floats
that have contributed to more than 7,000 profiles sampled since the same
period.

Despite their significance in constraining subsurface models, these mea-
surements are too sparse, limiting the accurate representation of subsur-40

face mesoscale circulation. Techniques such as Multiple Linear Regression
(Carnes et al., 1994) Gravest Empirical Modes (GEM) method (Watts et al.,
2001; Sun and Watts, 2001; Meunier et al., 2022) and the Improved Syn-
thetic Ocean Profile (ISOP) system (Helber et al., 2013; Townsend et al.,
2015; Helber et al., 2022) have been employed to generate synthetic temper-45

ature and salinity profiles for data assimilation in large-scale and regional
ocean models. Those synthetic profiles rely on past observations and are
generated mainly from altimetry SSH fields, based on the presumed rela-
tionship between SSH values and subsurface temperature and salinity, valid
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for large-scale flows (geostrophic adjustment). Although promising, these50

methods can be computationally demanding and may not capture complex,
non-linear relationships between surface and subsurface ocean fields.

In recent years, there has been significant advancement in deriving tem-
perature and salinity profiles from ocean surface data using machine learn-
ing (ML) and artificial intelligence (AI) approaches. These models aim to55

bridge the gap between sparse in-situ measurements and satellite observa-
tions, enabling more comprehensive ocean monitoring. For instance, Chen
et al. (2022) developed a machine learning-based assimilation system that
uses a generalized regression neural network with fruit fly optimization to re-
construct T/S profiles from satellite observations, significantly improving the60

simulation of subsurface structures compared to direct assimilation of satel-
lite data alone. Similarly, Tian et al. (2022) employed a feed-forward neural
network to generate a high-resolution (0.25° x 0.25°) global subsurface salin-
ity dataset by merging in-situ profiles with satellite altimetry, sea surface
temperature, and wind data. Mao et al. (2023) developed a dual-path con-65

volutional neural network to reconstruct ocean subsurface temperature and
salinity from sea surface information, demonstrating improved accuracy over
traditional methods. Pauthenet et al. (2022) reconstructed four-dimensional
temperature, salinity, and mixed-layer depth in the Gulf Stream using neu-
ral networks, combining remote-sensing and in situ observations. These AI-70

based methods have shown promise in capturing mesoscale features and im-
proving upon traditional interpolation techniques, offering new possibilities
for generating comprehensive ocean T/S datasets with enhanced spatial and
temporal resolution.

In the Gulf of Mexico, machine learning has been used in numerous ap-75

plications, such as forecasting LCE shedding events (Zeng et al., 2015; Wang
et al., 2019)), predicting hurricane wave height (Mafi and Amirinia, 2017),
and estimating spatial and temporal variation in dissolved carbon dioxide
near the Mississippi river outflow (Fu et al., 2020). Meng et al. (2021) devel-
oped a convolutional neural network (CNN) method using satellite-observed80

sea surface data (SSH, SST, sea surface salinity (SSS), and surface wind
speed) and ocean subsurface temperature and salinity from Argo to obtain
three-dimensional salinity fields from 0-2000 m depth. Despite these ad-
vancements, research with ML for subsurface modeling in the Gulf of Mexico
is ongoing, as traditional methods still face challenges in efficiency, accuracy,85

and capturing the complex dynamics of the Gulf’s circulation, especially at
submesoscale.
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In this study, we introduce NeSPReSO (Neural Synthetic Profiles from
Remote Sensing and Observations), a method to effectively estimate sub-
surface temperature and salinity profiles using satellite-derived absolute dy-90

namic topography (ADT), SST, and SSS by leveraging in-situ Argo data and
Principal Component Analysis (PCA). Unlike previous methods, NeSPReSO
focuses specifically on the Gulf of Mexico, utilizing a neural network archi-
tecture optimized for this region’s oceanographic features. Our approach
advances the field by combining PCA to reduce the dimensionality of the95

T/S profiles while capturing most of their variability, and a neural network
that maps surface observations to these principal components. This method-
ology allows for efficient computation while capturing the complex, non-linear
relationships between surface and subsurface ocean fields, thereby improving
upon traditional methods and previous ML approaches in terms of accuracy100

and computational cost.
This study aims to address the following questions: How effectively can

ML techniques, specifically neural networks (NN), be utilized to synthesize
temperature and salinity profiles in the Gulf of Mexico? Can NeSPReSO
provide an improvement over state-of-the-art methods? How do these syn-105

thetic profiles compare against independent measurements? Applications
of this study include investigating the effects of assimilating the synthetic
subsurface temperature and salinity profiles into hindcast and forecast nu-
merical models in the Gulf of Mexico to determine whether they improve
forecast accuracy. Additionally, we plan to provide a system through which110

the scientific community can request synthetic profiles for specific locations
and time periods (depending on satellite data availability) to foster further
research and applications.

2. Data

Our ML approach builds upon in situ observations and satellite-derived115

measurements. The following subsections details the specifics of each dataset,
specifically Argo float, glider, and satellite datasets, as well as the ISOP
statistics used as benchmark.

2.1. Argo Data
The main dataset for this study is a total of 4,145 temperature (T) and120

salinity (S) profiles acquired between 2015 and 2022 in the GoM region, and
includes geographical coordinates, date, and time, as well as the estimated
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local steric height referenced to 1,950 dbar (SH1950) for each profile. The
distribution of these profiles is shown in Figure 1. T and S measurements
were taken at one-meter intervals from the surface to a depth of 2,000 meters,125

capturing both major upper-ocean water masses present in the GoM: the
warm and salty North Atlantic Subtropical Underwater (NASUW), typical
of the Loop Current (SH1950 ≥ 0.17 m), and the fresher Gulf Common Water
(GCW), representative of the Gulf waters (SH1950 < 0.17 m) (e.g., Hiron
et al. (2022)).130

The dataset, described in detail by Meunier et al. (2022, 2023, 2024),
includes a mixture of real-time and delayed mode profiles, re-processed with-
out using the standard quality control (QC) flags. Outliers, defined as values
outside four standard deviations, were removed, as well as profiles showing
biased salinity at depth. Although these profiles could potentially be re-135

covered with further processing, they were excluded from this analysis to
maintain data consistency.

Figure 1: Temperature-Salinity (T-S) diagram (left) and spatial distribution (right) of
glider tracks and Argo profiles used in this study. The T-S diagram identifies key water
masses, including Gulf Common Water (GCW), North Atlantic Subtropical Underwater
(NASUW), and Sub-Antarctic Intermediate Water (SAAIW). The spatial distribution uses
markers/colors to represent dataset categories (train, validation, and test).

ISOP statistics are limited to the 0 to 1,800-meter range. Given that
our Argo database has missing data beyond 1,800 meters, we restricted our
dataset for model training, testing, and validation to this range.140
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2.2. Glider dataset
This dataset comprises T and S profiles from three missions (0006, 0010,

and 0012) conducted between June 2017 and October 2018, targeting various
mesoscale structures within the Gulf of Mexico by the glider oceanographic
monitoring group (GMOG) from Cicese. These missions, executed using145

Seagliders equipped with a Seabird free-flow CT-sail, aimed to capture the
vertical thermohaline variability associated with these mesoscale features.
Data were collected at an averaged vertical resolution of 1 m and horizontal
resolution of 3 km.

Missions 0006 and 0012 sampled old and young LCEs, respectively, and150

mission 0010 targeted a cyclonic eddy in Campeche Bay. During post-
processing, data was vertically binned at 5 m intervals, and temperature
adjusted for thermal lag, while thermal-inertia effects on conductivity were
corrected following the methodology of Lueck and Picklo (1990). A fourth-
order low-pass Butterworth filter with a cut-off frequency of 1

48
h−1 was ap-155

plied to smooth out high-frequency, near-inertial gravity waves. Missing
segments were linearly interpolated to maintain the integrity of the profiles.

The gliders sampled contrasting thermohaline structures critical for as-
sessing the reconstruction algorithm’s proficiency. Significant differences in
salinity (∆S = 0.2) and temperature (∆T = 2◦C) anomalies were observed160

between the eddies, with variations in the depth of the 26◦C isotherm be-
tween young and old LCEs indicative of the effect of eddy age on thermoha-
line structure. However, large discrepancies are anticipated at the peripheries
of the eddies due to submesoscale processes like density-compensated T and
S layering and intrusions, which are not captured by the satellite fields, chal-165

lenging the model’s predictive capability in these areas.

2.3. Satellite data
Satellite-derived Absolute Dynamic Topography (ADT), sea surface tem-

perature (SST) and salinity (SSS) were sourced from CMEMS, OISST, and
SMAP, respectively. The Copernicus Marine Environment Monitoring Ser-170

vice (CMEMS) archives, validates, and interprets oceanographic satellite
data. We utilized ADT, available since 1993, serving as a proxy for SSH.
CMEMS provides an ADT gridded product with a daily resolution and a
horizontal grid-spacing of approximately 1

4
degrees (Copernicus Marine Ser-

vice, 2024).175

Optimum Interpolation Sea Surface Temperature (OISST) is a long-term
climate data record that incorporates observations from different sources to

6



provide a high-resolution analysis of sea surface temperatures. It uses an
optimal interpolation technique to combine data from satellites, ships, buoys,
and other sources to create a consistent and accurate record of sea surface180

temperatures. Analysed SST is available since 1981 on a daily basis, with a
resolution of approximately 1

4
degrees (Good et al., 2020).

Finally, SMAP, or "Soil Moisture Active Passive", is a NASA satellite mis-
sion that uses active and passive microwave sensors to provide high-resolution
measurements of soil moisture, freeze/thaw state, and ocean surface salinity.185

SMAP SSS has been available since 2015 on a daily basis and has a resolution
of 40 km (Meissner et al., 2018).

The ADT, SST, and SSS fields are interpolated to each location of the
Argo and glider databases using bicubic interpolation, and together with spa-
tial and temporal information, serve as input to the proposed neural network190

as described in Section 3.2. Following Leben (2005) and Hiron et al. (2020),
the daily mean of ADT over the GoM deep waters (> 200 m) is removed from
the ADT field for each day. This removes the variations in ADT associated
with thermal expansion and contraction of the upper ocean due to seasonal
variability.195

2.4. ISOP statistics
ISOP projects surface ocean data downward, generating T and S profiles

across the global ocean using surface observations and a mixed-layer depth
(MLD) estimate. Optionally, a prior forecast of T and S profiles can be
used. The creation of these synthetic profiles plays an important step in the200

Navy’s operational forecasting and is seamlessly integrated into their data
assimilation workflows. ISOP divides the ocean’s depth into 78 fixed levels,
extending from the surface to 6600 meters. The process begins with the
compilation of a T and S covariance matrix and climatology database from
a comprehensive set of in-situ observations, followed by the application of a205

multilayered approach that considers three different dynamics zones within
the ocean subsurface. These regions include the mixed layer, extending from
the surface to the MLD; the thermocline layer, reaching from the MLD down
to 1000 meters; and the deep ocean layer, below 1000 meters.

For the mixed layer, there are two options. One option adjusts the ini-210

tial estimated profile to align with the surface potential density at 4 meters
depth and ensures consistency with the potential density and its gradient at
the MLD within the thermocline layer. The second option for the mixed layer
shifts the prior forecast profile (if provided) to match the input SST value.
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The thermocline layer prediction employs a variational method, leveraging215

climatological T and S values and the first vertical Empirical Orthogonal
Functions (EOFs), or modes, extracted from historical data to constrain the
forecast. Detailed descriptions of the each term involved in this variational
approach is available in reference Helber et al. (2013). Finally, the prediction
within the deep ocean layer involves modifying a decay function based on cli-220

matological data and the T and S readings from the thermocline layer at
1000 meters depth. This function accounts for the variance between climato-
logical values and the 1000-meter predictions, ensuring a coherent transition
into the deep ocean predictions. The inputs for ISOP’s predictive models
include SST and sea surface height anomaly (SSHA), along with uncertainty225

estimates, an MLD estimation, and an (optional) T and S profile can be
obtained from either climatological data or model outputs. In this work, the
synthetics used climatological data for estimating the initial MLD and T and
S profiles, along with Argo-derived SST and SSH.

The ISOP data used in this work was generated by the US Navy and230

corresponds to the entire Argo dataset (4,145 profiles). The provided data
included only the average vertical statistics and binned spatial statistics of
the ISOP synthetics relative to the Argo profiles (no individual profiles were
provided). These statistics were used as benchmark for the other methods.

3. Methods235

In this section, we detail our methodology for training and validating a
multilayer perceptron (MLP) to predict subsurface T and S profiles using
surface data. The model is designed to learn the nonlinear functions that
associates the ocean surface, through satellite observations, with subsurface
information from a comprehensive dataset of Argo profiles. NeSPReSO uses240

PCA to focus the model on the main variability within the subsurface profiles,
while also reducing the data’s dimensionality and improving the efficiency of
computation and training. Lastly, we assess the model’s performance using
unseen Argo profiles (15% of the dataset, randomly selected) and compare
it with MLR, GEM and ISOP methods. The four unseen glider transects in245

the GoM were also reconstructed using our method, and compared with the
original glider data.

The Argo float dataset, consisting of T and S profiles, is inherently high-
dimensional, containing 1801 measurements (from 0 to 1800 meters at 1-
meter intervals) for each parameter. In order to obtain an efficient model that250
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captures the overall shape of the profiles, we applied PCA to the data sets
of the T and S profiles separately. By doing so, we can express each profile
with a significantly reduced number of variables while retaining over 99% of
the original data variability. Utilizing this transformation of data, we train
the neural network to estimate the 30 most significant principal component255

scores (PCS) for each profile in the Argo dataset used for training, which are
used to reconstruct the profiles using the inverse PCA.

Combining PCA with neural networks is an effective strategy for handling
high-dimensional output spaces, as it reduces computational complexity and
can improve prediction accuracy (Howley et al., 2006; Sun et al., 2023). PCA260

captures the most significant features in the data, and the neural network
learns to predict these features from the inputs. This methodology has been
successfully applied in various fields, including meteorology and oceanogra-
phy (Preisendorfer and Mobley, 2023), finance (Sarıkoç and Celik, 2024), and
engineering (Sun et al., 2023).265

Figure 2 shows a general diagram of our methodology and the main com-
ponents of the proposed neural network.

Figure 2: General diagram of NeSPReSO. Step 1 computes the empirical PCA of the
Argo database. Step 2 trains a dense neural network from interpolated SST, SSH and SSS
satellite data, location and date to predict the PCS. Step 3 reconstruct the profiles using
the predicted PCS and inverse PCA.

9



3.1. Principal Component Analysis
Principal Component Analysis (PCA) is employed in various fields for di-

mensionality reduction of large datasets while preserving most of the original270

data variability. This method identifies orthogonal axes, known as principal
components (PC), each representing a direction in which the data’s variance
is maximized.

Given a centered data matrix Y of size n× p, where n is the number of
observations (profiles) and p is the number of variables (measurements).275

A covariance matrix S is computed as:

S =
1

n
YTY, (1)

which captures the variances (in the diagonal) and the covariances (off-
diagonals).

The next step involves solving the eigenvalue problem for S:

SV = DV, (2)

where V and D are the eigenvector matrix and eigenvalue diagonal matrix of280

S, respectively. These eigenvectors define the directions of maximum variance
in the data, and the eigenvalues indicate the magnitude of variance in these
directions.

The eigenvectors and eigenvalues are arranged in descending order based
on the magnitude of the eigenvalues. The first eigenvector, associated with285

the largest eigenvalue, becomes the first principal component (PC), and so
forth. The eigenvector matrix V, which is the concatenation of all vi eigen-
vectors, is used to project the centered data matrix Y into the principal
component space:

Z = YV, (3)

where Z is a matrix of principal component scores (PCS), each column rep-290

resenting a principal component. To reduce dimensionality, V can be trun-
cated, keeping only the eigenvectors corresponding to the largest eigenvalues.

The PCA transformation is linear and reversible. The inverse transforma-
tion, which approximates the original data from its reduced principal com-
ponent representation, is given by:295

Ŷ = ZVT , (4)
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Figure 3: Example of reconstruction of temperature and salinity profiles using 15 PCS.
The profile were truncated at 500 meters to emphasize the differences, which occur mostly
in the upper ocean.

where Ŷ is the reconstructed data. Note that if V is truncated, this recon-
struction is an approximation with some loss of information.

We applied PCA to the T and S datasets, reducing the dimensionality of
the data (from 1801 to 15) by transforming the raw measurements (Y) into
PCS (Z), while retaining most of the variance: 99.8% for temperature and300

99.4% for salinity. Figure 3 illustrates the first 500 meters of a temperature
and salinity profile and its reconstruction using 15 PCS.

Our proposed model is then trained to generate these 30 PCS for each
Argo location in our training set. Next we describe NeSPReSO’s architecture
and training.305

3.2. NeSPReSO
Let X ⊂ RdX denote our input space, representing spatial and temporal

information along with surface measurements (e.g., sea surface temperature,
salinity, and height), and let Y ⊂ RdY be the output space consisting of the
corresponding vertical profiles of temperature and salinity that we aim to310

predict. Our objective is to construct a mapping Φ : X → Y such that for
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each input vector x ∈ X, the predicted profile y = Φ(x) approximates the
true profile y ∈ Y .

Due to the high dimensionality of the vertical profiles, directly predict-
ing y with a neural network can be computationally intensive, inaccurate,315

and prone to overfitting. To address this, we employ Principal Component
Analysis (PCA) for dimensionality reduction, focusing on modeling the most
significant features of the profiles (Jolliffe and Cadima, 2016; Preisendorfer
and Mobley, 2023). Formally, we encode the output space Y into a lower-
dimensional space Z ⊂ RdZ , where dZ ≪ dY , using an encoder EY such320

that z = EY (y), and reconstruct the profiles with a decoder DY such that
y ≈ DY (z).

Applying PCA to the profiles in Y yields the PCS z and defines the
decoder operator DPCA(z) = zVT, where V is the matrix of eigenvectors
from the PCA decomposition. Here, the encoder EY corresponds to the325

PCA transformation mapping profiles y to their PCS z, and the decoder DY

corresponds to the inverse PCA transformation reconstructing y from z.
To predict z from the surface measurements x, we design a neural net-

work ζ : X → Z that approximates the mapping from the input space to the
PCA space. This approach leverages the ability of neural networks to model330

complex nonlinear relationships between inputs and outputs. By training
the neural network to predict z, we can reconstruct the full profiles using
the inverse PCA transformation. Combining PCA with neural networks is a
common practice in machine learning for handling high-dimensional outputs
(Howley et al., 2006; Sun et al., 2023), as PCA reduces the output dimmen-335

sionality and the neural network captures the nonlinear relationships between
inputs and principal components.

In designing the loss function for training the neural network ζ, we con-
sider the accuracy of the reconstructed profiles. Specifically, we minimize the
difference between the reconstructed PCS ẑ and the true PCS z, and differ-340

ence between the reconstructed profiles ŷ = DPCA(ẑ) and the true profiles y.
Our approximation process can be formalized as:

min
ζ

L =
1

nLW

n∑
i=1

dz∑
j=1

vj

σ2
z

(ẑij − zij)
2

︸ ︷︷ ︸
WMSE

+
1

nLF

 n∑
i=1

 1

σ2
T

dY∑
k=1

(
Ŷ T
ik − Y T

ik

)2
+

1

σ2
S

dY∑
k=1

(
Ŷ S
ik − Y S

ik

)2


︸ ︷︷ ︸

FMSE

(5)

where L denotes the total loss function, n is the number of profiles (in-
dexed by i), dz is the number of principal components used (indexed by j),
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and dY is the number of depth levels in each profile (indexed by k). The345

first term is the weighed mean squared error (WMSE) of the PCS, weighted
by the variance captured by each component vj, where ẑij and zij represent
the predicted and true PCS for sample i and component j, respectively. The
second term represents the functional mean squared error (FMSE), which is
computed for both temperature and salinity profiles. Specifically, Ŷ T

ik and350

Y T
ik denote the predicted (after inverse PCA transformation) and true tem-

perature values, respectively, at depth k for sample i. Similarly, Ŷ S
ik and Y S

ik

represent the predicted and true salinity values.
It’s important to note that in our model L accounts for both temperature

and salinity predictions simultaneously, which have different scales and units.355

To ensure that the contributions of these parameters are appropriately scaled
in this multi-task model, each mean squared error term is divided by the
variance of the respective parameter: σ2

z for the PCS, σ2
T for temperature,

and σ2
S for salinity (Zhang and Yang, 2017).

Additionally, training the model using WMSE or FMSE individually re-360

sults in different loss values, with LW ≈ 0.0255 for WMSE and LF ≈ 2.8294
for FMSE. These values are used to normalize each term when combining
them in the final loss function.

The neural network used in this study consists of a simple multilayer
perceptron, suitable for regression tasks involving continuous outputs, with365

an input layer that receives satellite-derived ADT, SST, and SSS bi-cubicly
interpolated to the location of each Argo profile. It also receives spatial in-
formation coming from the latitude and longitude. Recognizing that latitude
and longitude represent angular measurements with cyclical properties, we
compute the sine and cosine harmonics for each normalized temporal and370

spatial inputs (2π lat
180

, 2π lon
360

and 2π day
365

), helping the network to capture the
cyclical nature of these parameters, which has been shown to improve model
performance in previous studies (Thottakkara et al., 2016). The output layer
produces the predicted PCS, which are then used to reconstruct the full tem-
perature and salinity profiles using the inverse PCA transformation.375

We use 2 fully connected hidden layers with 512 neurons each, employ-
ing the Rectified Linear Unit (ReLU) activation function to reduce compu-
tational complexity and mitigate vanishing gradients (Dubey et al., 2022;
Nguyen et al., 2021). To prevent over-fitting, we apply a dropout rate of
20%, randomly disabling neurons during training, which encourages the net-380

work to learn more robust features (Zhang et al., 2024). Additional training
parameters include using a batch size of 300, a maximum number of 8000
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epochs and an early stopping mechanism of 500 epochs, if the loss value in
the validation set is not improved.

The training of the neural network involves an iterative process where the385

model learns to approximate the PCS through exposure to different subsets of
the data. The model is trained using 70% of the profiles (2,895 in total), while
its performance is continuously monitored against a separate validation set
comprising 621 (15%) profiles, which effectively determines when the training
should stop. Training the model on this setting took 8 minutes using a single390

GPU. Evaluation of the model’s accuracy is conducted on the remaining 15%
of the data (621 profiles), the test set, to assess its predictive capabilities.

NeSPReSO is compared against standard models for creating synthetic
profiles: Multiple Linear Regression, Gravest Empirical Modes and Improved
Synthetic Ocean Profile.395

3.3. Multiple Linear Regression Approach
In addition to the neural network architecture, we explore a MLR model

as a baseline method for predicting the PCS from surface measurements
(Carnes et al., 1994). The MLR serves to assess the effectiveness of the neural
network by comparing its performance with a simpler, linear approach.400

Let us consider the same input space X ⊂ RdX , output space Y ⊂
RdY and the reduced-dimensional space Z ⊂ RdZ , where dZ ≪ dY , along
with the encoder EY and decoder DY mappings. The MLR model aims to
establish a linear relationship between the input variables in X and the PCS
in Z. Specifically, we model each principal component score zj as a linear405

combination of the input features:

ẑj = βj +

dX∑
i=1

βijxi, (6)

where ẑj is the predicted PCS for component j, βj is the intercept term,
βij are the regression coefficients, and xi represents the input features from
X. The regression coefficients β are then estimated by solving the least
squares problem:410

β = (XTX)−1XTZ, (7)

where Z is the matrix of true PCS obtained from PCA, and X is the
expanded feature matrix. The inverse operation (XTX)−1 denotes the pseu-

14



doinverse when XTX is not invertible. This estimation provides the exact
least squares solution for the regression coefficients.

The MLR model predicts the PCS by applying the estimated coefficients415

to new input data:

ẐMLR = Xnewβ, (8)

where Xnew contains the polynomial features of the new input samples.
The predicted PCS ẐMLR are then used with the decoder DY to reconstruct
the full temperature and salinity profiles:

ŶMLR = DY (ẐMLR) = ẐMLRV
T, (9)

where V is the matrix of eigenvectors from the PCA decomposition.420

In our implementation, we include the same inputs as in our NN approach:
spatial and temporal harmonics of latitude, longitude, day of the year, and
satellite SST, SSH and ADT. The MLR model is trained using the combined
training and validation datasets, comprising 3,516 profiles (85% of the to-
tal data), to ensure sufficient data for estimating the regression coefficients425

accurately. Fitting the model took 180 milliseconds on a single GPU.
The remaining 15% of the data (621 profiles) is used as a test set to

evaluate the model’s predictive performance. By comparing the MLR results
with those of the neural network, we can assess the benefits of incorporating
nonlinear activation functions and deeper architectures in capturing complex430

relationships within the data, and by comparing with GEM, we can assess
the advantages of operating in a reduced dimensional space.

It’s important to note that we initially experimented with polynomial
expansions up to degree 3 to capture potential nonlinear relationships be-
tween the input variables and the PCS. However, these higher-degree models435

exhibited significant issues:

• Computational Challenges: The inclusion of polynomial terms up to
degree 3 dramatically increased the dimensionality of the feature ma-
trix. With a large number of samples and input variables, the feature
matrix became extremely large. This led to high memory consump-440

tion (≈ 80GB) and computational inefficiency and instabilities during
model fit.
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• Numerical Instability: The large size of the matrices exacerbated nu-
merical issues, such as difficulty in inverting matrices during the esti-
mation of regression coefficients. This instability adversely affected the445

model’s ability to learn accurate relationships.

• Overfitting: The expanded feature space increased the risk of overfit-
ting, where the model captured noise rather than underlying patterns,
resulting in poor generalization to unseen data.

• Multicollinearity: Higher-degree polynomial terms introduced strong450

correlations among predictor variables, destabilizing coefficient esti-
mates and reducing the reliability of the model.

As a result of these challenges, the higher-degree polynomial models were
unstable, producing predictions that were too inaccurate for practical appli-
cation. Therefore, we opted to use the degree 1 MLR model, which captures455

linear relationships between the input variables and the PCS.

3.4. Gravest Empirical Modes
The GEM method is a technique extensively utilized in oceanography

for the generation of synthetic temperature and salinity profiles. The GEM
method is based on the establishment of an empirical relationship between460

dynamic height and other oceanographic parameters, capturing the essen-
tial spatiotemporal patterns of oceanic temperature and salinity, making it
a valuable tool for studying and simulating these parameters. This method
has been applied to various oceanic regions, contributing to a better under-
standing of ocean dynamics and climate processes (Watts et al., 2001; Liu465

et al., 2021; Meunier et al., 2022).
The implementation of the GEM method is described as follows:

A. The steric height is computed for each in situ profile of temperature
and salinity.

B. All profiles are sorted according to their steric height, and grouped by470

month.
C. A regular pressure grid is defined (0–1800 dbar) with a vertical grid-

step of 1 dbar. For each reference pressure value and for each month, a
cubic smoothing spline is fitted to the functions T (ζ)|p,m and S(ζ)|p,m,
where T and S are temperature and salinity, ζ is ADT, p is the pressure475

at which the variables are evaluated, and m is the month.

The process of fitting GEM to the dataset took 3 seconds on CPU.
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4. Results

In this section we analyze the performance of NeSPReSO with respect to
621 Argo profiles in our test dataset (15% of the dataset, randomly selected,480

not used in training), and compare its performance against GEM, MLR and
ISOP methods. We also generate NeSPReSO synthetics to reconstruct four
glider sections in the GoM.

The average processing time per profile on CPU is around 60µs for Ne-
SPReSO, 20µs for MLR and 11600µs for our GEM implementation, when485

generating synthetics for our test set. However, it’s important to note that
in an operational setting, where profiles are generated on the fly, the time to
extract the satellite information from stored data is the limiting factor for
generating synthetics, regardless of the method used (0.5s per day of interest,
regardless of the number of profiles).490

NeSPReSO and MLR synthetics were generated using satellite surface
information (ADT, SST and SSS) interpolated to the locations of the mea-
surements, location, and day of the year, while GEM synthetics used month
and ADT. ISOP utilized climatological MLD and profile-derived SSH and
SST, with only statistical summaries of the ISOP synthetics being available,495

rather than individual profiles. This limitation, along with the fact that ISOP
synthetics was not derived from satellite sources like the other methods, may
skew the comparison in the upper ocean.

4.1. Test set
We use root mean square error (RMSE) and bias as analysis metrics500

to evaluate the performance of our model relative to observations. RMSE,
measuring precision and accuracy, indicates the model’s prediction consis-
tency and closeness to observed values. RMSE penalizes larger deviations
and reflects the average prediction error, with lower RMSE indicating more
reliable predictions. Bias measures the average deviation from observed val-505

ues, showing if the model consistently overestimates or underestimates the
variable under consideration. Both statistics are given by:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2, (10)

Bias =
1

N

N∑
i=1

(yi − ŷi) , (11)
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where yi is the observed value, ŷi is the predicted value, and N is the
number of observations. For calculations at each depth level, N represents
the number of profiles at that depth. When computing RMSE and bias over510

a depth range, the statistics are averaged over all depths within that range.
The Pearson correlation coefficient (R2) quantifies the degree of linear

correlation between the predicted and observed values, with values closer to
1 indicating a stronger correlation. It is calculated as:

R2 =

 ∑N
i=1 (yi − ȳ)

(
ŷi− ¯̂y

)√∑
i = 1N (yi − ȳ)2

√∑N
i=1

(
ŷi − ¯̂y

)2
2

, (12)

where ȳ and ¯̂y are the mean values of the observed and predicted data,515

respectively. The R2 metric assesses the proportion of variance in the ob-
served data that is predictable from the predicted data. Since we don’t have
access to individual ISOP synthetics, we could not calculate R2 for ISOP.

The statistics of the profiles in the test set are shown on table 1, calcu-
lated using predictions at the same depths as ISOP, for fairness. For temper-520

ature, the RMSE values indicate that NeSPReSO consistently outperforms
the GEM predictions across all depth ranges, MRL below 20 meters and
ISOP below 100 meters. However, it is difficult to draw comparisons with
ISOP near the surface, given that it uses Argo SST, but we observe a more
accurate estimation of temperature profiles compared to the GEM method,525

which we attribute to the use of satellite SST. Bias values for temperature are
comparable between all methods, implying that the methods exhibit a similar
direction and magnitude of systematic error in temperature estimation. For
salinity, NeSPReSO also demonstrates lower RMSE and bias values than the
other methods for most of the depth ranges, indicating superior performance530

in salinity predictions.
The Pearson correlation coefficient (R2) values for both T and S predic-

tions are higher for NeSPReSO compared to GEM across all depths, and
particularly pronounced in the upper 100 meters. NeSPReSo also overper-
forms MLR in most cases, except for T on the range from 0 to 20 meters.535

This improvement in R2 signifies a stronger correlation between predictions
and observations, meaning a better characterization of the upper-ocean.
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Table 1: Statistics (RMSE, Bias, and R2) by depth range. Best results in bold.
Depth range 0-20 20-100 100-200 200-500 500-1000 1000-1800 0-1000 0-1800

T NeSPReSO 0.430 0.816 0.802 0.587 0.301 0.083 0.682 0.637
RMSE GEM 1.468 1.419 1.094 0.854 0.394 0.125 1.195 1.116
(◦C) MLR 0.380 1.031 0.944 0.699 0.357 0.087 0.823 0.768

ISOP 0.140 0.835 0.917 0.756 0.360 0.111 0.673 0.598
T NeSPReSO 0.047 -0.038 0.015 0.016 0.005 0.003 0.001 0.001

BIAS GEM -0.043 -0.153 -0.059 -0.036 0.006 0.006 -0.077 -0.067
(◦C) MLR -0.011 -0.041 0.016 -0.001 -0.010 0.000 -0.014 -0.012

ISOP 0.022 0.186 0.203 0.137 -0.057 -0.074 0.127 0.102
T NeSPReSO 0.983 0.956 0.971 0.986 0.987 0.973 0.995 0.997
R2 GEM 0.773 0.870 0.949 0.970 0.978 0.941 0.986 0.991

MLR 0.986 0.929 0.960 0.980 0.981 0.970 0.993 0.996
S NeSPReSO 0.280 0.139 0.116 0.088 0.032 0.009 0.154 0.143

RMSE GEM 0.478 0.193 0.163 0.122 0.046 0.009 0.241 0.225
(PSU) MLR 0.299 0.154 0.155 0.112 0.044 0.009 0.173 0.162

ISOP 0.604 0.229 0.160 0.147 0.049 0.015 0.240 0.210
S NeSPReSO 0.012 -0.002 0.005 0.003 -0.001 0.000 0.003 0.002

BIAS GEM -0.036 -0.010 -0.014 -0.005 0.002 0.000 -0.013 -0.011
(PSU) MLR -0.021 -0.007 0.002 0.001 -0.001 0.000 -0.005 -0.005

ISOP -0.092 -0.086 -0.033 0.023 -0.009 -0.010 -0.048 -0.043
S NeSPReSO 0.829 0.729 0.887 0.985 0.977 0.861 0.962 0.975
R2 GEM 0.337 0.411 0.789 0.971 0.958 0.833 0.905 0.939

MLR 0.803 0.654 0.786 0.975 0.957 0.857 0.952 0.969

Figure 4 presents the average T and S RMSE and bias per depth for all
methods. In general, NeSPReSO yields better approximations compared to
the other methods, as indicated by the lower RMSE and bias values overall.540

The improved prediction of upper-ocean temperature and salinity profiles in
our model compared to GEM is likely due to the use of satellite SST and
SSS, which offer additional information about the upper thermal and haline
structures that might not be captured in the ADT fields, such as low salinity
due to river outflow.545
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Figure 4: Average RMSE for temperature and salinity predictions (top), and average bias
(bottom) as a function of depth.

The synthetic profiles were aggregated spatially into 1-degree latitude by
1-degree longitude grid cells to assess the methods’ performance in predicting
T and S across the area of study. Figures referenced as 5 through 8 present
the spatial distribution of RMSE and bias for T and S. The statistics were
calculated using predictions at the same depths as ISOP for a fair comparison.550
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Figure 5: Distribution of average temperature RMSE for predictions down to 1,800m
for NeSPReSO (left), with the number of profiles in each bin is displayed in gray, and
RMSE values in black. Statistics for ISOP (top), MLR (center), and GEM (bottom) are
shown in the center column, and their respective differences in magnitude compared to
NeSPReSO are shown on the right column (blues indicate NeSPReSO performs better,
and reds indicate NeSPReSO performs worse).

Figure 6: Distribution of average salinity RMSE for predictions down to 1,800m for Ne-
SPReSO (left), with the number of profiles in each bin is displayed in gray, and RMSE
values in black. Statistics for ISOP (top), MLR (center), and GEM (bottom) are shown in
the center column, and their respective differences in magnitude compared to NeSPReSO
are shown on the right column (blues indicate NeSPReSO performs better, and reds indi-
cate NeSPReSO performs worse).
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Figure 7: Distribution of average temperature bias for predictions down to 1,800m for Ne-
SPReSO (left) with the number of profiles in each bin is displayed in gray, and bias values
in black. Statistics for ISOP (top), MLR (center), and GEM (bottom) are shown in the
center column, and their respective differences in magnitude compared to NeSPReSO are
shown on the right column (blues indicate NeSPReSO performs better, and reds indicate
NeSPReSO performs worse).

Figure 8: Distribution of average salinity bias distribution for predictions down to 1,800m
for NeSPReSO (left), with the number of profiles in each bin is displayed in gray, and
bias values in black. Statistics for ISOP (top), MLR (center), and GEM (bottom) are
shown in the center column, and their respective differences in magnitude compared to
NeSPReSO are shown on the right column (blues indicate NeSPReSO performs better,
and reds indicate NeSPReSO performs worse).

The results indicate a robust performance of NeSPReSO in real-world
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scenarios and applications, as NeSPReSO has lower overall RMSE for both
T and S predictions across the entire GoM region, with a few exceptions.
NeSPReSO shows a spatial distribution of bias predominantly of low mag-
nitude and somewhat homogeneous (no apparent predominant bias). MRL555

has a very similar spatial distributions as NeSPReSO, with slightly higher
magnitudes. GEM also demonstrates a relatively homogeneous distribution,
but with even higher magnitude on average. Meanwhile, ISOP exhibits a
clear warmer and low magnitude trend for T and fresher for S, with greater
magnitudes in the eastern portion of the GoM. Notably, in regions adjacent560

to the Mississippi River, ISOP demonstrates increased errors.

4.2. Glider tracks
This section presents a comparative analysis of processed glider tracks

against the reconstructions from NeSPReSO, offering a direct assessment of
the model’s performance by replicating independent observations.565

Figures 9 to 12 illustrate four different processed glider crossings with
the corresponding synthetic reconstructions and the differences. Overall,
the displacement of isothermals and isohalines are in agreement with the
observations, and the reconstructed fields are smoother, as expected.

Table 2 shows the RMSE, bias, and R2 for each LCE crossing. The T570

and S RMSE closely aligns with those derived from the test set ([0-1000]
range on Table 1). The bias for T and S exhibits a larger magnitude relative
to the test set across each crossing, with variations between positive and
negative biases. One possible explanation for these variations is related to
the temporal and spatial resolution of satellite observations, particularly of575

ADT. These factors may contribute to a consistent directional bias in the
model’s predictions.

The R2 values range from 0.996 to 0.998 for T predictions, and from 0.988
to 0.994 for S predictions, meaning NeSPReSO consistently captures around
99% of the T and S variances.580

Crossing T RMSE T Bias T R2 S RMSE S Bias S R2

Mission 0006, crossing #1 0.546 0.070 0.997 0.096 -0.006 0.988
Mission 0006, crossing #2 0.516 -0.119 0.998 0.094 -0.025 0.990

Mission 0010 0.544 0.121 0.996 0.072 0.020 0.992
Mission 0012 0.586 0.003 0.997 0.086 -0.035 0.994

Table 2: RMSE, bias and R2 between observations and synthetics across mesoscale eddy
crossings.
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Figure 9: Temperature and salinity sections of mission 0006, crossing #1. First column:
Temperature. Second column: Salinity. First row: processed data from glider. Second
row: synthetic profiles using NeSPReSO. Third row: differences. Last row: ADT field and
position of the glider track. 24



Figure 10: Temperature and salinity sections of mission 0006, crossing #2. First column:
Temperature. Second column: Salinity. First row: processed data from glider. Second
row: synthetic profiles using NeSPReSO. Third row: differences. Last row: ADT field and
position of the glider track. 25



Figure 11: Temperature and salinity sections of mission 0010. First column: Temperature.
Second column: Salinity. First row: processed data from glider. Second row: synthetic
profiles using NeSPReSO. Third row: differences. Last row: ADT field and position of
the glider track. 26



Figure 12: Temperature and salinity sections of mission 0012. First column: Temperature.
Second column: Salinity. First row: processed data from glider. Second row: synthetic
profiles using NeSPReSO. Third row: differences. Last row: ADT field and position of
the glider track. 27



5. Conclusions

This study underscores the efficacy of machine learning in producing syn-
thetic temperature and salinity profiles for oceanographic data. By inte-
grating Principal Component Analysis (PCA) with neural network models,
we successfully generated subsurface profiles from surface data, surpassing585

traditional methods like MLR, GEM and ISOP in accuracy and reliability.
Our results indicate that the neural network model consistently outper-

forms other investigated methods in terms of average RMSE, bias, and R2,
suggesting a more accurate representation of the temperature and salinity
profiles in the Gulf of Mexico. This improvement is notable given the com-590

plex, nonlinear relationships between surface and subsurface properties of the
ocean, which machine learning models are particularly adept at capturing.

These results raises several questions that warrant further investigation.
For instance, how will NeSPReSO perform in different oceanic regions with
distinct hydrodynamic and thermohaline characteristics, and what adapta-595

tions might be required for different regional applications? Also, how can
NeSPReSO be adapted and trained to effectively generate accurate temper-
ature and salinity profiles in oceanic regions with depths shallower than the
model’s current maximum depth range?

Future work should focus on addressing these questions, perhaps explor-600

ing other machine learning techniques or hybrid models that combine the
strengths of various approaches. With the UGOS3 autonomous profiling
floats fleet projected to accumulate approximately 1500 profiles annually,
the expanding dataset will significantly enhance the model’s training and
refinement. This expansion is crucial for extending the model’s applicability605

across different oceanic areas, enriching our comprehension of its potential
and constraints.

In conclusion, this work lays a precedent for using advanced machine
learning methods in oceanographic data synthesis, offering a promising di-
rection for future research in this field. The ability to accurately predict610

subsurface oceanographic profiles using surface data not only aids in un-
derstanding ocean dynamics but also has practical implications in weather
forecasting, climate modeling, and resource exploration.
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1. Introduction

Accurate representation of the Gulf of Mexico (GoM) circulation in nu-
merical models is of great importance for the scientific community and holds
operational significance for fisheries, hurricane prediction, and oil and gas
companies (Jaimes et al. (2016); Koch et al. (1991); National Academies of Sciences, Engineering, and Medicine (2018)5

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jaimes et al., 2016; Koch et al., 1991; National Academies of Sciences, Engineering, and Medicine, 2018)
. The GoM Loop Current (LC) is part of the Atlantic western boundary cur-
rent system and plays an important role in the transport of heat from the
Caribbean Sea to the Atlantic Ocean, contributing to climate regulation.
The LC also holds strong currents (up to 2 ms−1; Forristall et al. (1992);10

Sturges et al. (2005); Hiron et al. (2021))
:
)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Forristall et al., 1992; Sturges et al., 2005; Hiron et al., 2021)
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and is very dynamic, shedding large (≈200-400 km) warm eddies at an ir-
regular rate of 6 to 17 months (Vukovich (1988); Behringer et al. (1977);
Sturges and Leben (2000))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Vukovich, 1988; Behringer et al., 1977; Sturges and Leben, 2000)

. Loop Current Eddies (LCE) affect oil and gas activities in the GoM15

due to their strong peripheral velocities, and they can also fuel hurricane
intensification by releasing heat to the atmosphere during storm passage
(Shay and Uhlhorn (2008); Shay (2010); Jaimes et al. (2016))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Shay and Uhlhorn, 2008; Shay, 2010; Jaimes et al., 2016)

. Cold-core, frontal eddies present in the vicinity of the LC contribute to the
detachment of the LCEs and can enhance activity across the trophic chain20

by pumping deep-water nutrients to the upper ocean (Hiron et al. (2020);
Hiron et al. (2022); Suthers et al. (2023))

::::::::::::::::::::::::::::::::::::::::::::::::
(Hiron et al., 2020, 2022; Suthers et al., 2023)

. Although recent model advancements have improved the representation
of this complex system, a key limitation across ocean models remains the
scarcity of in situ data to effectively constrain the models.25

Temperature and salinity observations are two essential variables to be as-
similated in numerical models, as density gradients, driven by these variables
and pressure, govern large-scale ocean circulation. The ocean surface is well
constrained in models, thanks to global satellite-derived sea surface height
(SSH) and sea surface temperature (SST) data. However, subsurface obser-30

vations are scarcer. The Argo program supports almost 4,000 floats world-
wide that provide valuable information about the subsurface temperature
and salinity structure of the ocean since 2005 (Roemmich and Gilson (2009)
)
:::::::::::::::::::::::::::::::
(Roemmich and Gilson, 2009). In the GoM, the NAS-funded LC-floats and
the UGOS 3 program are significant initiatives in subsurface observation.35

The LC-floats, supported by the National Academy of Sciences (NAS), are
designed for oceanographic research in the GoM. Since June 2019, these floats
have played a key role in collecting data on subsurface temperature and salin-
ity structures. The UGOS 3 program, focusing on the GoM region, involves
specialized floats that have contributed to more than 7,000 profiles sampled40

since the same period.
Despite their significance in constraining subsurface models, these mea-

surements are too sparse, limiting the accurate representation of subsurface
mesoscale circulation. Recent techniques, such as the

:::::::::::
Techniques

::::::
such

:::
as

:::::::::
Multiple

:::::::
Linear

::::::::::::
Regression

:::::::::::::::::::::::
(Carnes et al., 1994) Gravest Empirical Modes45

(GEM) method (Watts et al. (2001); Sun and Watts (2001); Meunier et al. (2022)
)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Watts et al., 2001; Sun and Watts, 2001; Meunier et al., 2022) and the Im-

proved Synthetic Ocean Profile (ISOP) system (Helber et al. (2013); Townsend et al. (2015)
; Helber et al. (2022)),

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Helber et al., 2013; Townsend et al., 2015; Helber et al., 2022)
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have been employed to generate synthetic temperature and salinity profiles50

for data assimilation in large-scale
::::
and

:::::::::
regional

::::::
ocean

:
models. Those syn-

thetic profiles rely on past observations and are generated mainly from altime-
try SSH fields, based on the presumed relationship between SSH values and
subsurface temperature and salinity

:
,
:
valid for large-scale flows (geostrophic

adjustment). Although promising, these methods can be computationally55

demanding and may not capture complex, non-linear relationships between
surface and subsurface ocean fields.

There are previous studies using multi-regressions between surface information
(SST and SSH) and temperature and salinity at depths (e. g. , the Navy’s
Modular Ocean Data Assimilation System (MODAS) , Fox et al. (2002)).60

Machine learning, in particular,

::
In

::::::
recent

:::::::
years,

::::::
there

::::
has

:::::
been

:::::::::::
significant

::::::::::::::
advancement

::
in

:::::::::
deriving

:::::::::::::
temperature

::::
and

::::::::
salinity

:::::::::
profiles

:::::
from

:::::::
ocean

::::::::
surface

::::::
data

::::::
using

:::::::::
machine

::::::::::
learning

::::::
(ML)

::::
and

:::::::::
artificial

::::::::::::
intelligence

::::::
(AI)

:::::::::::::
approaches.

:::::::
These

::::::::
models

:::::
aim

:::
to

:::::::
bridge

::::
the

::::
gap

:::::::::
between

:::::::
sparse

:::::::
in-situ

:::::::::::::::
measurements

::::
and

:::::::::
satellite

::::::::::::::
observations,

:::::::::
enabling65

:::::
more

::::::::::::::::
comprehensive

:::::::
ocean

:::::::::::::
monitoring.

::::::
For

::::::::::
instance,

:::::::::::::::::::::
Chen et al. (2022)

::::::::::
developed

::
a

:::::::::
machine

:::::::::::::::
learning-based

:::::::::::::
assimilation

:::::::
system

:::::
that

:::::
uses

::
a

:::::::::::
generalized

::::::::::
regression

::::::::
neural

:::::::::
network

::::::
with

::::::
fruit

:::
fly

:::::::::::::::
optimization

:::
to

:::::::::::::
reconstruct

:::::
T/S

:::::::
profiles

::::::
from

:::::::::
satellite

:::::::::::::::
observations,

:::::::::::::
significantly

::::::::::::
improving

::::
the

::::::::::::
simulation

::
of

::::::::::::
subsurface

:::::::::::
structures

:::::::::::
compared

::::
to

:::::::
direct

:::::::::::::
assimilation

:::
of

:::::::::
satellite

::::::
data70

::::::
alone.

:::::::::::
Similarly,

::::::::::::::::::::
Tian et al. (2022)

:::::::::
employed

::
a
::::::::::::::
feed-forward

:::::::
neural

:::::::::
network

::
to

:::::::::
generate

::
a
::::::::::::::::
high-resolution

::::::
(0.25°

::
x
:::::::
0.25°)

:::::::
global

:::::::::::
subsurface

::::::::
salinity

::::::::
dataset

::
by

::::::::::
merging

:::::::
in-situ

::::::::
profiles

:::::
with

:::::::::
satellite

:::::::::::
altimetry,

::::
sea

::::::::
surface

::::::::::::::
temperature,

::::
and

:::::
wind

::::::
data.

::::::::::::::::::::
Mao et al. (2023)

::::::::::
developed

:
a
:::::::::::
dual-path

::::::::::::::
convolutional

:::::::
neural

::::::::
network

:::
to

:::::::::::::
reconstruct

::::::
ocean

::::::::::::
subsurface

:::::::::::::
temperature

:::::
and

::::::::
salinity

::::::
from

::::
sea75

:::::::
surface

:::::::::::::
information,

::::::::::::::::
demonstrating

::::::::::
improved

:::::::::
accuracy

:::::
over

:::::::::::
traditional

::::::::::
methods.

:::::::::::::::::::::::::
Pauthenet et al. (2022)

:::::::::::::
reconstructed

::::::::::::::::::
four-dimensional

::::::::::::::
temperature,

::::::::
salinity,

::::
and

::::::::::::
mixed-layer

:::::::
depth

:::
in

::::
the

:::::
Gulf

::::::::
Stream

::::::
using

:::::::
neural

:::::::::::
networks,

:::::::::::
combining

:::::::::::::::
remote-sensing

::::
and

:::
in

::::
situ

::::::::::::::
observations.

:::::::
These

::::::::::
AI-based

:::::::::
methods

:::::
have

:::::::
shown

::::::::
promise

:::
in

:::::::::::
capturing

:::::::::::
mesoscale

::::::::::
features

:::::
and

:::::::::::
improving

:::::::
upon

::::::::::::
traditional80

:::::::::::::
interpolation

::::::::::::
techniques,

::::::::
offering

:::::
new

::::::::::::
possibilities

::::
for

:::::::::::
generating

:::::::::::::::
comprehensive

::::::
ocean

:::::
T/S

:::::::::
datasets

:::::
with

:::::::::::
enhanced

:::::::
spatial

:::::
and

::::::::::
temporal

:::::::::::
resolution.

:

::
In

::::
the

:::::
Gulf

::
of

:::::::::
Mexico,

:::::::::
machine

:::::::::
learning

:
has been used in the GoM in nu-

merous applications, such as forecasting LCE shedding events (Zeng et al. (2015)
; Wang et al. (2019)

::::::::::::::::::::::::::::::::::::::
(Zeng et al., 2015; Wang et al., 2019)), predicting hurri-85

cane wave height (Mafi and Amirinia (2017))
:::::::::::::::::::::::::::
(Mafi and Amirinia, 2017), and

estimating spatial and temporal variation in dissolved carbon dioxide near

3



the Mississippi river outflow (Fu et al. (2020))
::::::::::::::::
(Fu et al., 2020). Meng et al.

(2021) developed a CNN (convolutional neural network
:::::::
(CNN) method us-

ing satellite-observed sea surface data (SSH, SST, sea surface salinity (SSS),90

and surface wind speed) and the ocean subsurface temperature
:::
and

::
salin-

ity from Argo to obtain the three-dimensional salinity fields from 0-2000 m
depth. Research

:::::::
Despite

::::::
these

::::::::::::::::
advancements,

:::::::::
research

:
with ML for subsur-

face modeling
::
in

::::
the

:::::
Gulf

:::
of

::::::::
Mexico

:
is ongoing, as traditional methods still

face challenges in efficiency, accuracyand on ,
:::::
and

:
capturing the complex95

dynamics of the Gulf’s circulation, specially
::::::::::
especially

:
at submesoscale.

In this study, we introduce NeSPReSO (Neural Synthetic Profiles from
Remote Sensing and Observations), a method to

::::::::::
effectively

:
estimate sub-

surface temperature and salinity profiles using satellite-derived absolute dy-
namic topography (ADT), SST, and SSS by leveraging in-situ Argo data .100

The use of a ML model can offer multiple advantages compared to traditional
methods: reduction of the computational cost of an operational model,
accounting for nonlinearities, and inclusion of additional fields, such as SST,
SSS, time, and location

::::
and

::::::::::
Principal

:::::::::::::
Component

::::::::::
Analysis

::::::::
(PCA).

::::::::
Unlike

:::::::::
previous

::::::::::
methods,

:::::::::::::
NeSPReSO

::::::::
focuses

::::::::::::
specifically

::::
on

::::
the

::::::
Gulf

:::
of

:::::::::
Mexico,105

::::::::
utilizing

::
a
:::::::
neural

:::::::::
network

::::::::::::
architecture

:::::::::::
optimized

:::
for

:::::
this

::::::::
region’s

:::::::::::::::
oceanographic

:::::::::
features.

:::::
Our

::::::::::
approach

::::::::::
advances

::::
the

:::::
field

:::
by

::::::::::::
combining

::::::
PCA

::
to

::::::::
reduce

::::
the

:::::::::::::::
dimensionality

:::
of

::::
the

:::::
T/S

::::::::
profiles

::::::
while

:::::::::::
capturing

::::::
most

:::
of

:::::
their

::::::::::::
variability,

::::
and

::
a
::::::::
neural

:::::::::
network

::::::
that

:::::::
maps

::::::::
surface

::::::::::::::
observations

:::
to

:::::::
these

::::::::::
principal

:::::::::::::
components.

:::::
This

::::::::::::::
methodology

:::::::
allows

:::
for

:::::::::
efficient

:::::::::::::
computation

::::::
while

::::::::::
capturing110

:::
the

::::::::::
complex,

:::::::::::
non-linear

::::::::::::::
relationships

:::::::::
between

::::::::
surface

:::::
and

:::::::::::
subsurface

:::::::
ocean

::::::
fields,

::::::::
thereby

:::::::::::
improving

::::::
upon

:::::::::::
traditional

:::::::::
methods

:::::
and

:::::::::
previous

::::
ML

::::::::::::
approaches

::
in

::::::
terms

:::
of

::::::::::
accuracy

::::
and

::::::::::::::::
computational

:::::
cost.

This study aims to address the following questions: How effectively can
machine learning

::::
ML

:
techniques, specifically neural networks (NN), be uti-115

lized to synthesize temperature and salinity profiles in the Gulf of Mexico?
Can NeSPReSO provide an improvement over state of the art

:::::::::::::::
state-of-the-art

methods? How do these synthetic profiles compare against independent mea-
surements? Application

:::::::::::::
Applications of this study include the implementation

of the machine-learning-based approach developed here to assimilate synthetic120

subsurface ,
:::::::::::::
investigating

::::
the

:::::::
effects

:::
of

:::::::::::::
assimilating

::::
the

::::::::::
synthetic

:::::::::::
subsurface

temperature and salinity profiles into hindcast and forecast numerical models
in the Gulf of Mexico for science and operational use

::
to

:::::::::::
determine

:::::::::
whether

:::::
they

:::::::::
improve

::::::::
forecast

:::::::::::
accuracy.

::::::::::::::
Additionally,

::::
we

:::::
plan

:::
to

:::::::::
provide

::
a
::::::::
system

::::::::
through

:::::::
which

:::::
the

:::::::::
scientific

:::::::::::::
community

:::::
can

::::::::
request

:::::::::::
synthetic

::::::::
profiles

::::
for125
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:::::::
specific

::::::::::
locations

:::::
and

:::::
time

::::::::
periods

:::::::::::::
(depending

:::
on

:::::::::
satellite

:::::
data

:::::::::::::
availability)

::
to

:::::::
foster

:::::::
further

::::::::::
research

::::
and

:::::::::::::
applications.

2. Data

This study integrates diverse data sources, encompassing
::::
Our

::::
ML

::::::::::
approach

::::::
builds

::::::
upon

:
in situ observations and satellite-derived measurements, from130

which our ML approach builds upon. The following subsections details the
specifics of each dataset, specifically Argo float, glider, and satellite datasets

:
,

::
as

:::::
well

:::
as

::::
the

::::::
ISOP

::::::::::
statistics

:::::
used

:::
as

::::::::::::
benchmark.

2.1. Argo Data

The main dataset for this study is a total of 4,145 temperature (T) and135

salinity (S) profiles acquired between 2015 and 2022 in the GoM region,
:::::
and

::::::::
includes

::::::::::::::
geographical

:::::::::::::
coordinates,

::::::
date,

:::::
and

::::::
time,

:::
as

:::::
well

:::
as

::::
the

:::::::::::
estimated

:::::
local

::::::
steric

:::::::
height

::::::::::::
referenced

:::
to

::::::
1,950

::::::
dbar

::::::::::
(SH1950)

::::
for

:::::
each

::::::::
profile. The

distribution of these profiles is shown in Figure 1. Each profile provides
T and S measurements

::::
were

:::::::
taken

:
at one-meter intervals from the ocean140

surface up
::::::::
surface to a depth of 2,000 meters. Both

:
,
:::::::::::
capturing

:::::
both

:::::::
major

upper-ocean water masses present in the GoMare sampled: the warm and
salty North Atlantic Subtropical Underwater (NASUW), characteristic of
the LC

:::::::
typical

::
of

::::
the

::::::
Loop

:::::::::
Current

:
(SH1950 ≥ 0.17 m), and the fresher Gulf

Common Water (GCW), characteristic of
::::::::::::::
representative

:::
of

::::
the

:
Gulf waters145

(SH1950 < 0.17 m) (e.g., Hiron et al. (2022)).

::::
The

::::::::
dataset,

::::::::::
described

:::
in

::::::
detail

:::
by

:::::::::::::::::::::::::::::::::::
Meunier et al. (2022, 2023, 2024),

:::::::::
includes

:
a
:::::::::
mixture

::
of

::::::::::
real-time

:::::
and

::::::::
delayed

::::::
mode

:::::::::
profiles,

:::::::::::::
re-processed

:::::::::
without

::::::
using

:::
the

::::::::::
standard

::::::::
quality

::::::::
control

::::::
(QC)

::::::
flags.

:::::::::::
Outliers,

::::::::
defined

:::
as

:::::::
values

::::::::
outside

::::
four

::::::::::
standard

::::::::::::
deviations,

::::::
were

::::::::::
removed,

:::
as

:::::
well

:::
as

::::::::
profiles

::::::::::
showing

:::::::
biased150

:::::::
salinity

:::
at

:::::::
depth.

:::::::::::
Although

::::::
these

::::::::
profiles

::::::
could

::::::::::::
potentially

:::
be

::::::::::
recovered

:::::
with

:::::::
further

::::::::::::
processing,

::::::
they

:::::
were

::::::::::
excluded

::::::
from

:::::
this

:::::::::
analysis

:::
to

::::::::::
maintain

:::::
data

::::::::::::
consistency.

:

The datasetincludes geographical coordinates, date, and time, as well as
the estimated local steric height referenced to 1, 950 dbar (SH1950) for each155

profile.
ISOP statistics are limited to the 0 to 1,800-meter range. Given that

our Argo database has missing data beyond 1,800 meters, we restricted our
dataset for model training, testing, and validation to this range.
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Temperature-Salinity diagram (left) and Spatial distribution (right) of the
Argo profiles used in this study. The core of the Gulf Common water

(GCW), North Atlantic Subtropical Underwater (NASUW) and
Sub-Antarctic Intermediate water (SAAIW) are marked for reference.

Figure 1:
:::::::::::::::::::
Temperature-Salinity

::::::
(T-S)

::::::::
diagram

:::::
(left)

::::
and

:::::::
spatial

:::::::::::
distribution

::::::
(right)

:::
of

:::::
glider

::::::
tracks

::::
and

:::::
Argo

:::::::
profiles

::::
used

:::
in

::::
this

::::::
study.

::::
The

::::
T-S

::::::::
diagram

:::::::::
identifies

:::
key

::::::
water

::::::
masses,

:::::::::
including

:::::
Gulf

::::::::
Common

:::::::
Water

::::::::
(GCW),

:::::
North

::::::::
Atlantic

:::::::::::
Subtropical

:::::::::::
Underwater

::::::::::
(NASUW),

:::
and

:::::::::::::
Sub-Antarctic

::::::::::::
Intermediate

::::::
Water

:::::::::
(SAAIW).

::::
The

::::::
spatial

:::::::::::
distribution

::::
uses

:::::::::::::
markers/colors

::
to

:::::::::
represent

:::::::
dataset

:::::::::
categories

::::::
(train,

::::::::::
validation,

::::
and

:::::
test).

2.2. Glider dataset160

This dataset comprises T and S profiles from four missions conducted
between August 2016 and October 2018. These missions targeted

:::::
three

:::::::::
missions

:::::::
(0006,

::::::
0010,

::::
and

:::::::
0012)

:::::::::::
conducted

:::::::::
between

::::::
June

:::::
2017

:::::
and

:::::::::
October

:::::
2018,

:::::::::::
targeting

:
various mesoscale structures within the Gulf of Mexico ,

including two crossings each of the LCE Poseidon, the
:::
by

::::
the

::::::
glider

:::::::::::::::
oceanographic165

:::::::::::
monitoring

:::::::
group

:::::::::::
(GMOG)

::::::
from

::::::::
Cicese.

::::::::
These

::::::::::
missions,

:::::::::::
executed

::::::
using

::::::::::
Seagliders

::::::::::
equipped

::::::
with

::
a

:::::::::
Seabird

:::::::::
free-flow

:::::::::
CT-sail,

:::::::
aimed

:::
to

:::::::::
capture

::::
the

::::::::
vertical

::::::::::::::
thermohaline

::::::::::::
variability

:::::::::::
associated

::::::
with

::::::
these

:::::::::::
mesoscale

::::::::::
features.

:::::
Data

:::::
were

::::::::::
collected

:::
at

:::
an

::::::::::
averaged

::::::::
vertical

:::::::::::
resolution

:::
of

::
1

::
m

:::::
and

:::::::::::
horizontal

::::::::::
resolution

:::
of

::
3

::::
km.

:
170

::::::::
Missions

::::::
0006

::::
and

::::::
0012

:::::::::
sampled

::::
old

:::::
and

:::::::
young

:::::::
LCEs,

:::::::::::::
respectively,

:::::
and

::::::::
mission

:::::
0010

:::::::::
targeted

::
a
:
cyclonic eddy in Campeche Bay, and one crossing of

a notably intense LCE.
Glider data was initially recorded at 0.5m depth intervalsand up to 1,

000m. It underwent vertical binning at 5m intervals during .
:::::::::
During

:
post-175

processing, and a ,
::::::
data

::::
was

::::::::::
vertically

:::::::
binned

:::
at

::
5

::
m

::::::::::
intervals,

::::
and

:::::::::::::
temperature
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:::::::::
adjusted

:::
for

:::::::::
thermal

:::::
lag,

::::::
while

::::::::::::::::
thermal-inertia

::::::::
effects

:::
on

:::::::::::::
conductivity

::::::
were

:::::::::
corrected

::::::::::
following

:::::
the

::::::::::::::
methodology

::
of

::::::::::::::::::::::::::
Lueck and Picklo (1990)

:
.
:::
A

:
fourth-

order low-pass Butterworth filter with a cut-off frequency of 1
48
h−1 was ap-

plied to smooth out high-frequency, near-inertial gravity waves. Segments180

of missing data
::::::::
Missing

::::::::::
segments

:
were linearly interpolated to maintain the

integrity of the profiles.
The gliders sampled contrasting thermohaline structures which are pivotal

in
::::::::
critical

:::
for assessing the reconstruction algorithm’s proficiency. The dataset

reveals notable
:::::::::::
Significant

:
differences in salinity and temperature anomalies185

between the observed eddies, crucial for validating the synthetic profile reconstructions
:::::::::::
(∆S = 0.2)

::::
and

:::::::::::::
temperature

::::::::::::::
(∆T = 2◦C)

:::::::::::
anomalies

:::::
were

::::::::::
observed

:::::::::
between

::::
the

::::::::
eddies,

:::::
with

:::::::::::
variations

:::
in

::::
the

:::::::
depth

:::
of

::::
the

::::::
26◦C

::::::::::
isotherm

:::::::::
between

:::::::
young

:::::
and

::::
old

::::::
LCEs

::::::::::
indicative

:::
of

:::
the

::::::
effect

:::
of

:::::
eddy

::::
age

:::
on

::::::::::::::
thermohaline

::::::::::
structure. However,

significant
:::::
large

:
discrepancies are anticipated at the eddies’ peripheries due190

to the influence of subesoscale
:::::::::::
peripheries

::
of

::::
the

::::::::
eddies

::::
due

:::
to

::::::::::::::
submesoscale

:::::::::
processes

:::::
like

:
density-compensated T and S layering and intrusions

:
,
:::::::
which

:::
are

:
not captured by the satellite fields, challenging the model’s predictive

capability in these areas.

2.3. Satellite data195

Satellite-derived ADT, SST, and SSS data
::::::::::
Absolute

:::::::::
Dynamic

:::::::::::::
Topography

::::::::
(ADT),

::::
sea

:::::::
surface

::::::::::::::
temperature

:::::::
(SST)

::::
and

::::::::
salinity

:::::::
(SSS) were sourced from

CMEMS, OISST, and SMAP, respectively. The Copernicus Marine Envi-
ronment Monitoring Service (CMEMS) archives, validates, and interprets
oceanographic satellite data. We utilized Absolute Dynamic Topography200

(ADT)
:::::
ADT, available since 1993, serving as a proxy for SSH. CMEMS pro-

vides an ADT gridded product with a daily resolution and a horizontal grid-
spacing of approximately 1

4
degrees

:::::::::::::::::::::::::::::::::::
(Copernicus Marine Service, 2024).

Optimum Interpolation Sea Surface Temperature (OISST) is a long-term
climate data record that incorporates observations from different sources to205

provide a high-resolution analysis of sea surface temperatures. It uses an
optimal interpolation technique to combine data from satellites, ships, buoys,
and other sources to create a consistent and accurate record of sea surface
temperatures. Analysed SST is available since 1981 on a daily basis, with a
resolution of approximately 1

4
degrees

::::::::::::::::::::
(Good et al., 2020).210

Finally, SMAP, or ”Soil Moisture Active Passive”, is a NASA satellite mis-
sion that uses active and passive microwave sensors to provide high-resolution
measurements of soil moisture, freeze/thaw state, and ocean surface salinity.
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SMAP SSS has been available since 2015 on a daily basis and has a resolution
of 40 km

:::::::::::::::::::::::
(Meissner et al., 2018).215

The ADT, SST, and SSS fields are interpolated into
::
to

:
each location

of the Argo and glider databases using bicubic interpolation, and together
with spatial and temporal information, serve as input to the proposed neural
network as described in Section 3.2. Following Leben (2005) and Hiron et al.
(2020), the daily mean of ADT over the GoM deep waters (> 200 m) is220

removed from the ADT field for each day. This removes the variations in
ADT associated with thermal expansion and contraction of the upper ocean
due to seasonal variability.

2.4.
::::::
ISOP

:::::::::
statistics

:::::
ISOP

:::::::::
projects

::::::::
surface

::::::
ocean

::::::
data

:::::::::::
downward,

::::::::::::
generating

::
T

:::::
and

::
S

::::::::
profiles225

::::::
across

::::
the

:::::::
global

:::::::
ocean

::::::
using

::::::::
surface

::::::::::::::
observations

::::
and

::
a
:::::::::::::
mixed-layer

:::::::
depth

:::::::
(MLD)

:::::::::::
estimate.

:::::::::::::
Optionally,

::
a
::::::
prior

:::::::::
forecast

:::
of

:::
T

:::::
and

::
S
:::::::::
profiles

::::
can

::::
be

:::::
used.

:::::
The

:::::::::
creation

:::
of

::::::
these

::::::::::
synthetic

::::::::
profiles

::::::
plays

:::
an

:::::::::::
important

:::::
step

:::
in

::::
the

:::::::
Navy’s

::::::::::::
operational

::::::::::::
forecasting

:::::
and

:::
is

:::::::::::
seamlessly

::::::::::::
integrated

:::::
into

:::::
their

::::::
data

::::::::::::
assimilation

::::::::::::
workflows.

::::::
ISOP

::::::::
divides

::::
the

:::::::::
ocean’s

::::::
depth

:::::
into

:::
78

::::::
fixed

:::::::
levels,230

::::::::::
extending

::::::
from

::::
the

::::::::
surface

::::
to

:::::
6600

:::::::::
meters.

::::::
The

::::::::
process

::::::::
begins

::::::
with

::::
the

::::::::::::
compilation

:::
of

::
a

::
T

:::::
and

::
S

::::::::::::
covariance

:::::::
matrix

:::::
and

:::::::::::::
climatology

:::::::::
database

::::::
from

:
a
::::::::::::::::
comprehensive

::::
set

::
of

::::::::
in-situ

::::::::::::::
observations,

:::::::::
followed

:::
by

::::
the

::::::::::::
application

:::
of

::
a

:::::::::::::
multilayered

::::::::::
approach

:::::
that

::::::::::
considers

::::::
three

::::::::::
different

::::::::::
dynamics

:::::::
zones

:::::::
within

:::
the

:::::::
ocean

::::::::::::
subsurface.

:::::::
These

::::::::
regions

::::::::
include

::::
the

::::::
mixed

::::::
layer

:
,
:::::::::::
extending

:::::
from235

:::
the

::::::::
surface

:::
to

::::
the

::::::
MLD;

::::
the

:::::::::::::
thermocline

::::::
layer,

::::::::::
reaching

:::::
from

::::
the

::::::
MLD

::::::
down

::
to

::::::
1000

::::::::
meters;

::::
and

::::
the

::::::
deep

::::::
ocean

::::::
layer

:
,
::::::
below

::::::
1000

::::::::
meters.

:

:::
For

::::
the

:::::::
mixed

:::::
layer

:
,
::::::
there

::::
are

::::
two

:::::::::
options.

:::::
One

:::::::
option

::::::::
adjusts

::::
the

:::::::
initial

::::::::::
estimated

:::::::
profile

:::
to

:::::
align

:::::
with

::::
the

::::::::
surface

::::::::::
potential

::::::::
density

::
at

::
4
::::::::
meters

::::::
depth

::::
and

::::::::
ensures

:::::::::::::
consistency

:::::
with

:::::
the

::::::::::
potential

::::::::
density

:::::
and

:::
its

::::::::::
gradient

:::
at

::::
the240

:::::
MLD

::::::::
within

::::
the

:::::::::::::
thermocline

::::::
layer

:
.
:::::
The

::::::::
second

:::::::
option

::::
for

::::
the

:::::::
mixed

::::::
layer

:::::
shifts

:::::
the

:::::
prior

:::::::::
forecast

:::::::
profile

::::
(if

::::::::::
provided)

:::
to

:::::::
match

:::::
the

::::::
input

:::::
SST

:::::::
value.

::::
The

:::::::::::::
thermocline

::::::
layer

::::::::::
prediction

:::::::::
employs

::
a
::::::::::::
variational

::::::::::
method,

:::::::::::
leveraging

::::::::::::::
climatological

:::
T

:::::
and

::
S

:::::::
values

:::::
and

:::::
the

:::::
first

::::::::
vertical

:::::::::::
Empirical

:::::::::::::
Orthogonal

::::::::::
Functions

:::::::::
(EOFs),

:::
or

::::::::
modes,

::::::::::
extracted

::::::
from

::::::::::
historical

:::::
data

:::
to

::::::::::
constrain

::::
the245

:::::::::
forecast.

:::::::::
Detailed

:::::::::::::
descriptions

:::
of

::::
the

::::::
each

:::::
term

::::::::::
involved

:::
in

::::
this

::::::::::::
variational

:::::::::
approach

:::
is

:::::::::
available

:::
in

:::::::::
reference

:::::::::::::::::::::
Helber et al. (2013)

:
.
::::::::
Finally,

::::
the

:::::::::::
prediction

:::::::
within

::::
the

:::::
deep

:::::::
ocean

::::::
layer

::::::::
involves

:::::::::::
modifying

::
a
:::::::
decay

::::::::::
function

::::::
based

::::
on

::::::::::::::
climatological

::::::
data

:::::
and

::::
the

:::
T

:::::
and

::
S

::::::::::
readings

::::::
from

::::
the

:::::::::::::
thermocline

::::::
layer

::
at

::::::
1000

::::::::
meters

::::::::
depth.

:::::::
This

:::::::::
function

::::::::::
accounts

::::
for

:::::
the

:::::::::
variance

::::::::::
between250
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::::::::::::::
climatological

:::::::
values

:::::
and

:::::
the

::::::::::::
1000-meter

:::::::::::::
predictions,

::::::::::
ensuring

::
a
::::::::::
coherent

::::::::::
transition

:::::
into

::::
the

:::::
deep

:::::::
ocean

::::::::::::
predictions.

::::::
The

:::::::
inputs

:::
for

::::::::
ISOP’s

:::::::::::
predictive

:::::::
models

:::::::::
include

:::::
SST

:::::
and

::::
sea

:::::::::
surface

:::::::
height

::::::::::
anomaly

::::::::::
(SSHA),

::::::
along

::::::
with

::::::::::::
uncertainty

:::::::::::
estimates,

:::
an

::::::
MLD

::::::::::::
estimation,

::::
and

:::
an

:::::::::::
(optional)

:::
T

::::
and

::
S

:::::::
profile

::::
can

:::
be

::::::::::
obtained

:::::
from

:::::::
either

:::::::::::::::
climatological

::::::
data

:::
or

:::::::
model

::::::::::
outputs.

:::
In

:::::
this255

::::::
work,

::::
the

:::::::::::
synthetics

:::::
used

:::::::::::::::
climatological

:::::
data

::::
for

:::::::::::
estimating

::::
the

:::::::
initial

::::::
MLD

::::
and

::
T

:::::
and

::
S

:::::::::
profiles,

::::::
along

:::::
with

::::::::::::::
Argo-derived

:::::
SST

:::::
and

::::::
SSH.

:

::::
The

::::::
ISOP

::::::
data

:::::
used

:::
in

:::::
this

::::::
work

:::::
was

:::::::::::
generated

:::
by

:::::
the

::::
US

::::::
Navy

:::::
and

::::::::::::
corresponds

:::
to

::::
the

:::::::
entire

::::::
Argo

::::::::
dataset

:::::::
(4,145

::::::::::
profiles).

::::::
The

::::::::::
provided

:::::
data

:::::::::
included

:::::
only

::::
the

:::::::::
average

::::::::
vertical

::::::::::
statistics

:::::
and

::::::::
binned

:::::::
spatial

::::::::::
statistics

:::
of260

:::
the

:::::::
ISOP

:::::::::::
synthetics

::::::::
relative

:::
to

::::
the

:::::
Argo

::::::::
profiles

:::::
(no

:::::::::::
individual

::::::::
profiles

:::::
were

::::::::::
provided).

::::::::
These

:::::::::
statistics

::::::
were

:::::
used

:::
as

::::::::::::
benchmark

::::
for

::::
the

::::::
other

::::::::::
methods.

:

3. Methods

In this section, we detail our methodology for training and validating
a multilayer perceptron (MLP) to predict subsurfaceT

::::::::::
subsurface

:::
T

:
and S265

profiles using surface data. The model is designed to learn the nonlinear
functions that associates the ocean surface, through satellite observations,
with subsurface information from a comprehensive dataset of Argo profiles.
NeSPReSO uses Principal Component Analysis (PCA )

:::::
PCA

:
to focus the

model on the main variability within the subsurface profiles, while also re-270

ducing the data’s dimensionality and improving the efficiency of computation
and training. Lastly, we assess the model’s performance using unseen Argo
profiles

::::::
(15%

:::
of

::::
the

:::::::::
dataset,

:::::::::::
randomly

::::::::::
selected)

:
and compare it with the

::::::
MLR,

:
GEM and ISOP methods. Four

::::
The

:::::
four

::::::::
unseen

:
glider transects in

the GoM were also reconstructed using our method, and compared with the275

original glider data.
The Argo float dataset, consisting of T and S profiles, is inherently

high-dimensional
:
,
::::::::::::
containing

:::::
1801

:::::::::::::::
measurements

:::::::
(from

::
0

:::
to

:::::
1800

::::::::
meters

:::
at

::::::::
1-meter

::::::::::
intervals)

::::
for

:::::
each

:::::::::::
parameter. In order to obtain an efficient model

that captures the overall shape of the profiles, we applied PCA to the data280

sets of the T and S profiles separately. By doing so, we can express each
profile with a significantly reduced number of variables while retaining over
99% of the original data variability. Utilizing this transformation of data, we
train the neural network to estimate the 30 most significant principal com-
ponent scores (PCS) for each profile in the Argo dataset used for training,285

which are used to reconstruct the profiles using the inverse PCA.
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:::::::::::
Combining

:::::
PCA

:::::
with

:::::::
neural

::::::::::
networks

::
is

:::
an

:::::::::
effective

:::::::::
strategy

::::
for

:::::::::
handling

:::::::::::::::::
high-dimensional

::::::::
output

::::::::
spaces,

:::
as

::
it

::::::::
reduces

::::::::::::::::
computational

::::::::::::
complexity

::::
and

::::
can

::::::::
improve

:::::::::::
prediction

::::::::::
accuracy

:::::::::::::::::::::::::::::::::::::::
(Howley et al., 2006; Sun et al., 2023)

:
.
::::::
PCA

:::::::::
captures

::::
the

::::::
most

:::::::::::
significant

:::::::::
features

:::
in

::::
the

::::::
data,

:::::
and

:::::
the

:::::::
neural

:::::::::
network290

::::::
learns

:::
to

::::::::
predict

::::::
these

:::::::::
features

:::::
from

::::
the

::::::::
inputs.

:::::
This

::::::::::::::
methodology

::::
has

::::::
been

::::::::::::
successfully

::::::::
applied

::
in

::::::::
various

::::::
fields,

::::::::::
including

:::::::::::::
meteorology

:::::
and

::::::::::::::
oceanography

::::::::::::::::::::::::::::::::::
(Preisendorfer and Mobley, 2023)

:
,
::::::::
finance

::::::::::::::::::::::::::
(Sarıkoç and Celik, 2024)

:
,
::::
and

:::::::::::::
engineering

::::::::::::::::::
(Sun et al., 2023)

:
.
:

Figure 2 shows a general diagram of our methodology and the main com-295

ponents of the proposed neural network.

Figure 2: General diagram of NeSPReSO. Step 1 computes the empirical PCA of the
Argo database. Step 2 trains a dense neural network from interpolated SST, SSH and SSS
satellite data, location and date to predict the PCS. Step 3 reconstruct the profiles using
the predicted PCS and inverse PCA.

3.1. Principal Component Analysis

Principal Component Analysis (PCA) is employed in various fields for di-
mensionality reduction of large datasets while preserving most of the original
data variability. This method identifies orthogonal axes, known as principal300

components (PC), each representing a direction in which the data’s variance
is maximized.

Given a centered data matrix Y of size n× p, where n
::
Y

::
of

:::::
size

:::::::
n× p,

::::::
where

::
n
:
is the number of observations (profiles) and p

::
p

:
is the number of

variables (measurements).305
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A covariance matrix S
::
S

:
is computed as:

S =
1

n
YTY, (1)

which captures the variances (in the diagonal) and the covariances (off-
diagonals).

The next step involves solving the eigenvalue problem for S
:
S:

SV = DV, (2)

where V and D
::
V

::::
and

:::
D

:
are the eigenvector matrix and eigenvalue diag-310

onal matrix of S
::
S, respectively. These eigenvectors define the directions of

maximum variance in the data, and the eigenvalues indicate the magnitude
of variance in these directions.

The eigenvectors and eigenvalues are arranged in descending order based
on the magnitude of the eigenvalues. The first eigenvector, associated with315

the largest eigenvalue, becomes the first principal component (PC), and so
forth. The eigenvector matrix V

::
V, which is the concatenation of all vi eigen-

vectors, is used to project the centered data matrix Y
::
Y

:
into the principal

component space:
Z = YV, (3)

where Z
:
Z

:
is a matrix of principal component scores (PCS), each column320

representing a principal component. To reduce dimensionality, V
::
V

:
can be

truncated, keeping only the eigenvectors corresponding to the largest eigen-
values.

The PCA transformation is linear and reversible. The inverse transforma-
tion, which approximates the original data from its reduced principal com-325

ponent representation, is given by:

Ŷ = ZVT , (4)

where Ŷ
::
Ŷ

:
is the reconstructed data. Note that if V

::
V

:
is truncated, this

reconstruction is an approximation with some loss of information.
We applied PCA to the T and S datasets, reducing the dimensionality of

the data (from 1801 to 15) by transforming the raw measurements (Y) into330

PCS (Z), while retaining most of the variance: 99.8% for temperature and
99.4% for salinity. Figure 3 illustrates the first 500 meters of a temperature
and salinity profile and its reconstruction using 15 PCS.

Our proposed model is then trained to generate these 30 PCS for each
Argo location in our training set. In the next section we describe our NN335

:::::
Next

:::
we

::::::::::
describe

:::::::::::::
NeSPReSO’s

:
architecture and training.
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Figure 3: Example of reconstruction of temperature and salinity profiles using 15 PCS.
The profile were truncated at 500 meters to emphasize the differences, which occur mostly
in the upper ocean.

3.2. NN Architecture
:::::::::::
NeSPReSO

LetX ⊂ RdX be
::::::::::
X ⊂ RdX

:::::::
denote

:
our input space(possible surface measurements

) and Y ⊂ RdY ,
::::::::::::::
representing

:::::::
spatial

:::::
and

::::::::::
temporal

:::::::::::::
information

:::::::
along

:::::
with

:::::::
surface

::::::::::::::::
measurements

::::::
(e.g.,

::::
sea

::::::::
surface

::::::::::::::
temperature,

:::::::::
salinity,

:::::
and

:::::::::
height),340

::::
and

::::
let

::::::::::
Y ⊂ RdY

::::
be

:
the output space (possible vertical profiles ). Our

ultimate goal is to find a mapping operator Φ : X → Y that for all measurement
vectors x ∈ X, there exists a corresponding T and S profile y ∈ Y such that
y = Φ(x)

::::::::::
consisting

:::
of

::::
the

:::::::::::::::
corresponding

::::::::
vertical

::::::::
profiles

:::
of

:::::::::::::
temperature

:::::
and

:::::::
salinity

::::::
that

::::
we

::::
aim

:::
to

:::::::::
predict.

::::::
Our

:::::::::::
objective

::
is

:::
to

:::::::::::
construct

::
a
::::::::::
mapping345

:::::::::::
Φ : X → Y

::::::
such

::::::
that

::::
for

::::::
each

::::::
input

::::::::
vector

::::::::
x ∈ X,

:::::
the

::::::::::
predicted

::::::::
profile

:::::::::
y = Φ(x)

:::::::::::::::
approximates

::::
the

:::::
true

:::::::
profile

:::::::
y ∈ Y .

Suppose the output space Y can be encoded into a space Z ⊂ RdZ , where
dZ ≤ dY:::::

Due
::
to

::::
the

:::::
high

:::::::::::::::
dimensionality

:::
of

::::
the

::::::::
vertical

::::::::
profiles,

:::::::::
directly

::::::::::
predicting

:
y
::::::
with

::
a

:::::::
neural

:::::::::
network

:::::
can

:::
be

::::::::::::::::::
computationally

::::::::::
intensive,

::::::::::::
inaccurate,

:::::
and350

::::::
prone

::
to

::::::::::::
overfitting.

::::
To

::::::::
address

:::::
this,

:::
we

::::::::
employ

::::::::::
Principal

::::::::::::
Component

:::::::::
Analysis

:::::::
(PCA)

:::
for

::::::::::::::::
dimensionality

::::::::::
reduction,

:::::::::
focusing

:::
on

::::::::::
modeling

::::
the

::::::
most

::::::::::
significant

::::::::
features

::
of

::::
the

::::::::
profiles

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jolliffe and Cadima, 2016; Preisendorfer and Mobley, 2023)
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:
.
:::::::::::
Formally,

::::
we

::::::::
encode

::::
the

::::::::
output

::::::
space

:::
Y

:::::
into

::
a
::::::::::::::::::::
lower-dimensional

::::::
space

::::::::::
Z ⊂ RdZ ,

::::::
where

::::::::::
dZ ≪ dY , using an encoder EY , and reconstructed

::::
EY :::::

such355

::::
that

::::::::::::
z = EY (y),:::::

and
:::::::::::::
reconstruct

::::
the

::::::::
profiles

:
with a decoder DY , such that

y ≈ EY (z) when z = DY (y), for all z ∈ Z
:::
DY :::::

such
:::::
that

::::::::::::
y ≈ DY (z).

Given a collection of inputs from X with corresponding profiles from
Y , applying empirical PCA on these profiles yields the principal components
(encodings) z and defines a decoder operatorDPCA(z) = zVT , whereV is the360

eigenvector matrix calculated by the empirical PCA . In this framework
:::::::::
Applying

:::::
PCA

:::
to

::::
the

::::::::
profiles

:::
in

::
Y

:::::::
yields

::::
the

::::::
PCS

::
z

::::
and

::::::::
defines

::::
the

:::::::::
decoder

:::::::::
operator

:::::::::::::::::
DPCA(z) = zVT,

:::::::
where

:::
V

::
is

:::
the

::::::::
matrix

::
of

:::::::::::::
eigenvectors

:::::
from

::::
the

::::::
PCA

::::::::::::::::
decomposition.

:::::
Here, the encoder ξ : X → Z emerges, a transformation that compresses

:::
EY::::::::::::::

corresponds
:::
to

::::
the

:::::::
PCA

::::::::::::::::
transformation

::::::::::
mapping

:::::::::
profiles

:::
y

:::
to

::::::
their365

:::::
PCS

::
z,

:::::
and

::::
the

::::::::
decoder

:::::
DY :::::::::::::

corresponds
::
to

::::
the

::::::::
inverse

::::::
PCA

::::::::::::::::
transformation

:::::::::::::::
reconstructing

::
y

:::::
from

:::
z.

:

::
To

::::::::
predict

::
z

:::::
from

::::
the

::::::::
surface

:::::::::::::::
measurements

::
x,

::::
we

:::::::
design

:
a
:::::::
neural

:::::::::
network

:::::::::::
ζ : X → Z

:::::
that

::::::::::::::
approximates

::::
the

::::::::::
mapping

::::::
from the input space X into the

reduced PCA spaceZ, capturing the essential features of the available data.370

::
to

::::
the

::::::
PCA

:::::::
space.

:::::::
This

::::::::::
approach

::::::::::
leverages

::::
the

::::::::
ability

:::
of

:::::::
neural

::::::::::
networks

::
to

:::::::
model

::::::::::
complex

::::::::::
nonlinear

::::::::::::::
relationships

:::::::::
between

:::::::
inputs

:::::
and

::::::::::
outputs.

::::
By

::::::::
training

::::
the

:::::::
neural

:::::::::
network

:::
to

::::::::
predict

:::
z,

:::
we

::::
can

:::::::::::::
reconstruct

::::
the

::::
full

::::::::
profiles

:::::
using

::::
the

::::::::
inverse

:::::
PCA

:::::::::::::::::
transformation.

::::::::::::
Combining

:::::
PCA

:::::
with

:::::::
neural

::::::::::
networks

::
is

::
a

::::::::::
common

:::::::::
practice

:::
in

::::::::::
machine

:::::::::
learning

::::
for

::::::::::
handling

:::::::::::::::::::
high-dimensional375

::::::::
outputs

::::::::::::::::::::::::::::::::::::::::
(Howley et al., 2006; Sun et al., 2023),

:::
as

::::::
PCA

:::::::::
reduces

::::
the

::::::::
output

:::::::::::::::::
dimmensionality

::::
and

::::
the

:::::::
neural

:::::::::
network

:::::::::
captures

::::
the

::::::::::
nonlinear

::::::::::::::
relationships

::::::::
between

:::::::
inputs

:::::
and

::::::::::
principal

:::::::::::::
components.

:

We approximate this encoding process ξ with a neural network ζ. We
have two possible minimization approaches for

::
In

:::::::::::
designing the loss function380

: we can evaluate the NN outputs ẑ directly against the known PCS z, or
the differences

:::
for

:::::::::
training

::::
the

:::::::
neural

:::::::::
network

::
ζ,

::::
we

:::::::::
consider

::::
the

:::::::::
accuracy

:::
of

:::
the

:::::::::::::::
reconstructed

:::::::::
profiles.

:::::::::::::
Specifically,

::::
we

::::::::::
minimize

::::
the

:::::::::::
difference

:
between

the reconstructed profile DPCA(ζ(x)) and the actual data y.

::::
PCS

::̂
z
:::::
and

:::::
the

:::::
true

::::::
PCS

:::
z,

:::::
and

::::::::::
difference

::::::::::
between

::::
the

:::::::::::::::
reconstructed385

:::::::
profiles

::::::::::::::
ŷ = DPCA(ẑ):::::

and
::::
the

:::::
true

::::::::
profiles

::
y.

:
Our approximation process can

be formalized as:
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min
ζ

L = wsWRMSE
1

nLW
::::

n∑
i=1

dz∑
j=1

vj

σ2
z

(ẑij − zij)
2

︸ ︷︷ ︸WMSE
:::::

+FRMSE
1

nLF
:::

 n∑
i=1

 1

σ2
T

dY∑
k=1

(
Ŷ T
ik − Y T

ik

)2
+

1

σ2
S

dY∑
k=1

(
Ŷ S
ik − Y S

ik

)2


︸ ︷︷ ︸

FMSE
::::

(5)

where L denotes the loss function
::::::
where

::
L

::::::::
denotes

:::::
the

:::::
total

:::::
loss

:::::::::
function,

:::
n

::
is

::::
the

::::::::
number

::
of

:::::::::
profiles

:::::::::
(indexed

:::
by

::::
i),

:::
dz ::

is
::::
the

:::::::::
number

::
of

::::::::::
principal

:::::::::::::
components

:::::
used

:::::::::
(indexed

::::
by

::::
j),

::::
and

::::
dY :::

is
::::
the

:::::::::
number

:::
of

:::::::
depth

::::::
levels

:::
in

::::::
each

:::::::
profile390

:::::::::
(indexed

::::
by

:::
k). The first term is the weighted root mean square error

(WRMSE
::::::::
weighed

:::::::
mean

::::::::
squared

::::::
error

:::::::::
(WMSE) of the PCS, with each j-th

component scaled by a weight proportional to the corresponding captured
variance

:::::::::
weighted

:::
by

::::
the

:::::::::
variance

::::::::::
captured

:::
by

::::::
each

::::::::::::
component vj:,:::::::

where
:::
ẑij

::::
and

:::
zij:::::::::::

represent
::::
the

::::::::::
predicted

:::::
and

:::::
true

::::::
PCS

:::
for

::::::::
sample

::
i
:::::
and

::::::::::::
component395

::
j,

:::::::::::::
respectively. The second term is a functional root mean square error

(FRMSE
:::::::::::
represents

:::
the

:::::::::::
functional

::::::
mean

:::::::::
squared

:::::
error

::::::::
(FMSE), which compares

the functional output ŷ = DPCA(ζ(x)) against the target y.
::
is

::::::::::
computed

::::
for

:::::
both

:::::::::::::
temperature

:::::
and

::::::::
salinity

:::::::::
profiles.

:::::::::::::
Specifically,

::::
Ŷ T
ik:::::

and
::::
Y T
ik::::::::

denote
::::
the

::::::::::
predicted

::::::
(after

::::::::
inverse

::::::
PCA

:::::::::::::::::
transformation)

:::::
and

:::::
true

:::::::::::::
temperature

::::::::
values,400

::::::::::::
respectively,

::::
at

::::::
depth

:::
k

::::
for

::::::::
sample

::
i.

:::::::::::
Similarly,

:::::
Ŷ S
ik ::::

and
::::
Y S
ik:::::::::::

represent
::::
the

::::::::::
predicted

::::
and

:::::
true

::::::::
salinity

::::::::
values.

:

It’s important to note that in our model L
::
L

:
accounts for both tem-

perature and salinity predictions simultaneously. This is not an issue for
WRMSE since the term vj already performs the scaling, however FRMSE405

requires a normalization term wp in order to penalize temperatureand salinity
differences properly. A scaling factor ws is used to account for the differences
in scale between WRMSE and FRMSE as well

:
,
::::::
which

::::::
have

:::::::::
different

:::::::
scales

::::
and

::::::
units.

::::
To

:::::::
ensure

:::::
that

:::
the

::::::::::::::
contributions

:::
of

::::::
these

:::::::::::
parameters

::::
are

::::::::::::::
appropriately

::::::
scaled

:::
in

::::
this

::::::::::::
multi-task

:::::::
model,

::::::
each

::::::
mean

:::::::::
squared

:::::
error

::::::
term

::
is
:::::::::
divided

:::
by410

:::
the

:::::::::
variance

:::
of

::::
the

::::::::::
respective

::::::::::::
parameter:

:::
σ2
z::::
for

::::
the

:::::
PCS,

::::
σ2
T :::
for

::::::::::::::
temperature,

::::
and

:::
σ2
S::::
for

::::::::
salinity

::::::::::::::::::::::::::
(Zhang and Yang, 2017).

:

:::::::::::::
Additionally,

:::::::::
training

:::::
the

:::::::
model

:::::::
using

::::::::
WMSE

::::
or

::::::::
FMSE

:::::::::::::
individually

:::::::
results

::
in

:::::::::
different

:::::
loss

:::::::
values,

:::::
with

::::::::::::::
LW ≈ 0.0255

:::
for

::::::::
WMSE

:::::
and

:::::::::::::
LF ≈ 2.8294

:::
for

::::::::
FMSE.

:::::::
These

:::::::
values

::::
are

::::::
used

:::
to

:::::::::::
normalize

:::::
each

::::::
term

:::::::
when

:::::::::::
combining415

:::::
them

:::
in

::::
the

:::::
final

:::::
loss

:::::::::
function.

The neural network used in this study consists of
:
a

::::::::
simple

:::::::::::
multilayer

::::::::::::
perceptron,

:::::::::
suitable

:::
for

:::::::::::
regression

::::::
tasks

::::::::::
involving

::::::::::::
continuous

::::::::::
outputs,

:::::
with

an input layer that receives satellite-derived SSH
::::::
ADT, SST, and SSS bi-

cubicly interpolated to the location of each Argo profile. It also receives420
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spatial information coming from the latitude and longitude. We normalize
the temporal and spatial inputs to 1 ( lat

180
, lon

360
and day

365
), and

::::::::::::
Recognizing

::::
that

:::::::::
latitude

:::::
and

:::::::::::
longitude

::::::::::
represent

:::::::::
angular

::::::::::::::::
measurements

:::::
with

:::::::::
cyclical

:::::::::::
properties,

::::
we

:
compute the sine and cosine harmonics for each

:::::::::::
normalized

:::::::::
temporal

:::::
and

::::::::
spatial

:::::::
inputs

::::::::
(2π lat

180
,
:::::::
2π lon

360 ::::
and

::::::::
2π day

365
), helping the network425

to ”understand” the circular
:::::::
capture

::::
the

::::::::
cyclical

:
nature of these parameters

:
,

::::::
which

::::
has

::::::
been

::::::::
shown

:::
to

:::::::::
improve

:::::::
model

::::::::::::::
performance

:::
in

::::::::::
previous

::::::::
studies

:::::::::::::::::::::::::::
(Thottakkara et al., 2016).

::::::
The

::::::::
output

::::::
layer

::::::::::
produces

::::
the

:::::::::::
predicted

::::::
PCS,

::::::
which

::::
are

:::::
then

::::::
used

::
to

:::::::::::::
reconstruct

::::
the

::::
full

:::::::::::::
temperature

:::::
and

::::::::
salinity

::::::::
profiles

:::::
using

::::
the

::::::::
inverse

::::::
PCA

::::::::::::::::
transformation.430

We use a simple multilayer perceptron, with 2 fully connected
:::::::
hidden

layers with 512 neurons each, employing the Rectified Linear Unit (ReLU)
activation function , and

::
to

:::::::
reduce

::::::::::::::::
computational

::::::::::::
complexity

:::::
and

:::::::::
mitigate

::::::::::
vanishing

::::::::::
gradients

:::::::::::::::::::::::::::::::::::::::::::
(Dubey et al., 2022; Nguyen et al., 2021)

:
.
:::::

To
:::::::::
prevent

::::::::::::
over-fitting,

::::
we

::::::
apply

::
a
:
dropout rate of 20%for regularization. The output435

layer of the NN is designed to approximate the PCS, enabling the later
reconstruction of temperature and salinity profiles using the inverse PCA
transformation

:
,
::::::::::
randomly

::::::::::
disabling

::::::::
neurons

::::::::
during

:::::::::
training,

::::::
which

::::::::::::
encourages

:::
the

:::::::::
network

:::
to

::::::
learn

::::::
more

::::::::
robust

:::::::::
features

:::::::::::::::::::::
(Zhang et al., 2024)

:
.
::::::::::::
Additional

::::::::
training

::::::::::::
parameters

:::::::::
include

::::::
using

::
a
:::::::
batch

::::
size

:::
of

:::::
300,

::
a
:::::::::::
maximum

:::::::::
number440

::
of

::::::
8000

:::::::
epochs

:::::
and

:::
an

::::::
early

::::::::::
stopping

::::::::::::
mechanism

:::
of

::::
500

:::::::::
epochs,

::
if
::::
the

:::::
loss

:::::
value

:::
in

::::
the

:::::::::::
validation

::::
set

::
is

::::
not

::::::::::
improved.

The training of the neural network involves an iterative process where
the model learns to approximate the principal component scores (PCS )

:::::
PCS

through exposure to different subsets of the data. The model is trained using445

70% of the profiles (2,895 in total), while its performance is continuously
monitored against a separate validation set comprising 621 (15%) profiles,
which effectively determines when the training should stop.

:::::::::
Training

::::
the

::::::
model

::::
on

:::::
this

::::::::
setting

::::::
took

::
8

:::::::::
minutes

:::::::
using

::
a

:::::::
single

:::::::
GPU.

:
Evaluation of

the model’s accuracy is conducted on the remaining 15% of the data (621450

profiles), the test set, to assess its predictive capabilities. Additional training
parameters include using a batch size of 300, a maximum number of 8000
epochs and an early stopping mechanism of 500 epochs, if the loss value in
the validation set is not improved.

NeSPReSO is compared against two standard models for creating syn-455

thetic profiles:
:::::::::
Multiple

::::::::
Linear

::::::::::::
Regression,

::
Gravest Empirical Modes and

Improved Synthetic Ocean Profile.
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3.3.
::::::::
Multiple

::::::::
Linear

:::::::::::
Regression

:::::::::::
Approach

::
In

:::::::::
addition

:::
to

::::
the

:::::::
neural

:::::::::
network

:::::::::::::
architecture,

::::
we

::::::::
explore

::
a

::::::
MLR

:::::::
model

::
as

::
a
::::::::::
baseline

:::::::::
method

::::
for

:::::::::::
predicting

::::
the

::::::
PCS

::::::
from

::::::::
surface

::::::::::::::::
measurements460

:::::::::::::::::::::
(Carnes et al., 1994)

:
.
::::::
The

:::::::
MLR

:::::::
serves

:::
to

:::::::
assess

:::::
the

:::::::::::::
effectiveness

::::
of

::::
the

::::::
neural

:::::::::
network

:::
by

:::::::::::
comparing

:::
its

::::::::::::::
performance

:::::
with

:
a
:::::::::
simpler,

::::::
linear

:::::::::::
approach.

:::
Let

:::
us

:::::::::
consider

::::
the

::::::
same

:::::::
input

::::::
space

::::::::::
X ⊂ RdX

::
,
::::::::
output

::::::
space

::::::::::
Y ⊂ RdY

::::
and

::::
the

:::::::::::::::::::::
reduced-dimensional

::::::
space

:::::::::::
Z ⊂ RdZ ,

::::::
where

:::::::::::
dZ ≪ dY , ::::::

along
:::::
with

::::
the465

::::::::
encoder

::::
EY :::::

and
::::::::
decoder

:::::
DY :::::::::::

mappings.
:::::
The

:::::::
MLR

:::::::
model

:::::
aims

:::
to

::::::::::
establish

:
a
:::::::
linear

:::::::::::::
relationship

:::::::::
between

::::
the

:::::::
input

::::::::::
variables

:::
in

:::
X

:::::
and

::::
the

::::::
PCS

:::
in

:::
Z.

::::::::::::
Specifically,

:::
we

:::::::
model

:::::
each

:::::::::
principal

::::::::::::
component

::::::
score

::
zj:::

as
::
a

::::::
linear

:::::::::::::
combination

::
of

::::
the

::::::
input

::::::::::
features:

:

ẑj = βj +

dX∑
i=1

βijxi,

:::::::::::::::::::

(6)

::::::
where

::̂
zj:::

is
::::
the

::::::::::
predicted

:::::
PCS

::::
for

::::::::::::
component

:::
j,

::
βj:::

is
::::
the

::::::::::
intercept

::::::
term,470

:::
βij ::::

are
::::
the

:::::::::::
regression

::::::::::::
coefficients,

:::::
and

:::
xi:::::::::::

represents
::::
the

::::::
input

:::::::::
features

::::::
from

:::
X.

::::::
The

:::::::::::
regression

::::::::::::
coefficients

:::
β

::::
are

::::::
then

:::::::::::
estimated

::::
by

::::::::
solving

::::
the

::::::
least

::::::::
squares

:::::::::
problem:

:

β = (XTX)−1XTZ,
:::::::::::::::::::

(7)

::::::
where

::
Z

:::
is

::::
the

::::::::
matrix

:::
of

:::::
true

::::::
PCS

::::::::::
obtained

:::::
from

:::::::
PCA,

:::::
and

:::
X

:::
is

::::
the

::::::::::
expanded

:::::::
feature

::::::::
matrix.

:::::
The

::::::::
inverse

::::::::::
operation

::::::::::
(XTX)−1

::::::::
denotes

::::
the

:::::::::::::::
pseudoinverse475

:::::
when

::::::
XTX

:::
is

::::
not

:::::::::::
invertible.

:::::
This

:::::::::::
estimation

::::::::::
provides

:::
the

::::::
exact

::::::
least

::::::::
squares

::::::::
solution

::::
for

::::
the

:::::::::::
regression

::::::::::::
coefficients.

:

::::
The

::::::
MLR

:::::::
model

::::::::
predicts

::::
the

::::::
PCS

:::
by

::::::::::
applying

:::
the

:::::::::::
estimated

::::::::::::
coefficients

::
to

:::::
new

::::::
input

::::::
data:

:

ẐMLR = Xnewβ,
::::::::::::::::

(8)

::::::
where

:::::
Xnew::::::::::

contains
::::
the

::::::::::::
polynomial

:::::::::
features

:::
of

::::
the

:::::
new

::::::
input

::::::::::
samples.480

::::
The

::::::::::
predicted

::::::
PCS

::::::
ẐMLR::::

are
::::::
then

:::::
used

:::::
with

::::
the

:::::::::
decoder

::::
DY :::

to
::::::::::::
reconstruct

:::
the

::::
full

::::::::::::::
temperature

::::
and

:::::::::
salinity

::::::::
profiles:

:

ŶMLR = DY (ẐMLR) = ẐMLRV
T,

:::::::::::::::::::::::::::::::::
(9)
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::::::
where

::
V

:::
is

::::
the

:::::::
matrix

:::
of

:::::::::::::
eigenvectors

::::::
from

::::
the

::::::
PCA

::::::::::::::::
decomposition.

:

::
In

::::
our

:::::::::::::::::
implementation,

:::
we

::::::::
include

::::
the

:::::
same

:::::::
inputs

:::
as

::
in

::::
our

::::
NN

:::::::::::
approach:

:::::::
spatial

::::
and

:::::::::::
temporal

:::::::::::
harmonics

:::
of

:::::::::
latitude,

:::::::::::
longitude,

:::::
day

::
of

:::::
the

:::::
year,

:::::
and485

::::::::
satellite

::::::
SST,

:::::
SSH

::::
and

:::::::
ADT.

::::
The

::::::
MLR

:::::::
model

:::
is

::::::::
trained

::::::
using

::::
the

::::::::::
combined

::::::::
training

:::::
and

:::::::::::
validation

:::::::::
datasets,

::::::::::::
comprising

::::::
3,516

:::::::::
profiles

::::::
(85%

::
of

::::
the

::::::
total

::::::
data),

::::
to

:::::::
ensure

:::::::::::
sufficient

::::::
data

::::
for

::::::::::::
estimating

::::
the

::::::::::::
regression

::::::::::::
coefficients

:::::::::::
accurately.

::::::::
Fitting

::::
the

:::::::
model

::::::
took

::::
180

:::::::::::::
milliseconds

:::
on

::
a
:::::::
single

::::::
GPU.

:

::::
The

:::::::::::
remaining

:::::
15%

:::
of

:::::
the

:::::
data

::::::
(621

:::::::::
profiles)

:::
is

:::::
used

::::
as

::
a

:::::
test

::::
set

:::
to490

::::::::
evaluate

::::
the

:::::::::
model’s

::::::::::
predictive

::::::::::::::
performance.

::::
By

::::::::::::
comparing

::::
the

::::::
MLR

:::::::
results

:::::
with

::::::
those

::
of

::::
the

:::::::
neural

::::::::::
network,

:::
we

:::::
can

::::::
assess

::::
the

:::::::::
benefits

:::
of

::::::::::::::
incorporating

::::::::::
nonlinear

::::::::::
activation

::::::::::
functions

:::::
and

:::::::
deeper

::::::::::::::
architectures

::
in

:::::::::::
capturing

:::::::::
complex

:::::::::::::
relationships

:::::::
within

:::::
the

::::::
data,

::::
and

::::
by

:::::::::::
comparing

::::::
with

:::::::
GEM,

::::
we

::::
can

:::::::
assess

:::
the

::::::::::::
advantages

:::
of

::::::::::
operating

:::
in

::
a
:::::::::
reduced

:::::::::::::
dimensional

:::::::
space.

:
495

:::
It’s

:::::::::::
important

:::
to

::::::
note

:::::
that

::::
we

:::::::::
initially

:::::::::::::::
experimented

::::::
with

::::::::::::
polynomial

:::::::::::
expansions

:::
up

:::
to

:::::::
degree

::
3

::
to

::::::::
capture

::::::::::
potential

::::::::::
nonlinear

::::::::::::::
relationships

::::::::
between

:::
the

::::::
input

::::::::::
variables

::::
and

::::
the

::::::
PCS.

:::::::::
However,

::::::
these

:::::::::::::::
higher-degree

:::::::
models

::::::::::
exhibited

::::::::::
significant

::::::::
issues:

:

•
:::::::::::::::
Computational

:::::::::::::
Challenges:

::::::
The

::::::::::
inclusion

::
of

:::::::::::::
polynomial

::::::
terms

::::
up

:::
to500

:::::::
degree

:
3
::::::::::::::
dramatically

::::::::::
increased

:::
the

::::::::::::::::
dimensionality

::
of

::::
the

::::::::
feature

::::::::
matrix.

:::::
With

::
a
::::::
large

::::::::
number

:::
of

::::::::
samples

:::::
and

::::::
input

::::::::::
variables,

::::
the

::::::::
feature

:::::::
matrix

::::::::
became

:::::::::::
extremely

::::::
large.

:::::::
This

::::
led

:::
to

::::::
high

:::::::::
memory

::::::::::::::
consumption

::::
(≈

:::::::
80GB)

:::::
and

:::::::::::::::
computational

:::::::::::::
inefficiency

::::
and

:::::::::::::
instabilities

::::::::
during

:::::::
model

:::
fit.

:
505

•
:::::::::::
Numerical

:::::::::::
Instability:

:::::
The

::::::
large

::::
size

::
of

::::
the

:::::::::
matrices

:::::::::::::
exacerbated

::::::::::
numerical

::::::
issues,

::::::
such

:::
as

:::::::::
difficulty

:::
in

::::::::::
inverting

:::::::::
matrices

::::::::
during

::::
the

:::::::::::
estimation

:::
of

::::::::::
regression

:::::::::::::
coefficients.

::::::
This

:::::::::::
instability

::::::::::
adversely

:::::::::
affected

::::
the

:::::::::
model’s

:::::::
ability

::
to

::::::
learn

::::::::::
accurate

::::::::::::::
relationships.

:

•
::::::::::::
Overfitting:

:::::
The

::::::::::
expanded

::::::::
feature

::::::
space

::::::::::
increased

:::
the

:::::
risk

::
of

::::::::::::
overfitting,510

::::::
where

::::
the

:::::::
model

:::::::::
captured

::::::
noise

::::::
rather

::::::
than

:::::::::::
underlying

::::::::::
patterns,

:::::::::
resulting

::
in

:::::
poor

:::::::::::::::
generalization

:::
to

::::::::
unseen

::::::
data.

:

•
::::::::::::::::::
Multicollinearity:

:::::::::::::::
Higher-degree

:::::::::::::
polynomial

:::::::
terms

::::::::::::
introduced

:::::::
strong

::::::::::::
correlations

:::::::
among

::::::::::
predictor

::::::::::
variables,

::::::::::::::
destabilizing

::::::::::
coefficient

::::::::::
estimates

::::
and

:::::::::
reducing

::::
the

:::::::::::
reliability

:::
of

::::
the

:::::::
model.

:
515
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::
As

:::
a

:::::::
result

:::
of

::::::
these

::::::::::::
challenges,

:::::
the

:::::::::::::::
higher-degree

:::::::::::::
polynomial

::::::::
models

:::::
were

::::::::::
unstable,

:::::::::::
producing

::::::::::::
predictions

:::::
that

::::::
were

::::
too

::::::::::::
inaccurate

:::
for

::::::::::
practical

::::::::::::
application.

::::::::::::
Therefore,

::::
we

:::::::
opted

:::
to

::::
use

:::::
the

:::::::
degree

:::
1

::::::
MLR

::::::::
model,

:::::::
which

:::::::::
captures

::::::
linear

::::::::::::::
relationships

:::::::::
between

::::
the

::::::
input

::::::::::
variables

:::::
and

::::
the

::::::
PCS.

3.4. Gravest Empirical Modes520

The Gravest Empirical Modes (GEM)
::::
The

::::::
GEM

:
method is a technique

extensively utilized in oceanography for the generation of synthetic tempera-
ture and salinity profiles. The GEM method is based on the establishment of
an empirical relationship between dynamic height and other oceanographic
parameters, capturing the essential spatiotemporal patterns of oceanic tem-525

perature and salinity, making it a valuable tool for studying and simulat-
ing these parameters. This method has been applied to various oceanic
regions, contributing to a better understanding of ocean dynamics and cli-
mate processes (Watts et al. (2001); Liu et al. (2021); Meunier et al. (2022)
)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Watts et al., 2001; Liu et al., 2021; Meunier et al., 2022).530

The implementation of the GEMmethod by month is described as follows:

A. The steric height is computed for each in situ profile of temperature
and salinity.

B. All profiles are sorted according to their steric height, and grouped by
month.535

C. A regular pressure grid is defined (0–1800 dbar) with a vertical grid-
step of 1 dbar. For each reference pressure value and for each month, a
cubic smoothing spline is fitted to the functions T (ζ)|p,m and S(ζ)|p,m,
where T and S

::::::::
T (ζ)|p,m:::::

and
::::::::::
S(ζ)|p,m, ::::::

where
:::
T

::::
and

:::
S

:
are temperature

and salinity, ζ
:
ζ
:
is ADT, p

:
p
:
is the pressure at which the variables are540

evaluated, and m is the month.

3.5. Improved Synthetic Ocean Profile (ISOP)

The Improved Synthetic Ocean Profile (ISOP) method projects surface
ocean data downward, generating T and S profiles across the global ocean
using surface observations and a mixed-layer depth (MLD) estimate. Optionally,545

a prior forecast of T and S profiles can be used. The creation of these
synthetic profiles plays an important step in the Navy’s operational forecasting
and is seamlessly integrated into their data assimilation workflows. ISOP
divides the ocean’s depth into 78 fixed levels, extending from the surface
to 6600 meters. The process begins with the compilation of a T and S550
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covariance matrix and climatology database from a comprehensive set of
in-situ observations, followed by the application of a multilayered approach
that considers three different dynamics zones within the ocean subsurface.
These regions include the mixed layer, extending from the surface to the
MLD; the thermocline layer, reaching from the MLD down to 1000 meters;555

and the deep ocean layer, below 1000 meters.
For the mixed layer, there are two options. One option adjusts the initial

estimated profile to align with the surface potential density at 4 meters depth
and ensures consistency with the potential density and its gradient at the
MLD within the thermocline layer. The second option for the mixed layer560

shifts the prior forecast profile (if provided) to match the input SST value.
The thermocline layer prediction employs a variational method, leveraging
climatological T and S values and the first vertical Empirical Orthogonal
Functions (EOFs), or modes, extracted from historical data to constrain the
forecast. Detailed descriptions of the each term involved in this variational565

approach is available in reference Helber et al. (2013). Finally, the prediction
within the deep ocean layer involves modifying a decay function based on
climatological data and the T and S readings from the thermocline layer
at 1000 meters depth. This function accounts for the variance between
climatological values and the 1000-meter predictions, ensuring a coherent570

transition into the deep ocean predictions.
As previously mentioned, the inputs for ISOP’s predictive models include

SST and SSH, along with uncertainty estimates, an MLD estimation, and
an (optional) T and S profile obtained from either climatological data or
model outputs. Later comparisons in this work use climatological data for575

estimating the initial MLD and T and S profiles, along with Argo-derived
SST and SSH. Please note we did not have access to the ISOP profiles, only
the statistics.

::::
The

::::::::
process

::
of

:::::::
fitting

:::::::
GEM

:::
to

::::
the

::::::::
dataset

:::::
took

::
3
:::::::::
seconds

:::
on

:::::::
CPU.

4. Results580

In this section we analyze the performance of NeSPReSO with respect
to the 621 Argo profiles in our test dataset (

::::
15%

:::
of

::::
the

:::::::::
dataset,

:::::::::::
randomly

:::::::::
selected,

:
not used in training), and compare its performance against GEM

:
,

:::::
MLR

:
and ISOP methods. We also generate synthetic profiles

::::::::::::
NeSPReSO

::::::::::
synthetics

:
to reconstruct four glider sections in the GoM. NeSPReSO585
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::::
The

::::::::
average

:::::::::::
processing

:::::
time

::::
per

:::::::
profile

:::
on

:::::
CPU

::
is

::::::::
around

:::::
60µs

:::
for

:::::::::::::
NeSPReSO,

:::::
20µs

:::
for

:::::::
MLR

::::
and

:::::::::
11600µs

::::
for

::::
our

:::::::
GEM

:::::::::::::::::
implementation,

::::::
when

::::::::::::
generating

::::::::::
synthetics

::::
for

:::::
our

:::::
test

:::::
set.

:::::::::::
However,

:::::
it’s

::::::::::::
important

:::
to

::::::
note

:::::
that

:::
in

::::
an

::::::::::::
operational

::::::::
setting,

::::::
where

::::::::
profiles

::::
are

::::::::::
generated

:::
on

::::
the

::::
fly,

:::
the

::::::
time

::
to

::::::::
extract

:::
the

:::::::::
satellite

::::::::::::
information

::::::
from

:::::::
stored

:::::
data

::
is

::::
the

:::::::::
limiting

::::::
factor

::::
for

:::::::::::
generating590

:::::::::::
synthetics,

:::::::::::
regardless

::
of

::::
the

:::::::::
method

:::::
used

:::::
(0.5s

::::
per

:::::
day

::
of

:::::::::
interest,

:::::::::::
regardless

::
of

::::
the

::::::::
number

:::
of

::::::::::
profiles).

:

:::::::::::
NeSPReSO

:::::
and

::::::
MLR synthetics were generated using satellite surface in-

formation (ADT, SST and SSS) interpolated to the locations of the measure-
ments, location, and day of the year, while GEM synthetics used month and595

ADT. ISOP utilized climatological MLD and profile-derived SSH and SST,
which were

::::
with

::::::
only

:::::::::::
statistical

::::::::::::
summaries

:::
of

::::
the

:::::::
ISOP

:::::::::::
synthetics

:::::::
being

::::::::::
available,

:::::::
rather

::::::
than

:::::::::::
individual

:::::::::
profiles.

:::::::
This

:::::::::::
limitation,

:::::::
along

::::::
with

::::
the

::::
fact

:::::
that

::::::
ISOP

:::::::::::
synthetics

::::
was

:
not derived from satellite data as with

:::::::
sources

::::
like the other methods. This distinction potentially skews

:
,
:::::
may

::::::
skew

:
the600

comparison in the upper oceanbetween ISOP and the other techniques.

4.1. Test set

We use root mean square error (RMSE) and bias as analysis metrics
to evaluate the performance of our model relative to observations. RMSE,
measuring precision and accuracy, indicates the model’s prediction consis-605

tency and closeness to observed values. RMSE penalizes larger deviations
and reflects the average prediction error, with lower RMSE indicating more
reliable predictions. Bias measures the average deviation from observed val-
ues, showing if the model consistently overestimates or underestimates the
variable under consideration.

:::::
Both

::::::::::
statistics

::::
are

::::::
given

::::
by:

:
610

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2,

:::::::::::::::::::::::::::::

(10)

Bias =
1

N

N∑
i=1

(yi − ŷi) ,

:::::::::::::::::::::::

(11)

::::::
where

::
yi:::

is
::::
the

::::::::::
observed

:::::::
value,

:::̂
yi::

is
:::::
the

::::::::::
predicted

:::::::
value,

:::::
and

:::
N

:::
is

::::
the

::::::::
number

:::
of

::::::::::::::
observations.

:::::
For

::::::::::::
calculations

:::
at

::::::
each

:::::::
depth

::::::
level,

:::
N

:::::::::::
represents

:::
the

:::::::::
number

::
of

::::::::
profiles

:::
at

:::::
that

::::::::
depth.

:::::::
When

:::::::::::
computing

::::::::
RMSE

::::
and

:::::
bias

:::::
over

:
a
:::::::
depth

:::::::
range,

::::
the

::::::::::
statistics

:::
are

::::::::::
averaged

:::::
over

:::
all

::::::::
depths

:::::::
within

:::::
that

:::::::
range.

:
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::::
The

:::::::::
Pearson

::::::::::::
correlation

:::::::::::
coefficient

::::::
(R2)

::::::::::
quantifies

:::::
the

:::::::
degree

:::
of

:::::::
linear615

:::::::::::
correlation

:::::::::
between

::::
the

::::::::::
predicted

:::::
and

::::::::::
observed

:::::::
values,

::::::
with

:::::::
values

::::::
closer

:::
to

:
1
:::::::::::
indicating

::
a
:::::::::
stronger

:::::::::::::
correlation.

::
It

:::
is

:::::::::::
calculated

:::
as:

::

R2 =

 ∑N
i=1 (yi − ȳ)

(
ŷi− ¯̂y

)√∑
i = 1N (yi − ȳ)2

√∑N
i=1

(
ŷi − ¯̂y

)2
2

,

:::::::::::::::::::::::::::::::::::::::::::::::::::

(12)

::::::
where

::̄
y

::::
and

::
¯̂y
::::
are

:::::
the

::::::
mean

:::::::
values

:::
of

::::
the

::::::::::
observed

::::
and

:::::::::::
predicted

::::::
data,

::::::::::::
respectively.

:::::
The

::::
R2

:::::::
metric

::::::::
assesses

::::
the

:::::::::::
proportion

:::
of

:::::::::
variance

::
in

::::
the

:::::::::
observed

:::::
data

:::::
that

::
is

::::::::::::
predictable

::::::
from

::::
the

::::::::::
predicted

::::::
data.

::::::
Since

::::
we

::::::
don’t

:::::
have

:::::::
access620

::
to

:::::::::::
individual

::::::
ISOP

::::::::::::
synthetics,

::::
we

::::::
could

::::
not

::::::::::
calculate

:::
R2

::::
for

:::::::
ISOP.

:

The statistics of the profiles in the test set are shown on table 1, calcu-
lated using predictions at the same depths as ISOP,

:
for fairness. For temper-

ature, the RMSE values indicate that NeSPReSO consistently outperforms
the GEM predictions across all depth ranges,

::::::
MRL

:::::::
below

:::
20

::::::::
meters

:
and625

ISOP below 100 meters. It
::::::::::
However,

::
it

:
is difficult to draw comparisons with

ISOP near the surface, given that it uses Argo SST, but we observe a more
accurate estimation of temperature profiles compared to the GEM method,
which we attribute to the use of satellite SST. Bias values for temperature are
comparable between all methods, implying that the methods exhibit a similar630

direction and magnitude of systematic error in temperature estimation.
In salinityestimation

::::
For

::::::::
salinity, NeSPReSO also demonstrates lower RMSE

and bias values than the other methods for most of the depth ranges, indi-
cating superior performance in salinity predictions.

The Pearson correlation coefficient (R2) values for both T and S predic-635

tions are higher for NeSPReSO compared to GEM across all depths, and par-
ticularly pronounced in the upper 100 meters.

:::::::::::
NeSPReSo

:::::
also

::::::::::::::
overperforms

:::::
MLR

:::
in

::::::
most

:::::::
cases,

::::::::
except

:::
for

:::
T

:::
on

:::::
the

::::::
range

::::::
from

::
0
:::
to

:::
20

:::::::::
meters.

:
This

improvement in R2 signifies a stronger linear correlation between predictions
and observations, highlighting NeSPReSO’s enhanced accuracy in characterizing640

:::::::::
meaning

::
a

:::::::
better

:::::::::::::::::
characterization

::
of

:
the upper-ocean.
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Table 1: Statistics (RMSE, Bias
:
, and R2) by depth range. Best results in bold.

Depth range 0-20 20-100 100-200 200-500 500-1000 1000-1800 0-1000 0-1800
T NeSPReSO 0.439

::::
0.430 0.846

::::
0.816 0.832

::::
0.802 0.608

::::
0.587 0.313

:::::
0.301 0.084

:::::
0.083 0.706

:::
0.682

:
0.659

:::
0.637

:
RMSE GEM 1.461

::::
1.468 1.416

::::
1.419 1.095

:::
1.094

:
0.860

::::
0.854 0.396

::::
0.394

:
0.127

::::
0.125

:
1.194

:::
1.195

:
1.114

:::
1.116

:
(°
:
◦C)

::::
MLR

: ::::
0.380

::::
1.031

: ::::
0.944

: ::::
0.699

::::
0.357

: ::::
0.087

: ::::
0.823

: ::::
0.768

:
ISOP 0.140 0.835

::::
0.835 0.917 0.756 0.360 0.111 0.673 0.598

T NeSPReSO 0.042
::::
0.047 -0.058

:::::
-0.038 -0.040

::::
0.015 -0.034

:::
0.016

:
-0.027

::::
0.005 0.001

::::
0.003 -0.030

::::
0.001 -0.026

::::
0.001

BIAS GEM -0.042
::::
-0.043

:
-0.151

::::
-0.153

:
-0.058

::::
-0.059

:
-0.037

::::
-0.036

:
0.006

::::
0.006 0.006 -0.076

::::
-0.077

:
-0.066

::::
-0.067

:
(°
:
◦C)

::::
MLR

: :::::
-0.011

:::::
-0.041

::::
0.016

: ::::::
-0.001

::::
-0.010

: :::::
0.000

:::::
-0.014

:::::
-0.012

ISOP 0.022
::::
0.022

:
0.186 0.203 0.137 -0.057 -0.074 0.127 0.102

T NeSPReSO 0.982 0.953
::::
0.983 0.969

::::
0.956 0.985

::::
0.971 0.986 0.972

:::::
0.987

:::::
0.973 0.995 0.997

R2 GEM 0.775
::::
0.773 0.871

::::
0.870 0.949 0.970 0.977

::::
0.978

:
0.940

::::
0.941

:
0.986 0.991

::::
MLR

: ::::
0.986

::::
0.929

: ::::
0.960

: ::::
0.980

::::
0.981

: ::::
0.970

: ::::
0.993

: ::::
0.996

:

S NeSPReSO 0.334
::::
0.280 0.151

::::
0.139 0.119

::::
0.116 0.092

::::
0.088 0.034

:::::
0.032 0.009 0.174

::::
0.154 0.163

::::
0.143

RMSE GEM 0.478 0.193 0.165
:::
0.163

:
0.123

::::
0.122 0.046 0.009

:::::
0.009 0.241 0.225

(PSU)
::::
MLR

: ::::
0.299

::::
0.154

: ::::
0.155

: ::::
0.112

::::
0.044

: :::::
0.009

::::
0.173

: ::::
0.162

:
ISOP 0.604 0.229 0.160 0.147 0.049 0.015 0.240 0.210

S NeSPReSO -0.018
:::::
0.012 -0.007

:::::
-0.002 0.000

::::
0.005 -0.009

::::
0.003

:
0.000

:::::
-0.001 0.000 -0.007

::::
0.003 -0.006

::::
0.002

BIAS GEM -0.035
::::
-0.036

:
-0.010 -0.014 -0.005

:::::
-0.005 0.002 0.000

:::::
0.000 -0.013 -0.011

(PSU)
::::
MLR

: :::::
-0.021

:::::
-0.007

:::::
0.002

::::
0.001

:::::
-0.001

:::::
0.000

:::::
-0.005

:::::
-0.005

ISOP -0.092 -0.086 -0.033 0.023 -0.009 -0.010 -0.048 -0.043
S NN

::::::::
NeSPReSO

:
0.748

::::
0.829 0.674

::::
0.729 0.879

::::
0.887 0.984

::::
0.985 0.976

:::::
0.977 0.858

:::::
0.861 0.951

::::
0.962 0.968

::::
0.975

R2 GEM 0.337 0.409
::::
0.411 0.786

:::
0.789

:
0.971 0.957

::::
0.958

:
0.833 0.905 0.938

:::
0.939

:

::::
MLR

: ::::
0.803

::::
0.654

: ::::
0.786

: ::::
0.975

::::
0.957

: ::::
0.857

: ::::
0.952

: ::::
0.969

:

Figure 4 presents the average
:
T

:::::
and

:::
S

:
RMSE and bias of the three

methods across varying depths for temperature and salinity
:::
per

:::::::
depth

::::
for

::
all

::::::::::
methods. In general, NeSPReSO yields better approximations compared

to the other methods, as indicated by the lower RMSE
::::
and

::::
bias

:
values over-645

all. The method also exhibits bias comparable to GEM and lower than ISOP.
The improved prediction of upper-ocean temperature and salinity profiles in
our model compared to GEM is likely due to the use of satellite SST and
SSS, which offer additional information about the upper thermal and haline
structures that might not be captured in the ADT fields, such as low salinity650

due to river outflow.
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Figure 4: Average RMSE for temperature and salinity predictions (top), and average bias
(bottom) as a function of depth.

The synthetic profiles were aggregated spatially into 1-degree latitude by
1-degree longitude grid cells to assess the methods’ performance in predicting
T and S across the area of study. Figures referenced as 5 through 8 present
the spatial distribution of RMSE and bias for T and S. The statistics were655

calculated using predictions at the same depths as ISOP for a fair comparison.
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Figure 5: Distribution of average temperature RMSE for predictions down to 1,800m for
NeSPReSO (left), GEM (top), ISOP (bottom), and differences compared to NeSPReSO
(right). The

::::
with

:::
the

:
number of profiles in each bin is displayed in gray, and RMSE values

in black.
::::::::
Statistics

:::
for

:::::
ISOP

::::::
(top),

:::::
MLR

::::::::
(center),

::::
and

::::::
GEM

:::::::::
(bottom)

:::
are

::::::
shown

::
in
::::
the

:::::
center

::::::::
column,

::::
and

::::
their

::::::::::
respective

:::::::::
differences

:::
in

::::::::::
magnitude

:::::::::
compared

::
to

:::::::::::
NeSPReSO

:::
are

:::::
shown

:::
on

::::
the

::::
right

:::::::
column

::::::
(blues

::::::::
indicate

::::::::::
NeSPReSO

:::::::::
performs

::::::
better,

::::
and

::::
reds

::::::::
indicate

::::::::::
NeSPReSO

::::::::
performs

:::::::
worse).

Figure 6: Distribution of average salinity RMSE for predictions down to 1,800m for Ne-
SPReSO (left), GEM (top), ISOP (bottom), and differences compared to NeSPReSO
(right). The

::::
with

:::
the

:
number of profiles in each bin is displayed in gray, and RMSE values

in black.
::::::::
Statistics

:::
for

:::::
ISOP

::::::
(top),

:::::
MLR

::::::::
(center),

::::
and

::::::
GEM

:::::::::
(bottom)

:::
are

::::::
shown

::
in
::::
the

:::::
center

::::::::
column,

::::
and

::::
their

::::::::::
respective

:::::::::
differences

:::
in

::::::::::
magnitude

:::::::::
compared

::
to

:::::::::::
NeSPReSO

:::
are

:::::
shown

:::
on

::::
the

::::
right

:::::::
column

::::::
(blues

::::::::
indicate

::::::::::
NeSPReSO

:::::::::
performs

::::::
better,

::::
and

::::
reds

::::::::
indicate

::::::::::
NeSPReSO

::::::::
performs

:::::::
worse).
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Figure 7: Distribution of average temperature bias for predictions down to 1,800m for
NeSPReSO (left)

::::
with

:::
the

:::::::
number

:::
of

:::::::
profiles

::
in

:::::
each

:::
bin

::
is
:::::::::
displayed

::
in
:::::
gray, GEM

:::
and

:::
bias

::::::
values

:::
in

::::::
black.

:::::::::
Statistics

:::
for

:::::
ISOP

:
(top), ISOP

:::::
MLR

::::::::
(center),

::::
and

:::::
GEM

:
(bottom)

:::
are

::::::
shown

::
in

::::
the

::::::
center

:::::::
column, and

::::
their

::::::::::
respective differences

::
in

::::::::::
magnitude

:
compared

to NeSPReSO (
:::
are

::::::
shown

::
on

::::
the

:
right ). The number of profiles in each bin is displayed

in gray
:::::::
column

::::::
(blues

:::::::
indicate

:::::::::::
NeSPReSO

:::::::::
performs

::::::
better, and bias values in black

::::
reds

:::::::
indicate

::::::::::
NeSPReSO

:::::::::
performs

::::::
worse).

Figure 8: Distribution of average salinity bias distribution for predictions down to 1,800m
for NeSPReSO (left), GEM (top), ISOP (bottom), and differences compared to NeSPReSO
(right). The

::::
with

::::
the

:
number of profiles in each bin is displayed in gray, and bias values

in black.
::::::::
Statistics

:::
for

:::::
ISOP

::::::
(top),

:::::
MLR

::::::::
(center),

::::
and

::::::
GEM

:::::::::
(bottom)

:::
are

::::::
shown

::
in
::::
the

:::::
center

::::::::
column,

::::
and

::::
their

::::::::::
respective

:::::::::
differences

:::
in

::::::::::
magnitude

:::::::::
compared

::
to

:::::::::::
NeSPReSO

:::
are

:::::
shown

:::
on

::::
the

::::
right

:::::::
column

::::::
(blues

::::::::
indicate

::::::::::
NeSPReSO

:::::::::
performs

::::::
better,

::::
and

::::
reds

::::::::
indicate

::::::::::
NeSPReSO

::::::::
performs

:::::::
worse).
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The results indicate a robust performance of NeSPReSO in real-world
scenarios and applications, as NeSPReSO has lower overall RMSE for both
T and S predictions across the entire GoM region, with a few exceptions.
NeSPReSO shows a spatial distribution of bias predominantly of low mag-660

nitude and somewhat homogeneous (no apparent predominant bias).
:::::
MRL

:::
has

:::
a

:::::
very

::::::::
similar

::::::::
spatial

:::::::::::::
distributions

:::
as

::::::::::::::
NeSPReSO,

:::::
with

:::::::::
slightly

:::::::
higher

::::::::::::
magnitudes.

:
GEM also demonstrates a relatively homogeneous distribution,

but of
:::::
with

:::::
even

:
higher magnitude on average. Meanwhile, ISOP exhibits a

clear warmer and low magnitude trend for T and fresher for S, with greater665

magnitudes in the eastern portion of the GoM. Notably, in regions adjacent
to the Mississippi River, ISOP demonstrates increased errors.

4.2. Glider tracks

This section presents a comparative analysis of processed glider tracks
against the reconstructions from NeSPReSO, offering a direct assessment of670

the model’s performance by replicating independent observations.
Figures 9 to 12 illustrate four different processed glider crossings with

the corresponding synthetic reconstructions and the differences. Overall,
the displacement of isothermals and isohalines are in agreement with the
observations, and the reconstructed fields are smoother, as expected.675

Table 2 shows the RMSE, bias, and the coefficient of determination (R2 )
for each LCE crossing, which quantifies the variance captured by the model.
The T and S RMSE closely aligns with those derived from the test set

:
([

::::::
0-1000]

:::::
range

::::
on

:::::::
Table

:::
1). The bias for T and S exhibits a larger mag-

nitude relative to the test set across each crossing, with variations between680

positive and negative biases. One possible explanation for these variations is
related to the temporal and spatial resolution of satellite observations, par-
ticularly of ADT. These factors may contribute to a consistent directional
bias in the model’s predictions.

The R2 values range from 0.993 to 0.999
::::::
0.996

:::
to

::::::
0.998

:
for T predic-685

tions, and from 0.988 to 0.992
:::::
0.994

:
for S predictions, meaning NeSPReSO

consistently captures around 99% of the T and S variances.
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Crossing
::
T

:
RMSE

::
T Bias

::
T R2

:
S RMSE

:
S
:
Bias

:
S
:
R2

Poseidon
::::::
Mission

:::::
0006,

::::::::
crossing

::
#1 0.586

:::::
0.546

:
0.031

:::::
0.070 0.996

:::::
0.997

:
0.118

:::::
0.096

:
-0.011

:::::
-0.006

:
0.982

:::::
0.988

Poseidon
::::::
Mission

:::::
0006,

::::::::
crossing

::
#2 0.553

:::::
0.516

:
-0.207

:::::
-0.119

:
0.998 0.111

:::::
0.094

:
-0.035

:::::
-0.025

:
0.986

:::::
0.990

Campeche
::::::
Mission

:::::
0010

:
0.524

:::::
0.544

:
0.079

:::::
0.121 0.996 0.069

:::::
0.072

:
0.017

:::::
0.020 0.992

Intense LCE
::::::
Mission

:::::
0012

:
0.730

:::::
0.586

:
-0.133

:::::
0.003

:
0.996

:::::
0.997

:
0.105

:::::
0.086

:
-0.047

:::::
-0.035

:
0.991

:::::
0.994

:

Table 2: RMSE, bias and R2
:::
R2 between observations and synthetics across mesoscale

eddy crossings.
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Figure 9: Temperature and salinity sections of the Poseidon LCE.
::::::
mission

:::::
0006,

::::::::
crossing

:::
#1.

:
First column: Temperature. Second column: Salinity. Top

::::
First

:
row: processed data

from glider. Middle
::::::
Second

:
row: synthetic profiles using NeSPReSO. Bottom

:::::
Third row:

differences.
:::
Last

:::::
row:

:::::
ADT

::::
field

::::
and

::::::::
position

::
of

::::
the

:::::
glider

::::::
track.28



Figure 10: Another Temperature and salinity sections of the Poseidon LCE.
:::::::
mission

:::::
0006,

:::::::
crossing

::::
#2.

::
First column: Temperature. Second column: Salinity. Top

::::
First

:
row:

processed data from glider. Middle
::::::
Second

:
row: synthetic profiles using NeSPReSO.

Bottom
:::::
Third

:
row: differences.

:::::
Last

::::
row:

::::::
ADT

::::
field

::::
and

::::::::
position

::
of

:::
the

::::::
glider

:::::
track.29



Figure 11: Temperature and salinity sections of the cyclonic eddy in Campeche Bay.

::::::
mission

::::::
0010.

::
First column: Temperature. Second column: Salinity. Top

::::
First

:
row:

processed data from glider. Middle
::::::
Second

:
row: synthetic profiles using NeSPReSO.

Bottom
:::::
Third

:
row: differences.

:::::
Last

::::
row:

::::::
ADT

::::
field

::::
and

::::::::
position

::
of

:::
the

::::::
glider

:::::
track.30



Figure 12: Temperature and salinity sections of an intense LCE.
:::::::
mission

:::::
0012.

:
First col-

umn: Temperature. Second column: Salinity. Top
::::
First

:
row: processed data from glider.

Middle
::::::
Second

:
row: synthetic profiles using NeSPReSO. Bottom

:::::
Third

:
row: differences

:
.

::::
Last

::::
row:

::::::
ADT

::::
field

::::
and

:::::::
position

:::
of

:::
the

::::::
glider

:::::
track.31



5. Conclusions

This study underscores the efficacy of machine learning in producing syn-
thetic temperature and salinity profiles for oceanographic data. By integrat-690

ing Principal Component Analysis (PCA) with neural network models, we
successfully generated subsurface profiles from surface data, surpassing tra-
ditional methods like

::::::
MLR,

:
GEM and ISOP in accuracy and reliability.

Our results indicate that the neural network model consistently outper-
forms both GEM and ISOP method

:::::
other

:::::::::::::
investigated

::::::::::
methods

:
in terms of695

average RMSEand bias
:
,
:::::
bias,

:::::
and

:::
R2, suggesting a more accurate represen-

tation of the temperature and salinity profiles in the Gulf of Mexico. This
improvement is notable given the complex, nonlinear relationships between
surface and subsurface properties of the ocean, which machine learning mod-
els are particularly adept at capturing.700

These results raises several questions that warrant further investigation.
For instance, how will NeSPReSO perform in different oceanic regions with
distinct hydrodynamic and thermohaline characteristics, and what adapta-
tions might be required for different regional applications? Also, how can
NeSPReSO be adapted and trained to effectively generate accurate temper-705

ature and salinity profiles in oceanic regions with depths shallower than the
model’s current maximum depth range?

Future work should focus on addressing these questions, perhaps explor-
ing other machine learning techniques or hybrid models that combine the
strengths of various approaches. With the UGOS3 autonomous profiling710

floats fleet projected to accumulate approximately 1500 profiles annually,
the expanding dataset will significantly enhance the model’s training and
refinement. This expansion is crucial for extending the model’s applicability
across different oceanic areas, enriching our comprehension of its potential
and constraints.715

In conclusion, this work lays a precedent for using advanced machine
learning methods in oceanographic data synthesis, offering a promising di-
rection for future research in this field. The ability to accurately predict
subsurface oceanographic profiles using surface data not only aids in un-
derstanding ocean dynamics but also has practical implications in weather720

forecasting, climate modeling, and resource exploration.
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