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Abstract In recent years, efforts have been made to include tides in both operational ocean models as well
as climate and earth system models. The accuracy of the barotropic tides is often limited by the model
topography, which is in turn limited by model horizontal resolution. In this work, we explore the reduction of
barotropic tidal errors in an ocean general circulation model (Modular Ocean Model version 6; MOM6) using
sub‐grid scale topography representation. We follow the methodology from Adcroft (2013, https://doi.org/10.
1016/j.ocemod.2013.03.002), which utilizes statistics from finer resolution topographic data sets to represent
sub‐grid scale features with a light computational cost in a structured finite volume formulation. The geometric
effect from sub‐grid scale topography can be introduced to the model with only a few parameters at each grid
cell. The porous barriers, which are implemented at the walls of the grid cells, are used to modify transport
between grid cells. Our results show that the globally averaged tidal error in lower‐resolution simulations is
significantly reduced with the use of porous barriers. We argue this method is a potentially useful tool to
improve simulations of tides (and other flows) in low‐resolution simulations.

Plain Language Summary In recent years, significant attention has been given to simulating tides in
diverse ocean and climate models, because of the roles of tides in impacting sea levels. In order to better predict
future sea level changes, it is therefore essential to improve the accuracy of surface tides simulated in numerical
ocean models. One known source of errors that could impact the accuracy of modeled tides stems from the
accuracy of ocean topography in the models, which relies on how many grid boxes (i.e., model resolution) are
used to represent the complicated seafloor elevations. The model's resolution, however, is often constrained by
the efficiency of computations. Our objective in this study is to enhance the portrayal of ocean topography at a
given resolution to minimize tidal errors. To achieve this, we employ a technique known as “porous barriers,”
which uses approximations to mimic the effects of ocean topography that would be omitted in the models,
without imposing significant computational burdens. Our findings demonstrate that this technique of porous
barriers can substantially reduce tidal errors in our ocean model. We also expect a wider application of this
technique to numerous other physical processes within the ocean.

1. Introduction
Tides are one of the most prominent phenomena in the ocean. Tides arise from differences in the lunar and solar
gravitational potential across the Earth. The astronomical tidal forcing drives periodic changes in sea surface
height (SSH) and periodic tidal currents. There is a growing need for better understanding tidal interactions with
other physical and biogeochemical processes in a changing climate with shorelines altered by sea‐level rise and
coastal development.

With the advancement of computational power, tides have begun to be explicitly included in both operational
global ocean models (high horizontal resolution and short time duration) and global climate and earth system
models (often run at low horizontal resolution and long time duration) (Arbic, 2022; Arbic et al., 2010; Barton
et al., 2022; Müller et al., 2010; Pal et al., 2023; Schiller & Fiedler, 2007; Thomas et al., 2001). For both high‐ and
low‐resolution simulations, it is helpful and sometimes even critical to improve the accuracy of the modeled tides.
One important source of tidal error arises from the representation of topography.

In the real ocean, tides are affected by ocean topography (as an abbreviation, we use the term “topography” to
refer to ocean basin geometry, ocean bathymetry and shoreline configurations) in many ways. About 1/3 of the
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global tidal dissipation is carried out by the breaking of internal tides in open‐ocean regions with rough topog-
raphy (Egbert & Ray, 2001). In addition to these small scale dissipative processes that often require parame-
terizations in models, the resonances of global tides are also sensitive to ocean topography. In open oceans, the
semi‐closed basins guide the propagations of the shallow‐water surface gravity waves (Kelvin Waves and
Poincaré Waves) forming the amphidromic points and cotidal lines. In the coastal regions, shoreline configu-
ration, shapes of the marginal seas and connectivity of the channels can all influence local tides. The tides of the
open ocean are thought to be weakly resonant (Heath, 1981; Wunsch, 1972) due to the fact that there are many
global ocean normal modes with frequencies close to those of the astronomical semidiurnal and diurnal tidal
forcing (Müller, 2007; Platzman et al., 1981). Some coastal regions (e.g., the Bay of Fundy, English Channel,
Hudson Strait, and other locations) are well‐shaped for further resonance (Clarke, 1991; Cummins et al., 2010;
Garrett, 1972). Previous work has shown that strongly resonant tides in coastal regions have a “back‐effect” on
tides in the open ocean (Arbic & Garrett, 2010; Arbic et al., 2007, 2009).

Therefore, in order to better simulate tidal resonances in both open oceans, marginal seas and interactions between
them, it is crucial to faithfully represent ocean topography in numerical models. However, the accuracy of ocean
topography in models is highly restricted by their horizontal resolutions. For discretized model grids, the degrees
of freedom of ocean topography is inherently limited by the number of grid cells. This restriction hinders further
reduction of tidal errors at a given resolution. Numerical models are unable to resolve sub‐grid scale topographic
features such as deep ocean channels, ridges and details of shoreline configurations, which leads to mis-
representations of ocean basin and shoreline geometry and resonances of tides and contributes to higher tidal
errors in lower resolution simulations (e.g., Egbert et al., 2004). While parameterizations can be used to partially
characterize unresolved physical processes such as the energy cascade from barotropic tides to internal tides, the
missing geometrical effects due to unresolved topographic features and basin and shoreline geometry are often
unaccounted for. One potential method for improving the quality of the topography and shoreline geometry in the
model is to represent the effect of sub‐grid scale topography via porous barriers.

In this work, we evaluate the effect of porous barriers, on tides, following the methodology from Adcroft (2013).
In essence, porous barriers introduce sub‐grid scale topographic information at grid cell walls in finite volume
ocean models, which can potentially mitigate the limitation on topography details imposed by model's horizontal
resolution. Traditionally, the grid cell walls in finite volume ocean models are fully‐opened and uniformly‐wide,
and the complicated topography features that grid cell walls transect (as depicted in Figure 1a) are therefore
ignored. The concept of porous barriers is to model the grid cell walls as permeable barriers in which the openness
changes vertically. In practice, we use the statistics of the complicated sub‐grid depth profile (Dshallow,Dmean, and
Ddeep in Figure 1) and approximate with a simplified structure that widens monotonically from the very bottom to
the highest point of the topography (e.g., Figure 1b). Effectively, the depth profile reduces the area available for

Figure 1. Illustration of the concept of a porous barrier at the facet of a single grid cell. Units of both coordinates in this
illustration are arbitrary. At each depth, connectivity, measured by the area of openness, is the same for the realistic sub‐grid
scale topography in (a) and the sorted topography in (b). The sub‐grid scale openness (as a function of depth) is used by the
model to constrain transports across grid cells. We can further simplify by using parameters like the maximum, minimum and
mean depths to generate an idealized depth profile (red curve in (b)), so that the openness can be solved analytically by the
model. w(z) in (b) is a non‐dimensional weight function of depth describing the openness of the grid cell, which is used in
Equation 5 in Section 3.4.1. The simplified depth profiles are generated following the algorithms in the Appendix of
Adcroft (2013).
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transport and other fluxes through faces to match the unblocked widths at each depth, which provides a con-
nectivity that matches the real ocean.

With porous barriers, the model has additional degrees of freedom to represent the topography without increasing
the model's horizontal resolution and the computational burden that comes with the increased resolution. In
Adcroft (2013), an application to a tsunami event showed that the porous barriers can reduce the error of travel
times of the surface gravity wave in low‐resolution simulations. Here we expand the use of porous barriers to a
global implementation and study its application to barotropic tides.

We conduct numerical experiments using Modular Ocean Model version 6 (MOM6; Adcroft et al., 2019) as a
barotropic tidemodel. To better simulate tides, we introduce a new inline self‐attraction and loading (SAL) scheme
inMOM6. The SAL term accounts for the deformation of the seafloor by the load of the seawater, the gravitational
self‐attraction of the so‐deformed solid earth, and the geoid changes from the gravitational attraction of the
seawater itself (Hendershott, 1972; Ray, 1998). The SAL effect applies to all motions of seawater that changemass
(bottom pressure) but is especially important for high‐frequency motions such as tides. For tides, the SAL term is
approximately equal to 10% of the basin‐scale tidal SSH signal. The calculation of SAL requires spherical har-
monic transforms of global bottom pressure anomaly, whichwas historically considered too expensive to calculate
inline. Other SAL schemes (e.g., scalar approximation, reading in observed SAL fields, and iterativemethod) have
been adopted to circumvent the need for a fully inline SAL calculation, but these approaches are either highly
inaccurate or not applicable to non‐tidal motions or evolving tides in a changing climate. In recent years, a number
of ocean models and earth system ocean component models have begun to compute SAL inline (Barton
et al., 2022; Brus et al., 2023; Schindelegger et al., 2018; Shihora et al., 2022; Vinogradova et al., 2015). A similar
effort is made in MOM6 and results in this work demonstrate the utility of inline SAL.

The key conclusion from this work is that porous barriers significantly improve barotropic tides. We first use a
numerical experiment with 0.04° horizontal resolution as a baseline to evaluate tidal simulation in MOM6. Two
sets of numerical experiments with various resolutions, with and without porous barriers, are constructed from the
baseline experiment. We found globally implemented porous barriers help reduce the increased tidal errors
caused by the coarsened horizontal resolutions.

2. Model Description
We use the Modular OceanModel version 6 (MOM6; Adcroft et al., 2019) for the numerical experiments. MOM6
uses an Arakawa C‐grid for discretization in the horizontal direction. For the experiments in this work, we apply a
global tri‐polar grid with various numerical resolutions. MOM6 adopts generalized vertical coordinates with
vertical Lagrangian remapping (Griffies et al., 2020). In this work, we focus on the barotropic tides and therefore
only one layer is used. Layer continuity equation in the model is calculated with volume fluxes using a direc-
tionally split piecewise parabolic method (PPM; Colella & Woodward, 1984; Lin et al., 1994). A barotropic‐
baroclinic split time stepping scheme is used in MOM6 (Hallberg, 1997; Hallberg & Adcroft, 2009). The split
time stepping allows for the solution of linearized momentum and continuity equations in the short barotropic
time steps, and effectively reduces the time interval of calculating other forcing terms in the momentum equation,
including the nonlinear advection, viscosity and SAL terms. Therefore, although split time stepping is designed to
relax time step constraints in multi‐layer simulations, it also benefits the computational cost of one‐layer runs.

MOM6 is capable of simulating wetting and drying, that is, allowing land cells with a “depth” above sea level to
be flooded and ocean cell thickness to vanish. Wetting and drying effectively allow the locations of the coastlines
to vary over time, which can be potentially important for the tides.

The one‐layer configuration of MOM6 is governed by shallow‐water equations (see Appendix A). Here we
elaborate the momentum terms that are most relevant to barotropic tides. Our simulations are driven by the as-
tronomical forcing of the principal lunar semidiurnal tide M2, unless otherwise noted. The equilibrium tide ηEQ is
expressed in Equation 1 (e.g., Arbic et al., 2018).

ηEQ(λ,θ) = (1 + k2 − h2) f (tref)Acos2(ϕ)cos[ω(t − tref) + 2λ + χ(tref) + ν(tref)] (1)

Here, A is the astronomical forcing amplitude and ω is the frequency. k2 and h2 are the degree‐two Love numbers
accounting for the changes in gravitational potential field and seafloor deformations, respectively, associated with
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the solid earth body tides (the direct response of the solid earth to the astronomical tidal potential). χ(tref) is an
astronomical argument that is a function of the solar and lunar positions at reference time tref. f(tref) and ν(tref) are
nodal correction factors to the amplitude and phase, respectively, due to low frequency tidal constituents that are
often dropped in tidal simulations and that modulate larger tidal constituents such as M2. ϕ, and λ are latitude and
longitude, respectively. To simplify, we use an idealized calendar at time zero, that is, we set tref and χ(tref) to zero,
and ignore the nodal correction factors. These simplifications do not affect the conclusions of our work here, as
long as the corresponding harmonic analysis is simplified in the same manner.

The energy input from astronomical forcing is balanced by dissipation due to both horizontal and vertical viscous
terms. For the horizontal closure, we use a biharmonic form friction with Smagorinsky viscosity (Griffies &
Hallberg, 2000). The primary dissipation of barotropic tides is conducted by two types of vertical viscosity. First,
a quadratic bottom boundary layer drag, calculated implicitly, is mainly responsible for tidal dissipations in
shallow shelf regions where tidal velocities are often as large as 1 m/s. Second, a parameterized linear topographic
wave drag is included to represent dissipation by loss to internal tides, a process that is absent in barotropic
simulations. We use the wave drag scheme by Jayne and St. Laurent (2001) (see Appendix B for more details).
Here, wave drag is calculated implicitly in the barotropic solver as a part of the barotropic momentum equation.
The linear wave drag contains a tunable non‐dimensional coefficient, used to optimize the global tides. For most
simulations in the paper, this coefficient is the only tunable parameter.

For fast‐evolving motions such as the tides, the SAL effect must be taken into consideration. The SAL is often
calculated via spherical harmonic transforms of the global bottom pressure anomaly, with their spherical har-
monic components multiplied by a scaled factor (Equation 2).

pSAL(λ,θ) =∑
N

n=0
∑
n

m=− n

3
ρe(2n + 1)

(1 + k
′n
− h
′n
)Δ̃pbot

(n,m)
Y(n,m)(λ,θ) (2)

Here, Y(n,m) is the spherical harmonic with degree n and orderm.Δ̃pbot
(n,m)

is the corresponding spherical harmonic
component of bottom pressure anomaly. ρe is density of solid Earth. k′n and h′n are load Love numbers with degree
n, representing seawater load induced changes in gravitational potential field and seafloor deformations,
respectively. N is the highest degree used to calculate SAL. For barotropic simulations, bottom pressure anomaly

can be reduced to a linear function of SSH anomaly, that is, Δ̃pbot
(n,m)

= ρ0gη̃
(n,m) and pSAL = ρ0gηSAL, where g is

gravitational acceleration, ρ0 is average seawater density, η̃(n,m) is degree‐n and order‐m spherical harmonic
component of SSH anomaly, and ηSAL is SSH anomaly equivalent of SAL effect.

An inline SAL calculation following Equation 2 is implemented in MOM6 with similar algorithms as in Brus
et al. (2023). Following Brus et al. (2023), we use N = 40 for barotropic tide experiments. For our baseline 0.04°
global barotropic case, inline SAL increased the total computational cost by 20% and, as a fraction of the total, this
would be significantly reduced in baroclinic cases that typically have O(50) levels. Inline SALmethod leads to the
most accurate tides in almost all of our numerical experiments. A comparison of inline SAL and two traditionally
used SAL schemes (scalar approximation and read‐in method) is discussed in Appendix C.

We run all numerical experiments with a duration of 20 model days, allowing the global barotropic tides to reach
equilibrium. We use the SSH from day 18 to 20 for harmonic analysis and compare the results with observations.

3. Methods and Experiment Design
3.1. Model Validation Metrics

We use an observationally‐based data‐assimilative barotropic tide product TPXO (Egbert & Erofeeva, 2002)
version 9 as our reference for tides in the real ocean. For a grid point at (λ, θ) and at given time t, we obtain from
harmonic analysis of SSH the M2 constituent driven sea surface elevation, h(λ, θ, t) = Re[A(λ, θ) exp{i[ωt − ϕ(λ,
θ)]}]. Here, A is the amplitude and ϕ is the phase of the tide, respectively. Mean squared errors (MSE), ϵ2(λ, θ), of
the sea surface elevation h between the model output and TPXO (subscripts m and o, respectively) are calculated
as in Equation 3a to quantify the model's deviation from observations. Here, T is the time period of a tidal cycle.
Further, the MSE ϵ2 can be decomposed into contributions from amplitude ϵ2a and phase ϵ2p (Shriver et al., 2012),
shown as the two terms in Equation 3b. For the rest of the paper, we show on maps the square‐root of MSE, ϵ, and
its decompositions ϵa and ϵp, with the unit of height.
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ϵ2(λ,θ) =
1
T
∫

T

0
[hm(λ,θ,t) − ho(λ,θ,t)]2dt (3a)

= 0.5(Am − Ao)
2

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
ϵ2a(λ,θ)

+ AmAo [1 − cos (ϕm − ϕo)]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

ϵ2p(λ,θ)

(3b)

We evaluate the overall performance of each experiment with the root mean
square (RMS) of the globally averaged MSE. To reduce potential observation
errors from the satellite in coastal and polar regions, we confine the definition
of “global average” to within the latitudes 66°S and 66°N and depths larger
than 1,000 m (Arbic et al., 2004).

3.2. Baseline Experiments

We start off with a baseline experiment having a nominal horizontal resolution of 0.04° and use it as a benchmark.
This baseline experiment serves as the “truth” of the subsequent experiments and presumably has the smallest
RMS errors for the M2 tide relative to the rest of the experiments in this work. The only external inputs to the
model are topography (see below) and prescribed wave drag piston velocity (see Appendix B).

The topography of the baseline case is generated from the 30‐s GEBCO_08 20091120 global data set by taking a
5 × 5 average at each 0.04° tripolar grid point with the minimum depth set to be above sea level and can therefore
be flooded. This is further smoothed with a 2D 1‐2‐1 smoother except near the coastline (− 5m). Finally, Antarctic
ice shelves are “sunk” so that the bathymetry under ice shelves represents the water there. Ice shelves are taken
from a 1/2 by 1/4° version of BEDMAP1 (Lythe & Vaughan, 2001). The data sets going into the bathymetry are
relatively old because this is a version of the US Navy's GOFS 3.5 (Metzger et al., 2020) bathymetry, although the
latter has the coastline at 0.1 m and has additional manual edits in some regions.

We use the 0.04° topography from this run as a source for generating sub‐grid scale topography in all subsequent
numerical experiments. In other words, coarser resolution experiments do not receive topographic details beyond
the topography data set used in the baseline run. In theory, the baseline run should have the highest accuracy of tides.

3.3. Coarsened Horizontal Resolutions

To quantify tidal simulation performance change in lower resolutions, we coarsen the grid of 0.04° simulations by
a series of factors. By choosing integer factors, we guarantee that grid cell walls in coarsened resolutions are
simply concatenations of grid cell walls in the baseline run, thus simplifying implementation of porous barriers.
Resolutions of the numerical experiments vary from 0.04° to 0.36° (Table 1). Along with the grid, the data sets for
input topography, wave drag piston velocity is also weighted averaged (by cell area) to serve as inputs for the
coarsened resolution simulation.

In the coarsened topography, shoreline configuration, essential for both local and remote tides, is inevitably
modified. The locations of the model's discretized coastline depend heavily on the criterion for qualifying a grid
cell in the coarsened resolution as an ocean cell. In the simplest scenario, we can arbitrarily choose a cutoff ratio of
the ocean area in the coarsened cells ranging from 0 to 1, where 0 results in more ocean cells and therefore more
landward retreated coastlines while 1 gives more seaward moving coastlines. Without a better argument to
support either the “more ocean” or “more land” coastlines, we use 50% as our cutoff for ocean cells.

Following previous works (Buijsman et al., 2015, 2020; Egbert et al., 2004), the linear wave drag is re‐tuned for
different horizontal resolutions, as well as different SAL schemes. The globally averaged SSH RMS error is used
as the criterion to decide the optimal non‐dimensional coefficient for the linear wave drag at each resolution.

3.4. Porous Barriers

3.4.1. Implementation

Effectively, porous barriers constrain transport across the vertical walls of grid cells, thus avoiding the overly‐
widened pathways between cells. This is achieved by including a non‐dimensional factor that approximates

Table 1
List of Experiment Resolutions

Number of grid cells (nx × ny) Nominal resolution

9000 × 7056 0.04°

4500 × 3528 0.08°

3000 × 2352 0.12°

1500 × 1176 0.24°

1000 × 784 0.36°

Note. nx and ny refer to the number of grid points in the x (nominally zonal)
and y (nominally meridional) directions.
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the openness of the grid cell widths used for calculating transport. The discretized continuity equation in the
model can be approximated as

hn+1 = hn +
Δt
ΔxΔy

⋅ [δx (u ⋅ h∗
x αxΔy) + δy ( v ⋅ h∗

y αyΔx)] (4)

Here, δx and δy are finite differencing operators x and y direction, respectively. h
n is the layer thickness at time step

n. u and v are velocity components in the x and y direction, respectively. h* is used to stand for the effective
thickness at the velocity points from PPM reconstructed volume fluxes. Δx and Δy are the time‐invariant grid cell
widths in the x and y direction, respectively. Δt is the time step size. αx and αy are the non‐dimensional factors
from porous barriers for transport at x and y directions, respectively. The α parameters, located at velocity cells
(i.e., grid cell walls in C‐grid models), are calculated as follows:

α =
∫ ηt
ηb
w(z)dz

ηt − ηb
(5)

ηt and ηb are the top and bottom interface heights of the layer at the corresponding velocity point. In MOM6, the
time‐variant layer interface height is calculated at tracer cells (i.e., grid cell centers in C‐grid models). For
simplicity, ηt and ηb at velocity points are evaluated as the arithmetic mean of the interface heights at the
neighboring tracer cells. w(z) is a non‐dimensional weight function of depth z, which describes the openness of a
grid cell as illustrated in Figure 1b. With w(z) ≤ 1, αx, and αy are guaranteed to be no larger than 1. w(z) is
calculated analytically from the approximated depth profiles at the velocity points (the red curve in Figure 1),
discussed in details in the next section.

3.4.2. Topography Profiles at Velocity Points

The prescribed local topography vertical profiles are constructed by statistical parameters from high resolution
data sets. Following Adcroft (2013), we use three parameters: shallowest, deepest and mean depths at the cell
walls, to form a simple idealized V‐/U‐shape depth profile, which infers sub‐grid scale features.

From the baseline topography, we calculate ocean depths at grid cell walls by interpolating from those at the
centers of adjacent grid cells. There are multiple choices of interpolation methods, and the best choice is probably
specific to the problem being addressed. For instance, for a hydrologically‐controlled downward flow in a
channel, using the shallowest depth of adjacent cells may better describe the problem. The directions of tidal flow
reverse constantly, such that the basin shape and therefore the tidal resonance is perhaps more important.
Therefore we use a simple average of the adjacent tracer cell depths here.

We can then generate topography profiles for coarsened resolutions using this 0.04° map of topography at the
walls. For each coarsened resolution, the shallowest, deepest and mean depths are obtained from the grid cell
walls of the 0.04° resolution that constitute new walls in the new resolution (Figure 2). For instance, at the 0.12°
resolution, which is constructed by aggregating 3 × 3 grid cells from the 0.04° configuration, there are three depth
values at the grid cell walls at each direction; and the maximum, minimum and mean of these three values are used
as parameters to construct the depth profile. Note that by design, the numbers of grid cells of the baseline run in
both directions are always multiples of the number in the low‐resolution runs, therefore the grid cell walls in the
low‐resolution always coincide the grid cell walls in the baseline run. It is worth mentioning that the shallowest,
deepest and mean depths (i.e., Dshallow, Dmean, and Ddeep in Figure 1) are determined only by sub‐grid scale depth
values at grid cell walls, not by cell center depth values. For each coarsened resolution, the depth profiles at the
walls are uncorrelated to depths in their nearby tracer cells. The depth profiles are additional degrees of freedom
inherited from the baseline topography.

4. Results: Sensitivity to Horizontal Resolutions
4.1. Tides From the Baseline Experiment

We show amplitude and phase of SSH induced by M2 tides from the baseline experiment in MOM6 (Figure 3a)
and compare modeled SSH fields with observations (Figure 3b). The non‐dimensional linear wave drag
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coefficient is 0.8, which gives the smallest global RMS tidal error. Visually, the spatial distribution of the
amplitude and phase match with the real ocean tides. A quantitative comparison between the model and obser-
vations is shown in Figure 4a. Overall, the 0.04° resolution MOM6 simulation has an RMS error of 3.74 cm in the
deep ocean outside of high latitudes. This is to be compared with previous results such as 5 cm in Egbert
et al. (2004), 4.4 cm in Schindelegger et al. (2018), 1.94 cm in Blakely et al. (2022) and 6.8 cm in Barton
et al. (2022). The SSH error is mostly dominated by tides in the Atlantic basin, possibly related to the strongly
resonant tides in the Hudson Bay (Arbic et al., 2007, 2009). In the Pacific and Indian Oceans, tidal errors are
comparatively weaker but are still noticeable near the high tides areas between the amphidromic points.

The total error at each grid point is further decomposed into contributions from amplitude (Figure 4b) and phase
(Figure 4c). The large Atlantic errors are mostly attributed to the phase term. For cotidal lines near the coun-
terclockwise amphidromic points in the Atlantic, MOM6 is leading in phase to TPXO. This phase offset,
multiplied by large amplitude, results in large phase errors. Similar phase offsets between model and observations
can be found in some other places, but the phase error contributions are weak with a low tidal amplitude (see
Equation 3b).

Tides are sensitive to locations of coastlines, which undergo constant changes in the real ocean due to flood and
ebb tides. Therefore we also test the effect of allowing wetting and drying in the baseline configuration. The
global tidal error reduction is about 0.02 cm at the 0.04° resolution. This reduction indicates that while changing
coastlines does have an effect on open ocean tides, the resulting effect is much smaller than the effects of porous

Figure 2. Illustration of the method for generating the depth profiles at grid cell walls. From a high‐resolution topography
data set (left panel), we can calculate the wall depth with a simple arithmetic mean (numbers in white color) from
neighboring cell center depths (numbers in gray color). When horizontal resolution is coarsened (right panel), an area‐weight
average is used to obtain the new cell center depths, while a range of depths at new walls (numbers in the brackets in white
color) is given. The statistics of these depths (e.g., maximum, minimum and mean) can be used to generate a simple‐shaped
profile. Note that grid cell numbers in the baseline case are always multiples of grid cell numbers in coarsened resolutions,
making the new walls in coarse resolutions always concatenations of the old walls in the baseline case.

Figure 3. Maps of M2 surface tide amplitude (colors) and phase (contours) from MOM6 (a) and TPXO atlas (Egbert & Erofeeva, 2002) (b). Phase contours have an
interval of 30°. The MOM6 maps are from the baseline experiment, which has a nominal 0.04° horizontal resolution and uses inline SAL.
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barriers that we focus on in this work (as we show in the following). Nonetheless, we adopt wetting and drying in
all of our numerical experiments.

4.2. The Effect of Horizontal Resolution

We next investigate how tidal errors change as a function of horizontal resolution. To obtain the smallest RMS
error, the linear wave drag is re‐tuned for each run with a new resolution. It is found that the non‐dimensional
coefficient needs to increase at lower resolutions. The averaged RMS errors of tidal SSH from coarsened reso-
lution experiments are shown in Figure 5 (solid curves, the dashed curves are discussed later in Section 5.2). Tidal
errors increase almost linearly with decreased horizontal resolution, consistent with results in previous studies
(e.g., Egbert et al., 2004).

The decomposition of the total error suggests that the phase error increases faster than the amplitude error as
resolution is decreased, such that phase error makes the greater contribution to higher tidal SSH errors at low
resolutions. The change in tidal amplitude is directly associated with tidal energetics. Tidal currents are usually
weaker with lower resolution horizontal grids, which would change tidal dissipation and energy input. The phase,
on the other hand, is also affected by propagations and reflections of the shallow‐water gravity waves. When
horizontal resolution is coarsened, the model topography also changes. It is likely that the geographic locations of
cotidal lines and amphidromic points are changed due to the changes of ocean basin geometries.

Figure 4. Maps of the square‐root of MSE ϵ of SSH between the baseline experiment in MOM6 and TPXO (a) and
decomposition into contributions from amplitude ϵa (b) and phase ϵp (c). Cotidal lines from MOM6 (orange) and TPXO
(dark gray) are overlaid in (c) for comparison. Numbers on maps show averaged RMS error over the deep ocean and outside
of high latitudes. Contours of 1,000 m depth are shown in light gray curves and the latitudes of 66°N and 66°S are shown in
dotted gray lines, which delineate the deep‐ocean area over which RMS errors are computed.
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The spatial distribution of the increased errors in low‐resolution runs is exemplified by the 0.36° case in Figure 6.
The RMS error increase is not uniform across ocean basins. The greatest differences appear in the Pacific and
Indian Oceans, where tidal errors in the baseline case are small. We decompose the total MSE to contributions
from each basin in Figure 7.While tidal errors change monotonically across resolutions in almost all ocean basins,
the increase in the Pacific, Indian and Southern Oceans are particularly large, especially in the two lowest res-
olution cases. In particular, the Pacific basin is the primary driver of tidal error increases at low resolutions,
largely due to the phase error (Figure 6c).

It is also worth mentioning that there are regions in which the tidal errors decrease at lower resolutions, notably in
the region north of New Zealand, and in some parts of the Atlantic basin including Hudson Bay.

5. Results: The Effect of Porous Barriers
5.1. Local Implementation

As discussed in Section 3.4.1, porous barriers effectively narrow grid cells in coarse resolutions. Therefore, if
implemented at choke points between a marginal sea and the open ocean, porous barriers will modify the con-
nectivity in that place, potentially changing tides in remote deep oceans. We add porous barriers near the Hudson
Strait (Figure 8a) at the coarsest resolution (0.36°). The Hudson Strait connects the Hudson Bay, with high tides
and dissipation rates (Cummins et al., 2010; Egbert & Ray, 2000), to the open ocean of the North Atlantic; it has
been shown to be one of the key locations where topography can influence both local and remote tides. As shown
in Figure 8b, the tidal errors become worse with porous barriers implemented at the mouth of Hudson Strait. The
changes in the tidal SSH extends from the Labrador Sea to the entire Atlantic basin, and reach as far as the western
Pacific through the Indian Ocean. This result highlights the role that marginal seas play in the deep ocean tides.
The response in tidal errors here is rather similar to the findings in Arbic et al. (2009), in which the Hudson Strait
is completely blocked in one of their experiments. We speculate the large tidal errors in the Atlantic from the
baseline experiment (Figure 4) could be associated with relatively inadequate topography representations near the
Hudson Strait; and porous barriers do nothing but reintroduce these inaccurate topographic features to the coarse
resolution runs (Note from Figure 6 that the coarse resolution tidal error in fact slight decreases in the Labra-
dor Sea).

The example here demonstrated the model's sensitivity to sub‐grid scale topography and the utility of porous
barriers to recover some effects from unresolved topographic features. The remote response to local topography
modification suggests a global implementation of porous barrier will be far more complicated. The effect of a
global implementation may not be a simple summation of all the responses due to the specific local changes, as we
show in the next section.

Figure 5. Globally averaged RMS errors for M2 tides as a function of horizontal resolution. RMS errors are calculated over
the deep ocean and outside of high latitudes. The total error (blue) is decomposed into contributions from amplitude (orange)
and phase (green). Solid curves show results from control experiments in which topography is simply coarsened (discussed
in Section 4.2) and dashed curves show results from the same setup with porous barriers implemented (discussed in
Section 5.2).
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5.2. Global Tidal Error Change

We now evaluate the effect of a global implementation of porous barriers.
Porous barriers are added in each coarsened resolution and results are shown
in the dashed curves in Figure 5. For each resolution, the only difference in
model configuration is the application of porous barriers. Other parameters,
for example, the wave drag coefficient, is not re‐tuned. Sensitivity to the wave
drag coefficient is tested in all porous barrier cases, and we find the optimal
wave drag coefficients are identical to the experiments without porous
barriers.

In all cases with coarsened horizontal resolution, the total tidal error is
decreased with a global implementation of porous barriers. For instance, with
the help of porous barriers, the globally averaged RMS error in 0.36° case is
comparable with that of the 0.24° case without porous barriers. In most cases,
the reduction of tidal error results from reduction in both amplitude and phase
errors. Phase error changes are greater than amplitude error changes and are
therefore the more dominant factor underlying changes in total errors.

Geographically, signs and magnitudes of tidal error changes are not uniform.
The overall improvement results from large and widespread tidal error

Figure 7. Relative contribution of each ocean basin to the total MSE (without
porous barriers) at each resolution. Divided ocean basins: Atlantic and
Arctic Oceans (pink), Pacific Ocean (purple), Indian Ocean (olive) and
Southern Ocean (cyan).

Figure 6. Maps of changes in square‐root of MSE ϵ and its amplitude ϵa and phase ϵp components between 0.36° resolution
and the baseline experiment (0.04°). Numbers on maps show changes of globally averaged RMS error. Cotidal lines from the
baseline experiment are overlaid in (c) to help locate the changes. Contours of 1,000 m depth are shown in light gray curves
and the latitudes of 66°N and 66°S are shown in dotted gray lines, which delineate the deep‐ocean area over which RMS
errors are computed.
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Figure 8. (a) Topography near the mouth of Hudson Strait (shaded color) and grid points where porous barriers are applied (orange lines) at 0.36° resolution. Results are
not sensitive to the subtleties of exact locations where porous barriers are added, provided the mouth of the strait is covered. (b) Changes in total tidal error at 0.36°
resolution due to local implementation of porous barriers at Hudson Strait. The orange box shows the location of the map in (a).

Figure 9. Maps of changes in square‐root of MSE ϵ and its amplitude ϵa and phase ϵp components from the experiment with
porous barriers compared with the one without at 0.36° resolution. Numbers on maps show changes of globally averaged
RMS error. Contours of 1,000 m depth are shown in light gray curves and the latitudes of 66°N and 66°S are shown in dotted
gray lines, which delineate the deep‐ocean area over which RMS errors are computed.
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reductions, but there are also places with increases of tidal error. Generally speaking, most error reductions occur
in areas where the tidal error is large compared with the baseline experiment (Figure 9). The globally averaged
RMS reduction is largely driven by decreases in the Pacific Ocean, both in the open ocean and along its eastern
boundaries. Inversely, tidal error is increased in a number of regions. The southern Indian Ocean and an area north
of New Zealand suffer from a significant large tidal error increase. The Atlantic basin overall observes a moderate
change, with both signs of change present. Notably, Hudson Bay and western North Atlantic display increases of
tidal errors, as with the local implementation in the previous section.

Comparing Figures 6 and 9, it is obvious that porous barriers generally reverse changes arising from coarsening
horizontal resolution. It significantly reduces Pacific errors but also brings back some shortcomings in the North
Atlantic seen in the baseline run. In other words, porous barriers accomplish what they are intended to accomplish
by introducing lost geometric features back to coarse resolutions.

5.3. Possible Optimizations

Even though a local implementation of porous barriers (as in the example of Hudson Strait) may not improve the
global tides, the modeled tidal response to a global implementation of porous barriers is favorable. This response
suggests there could be possible tuning options to further reduce the total global tidal error. We present here a
number of choices based on the configuration of our experiments.

The inhomogeneity of tidal error changes across basins prompts us to examine whether these changes are re-
sponses to local or remote implementation of porous barriers. We first explore effects of single‐basin imple-
mentations of porous barriers. Results from the 0.36° case are listed in Table 2. The global tidal error is reduced
for each case where porous barriers are applied to a single ocean. The Pacific‐only implementation has the largest
effect, even more effective than the global implementation. This suggests that there are cancellations between
remote effects of local implementations. In addition, if we exclude the Southern Ocean, the reduction of tidal
errors is the greatest, indicating the Southern Ocean's porous barriers have an negative effect on reducing tidal
errors.

Inspired by this finding, we further test the dependence of improvement as a function of southern boundaries.
We find that 15°S is the optimal southern boundary for implementing porous barriers, and the new
configuration drastically reduces tidal errors in coarse resolution simulations (Figure 10). Compared with

Figure 5, this optimization leads to further reductions in both phase and
amplitude errors, with a greater change in the former.

To further investigate the reason for better tides when porous barriers are not
implemented globally, we divide the regions south of 15°S into 20 small
domains (Figure 11a), and evaluate their contributions to globally averaged
tidal errors. In the first set of experiments, porous barriers are implemented in
the target box in addition to the regions north of 15°S. In the second set of
experiments, porous barriers are implemented globally but excluding the
target box. The results (Figures 11b and 11c) highlight two regions (region
around New Zealand, the so‐called Zealandia submerged continent, and re-
gion around Madagascar), where local porous barriers implementation in-
creases global tidal errors. Tidal error is decreased when porous barriers are
implemented excluding either region (and tidal error is increased when either
region is included in the north of 15°S configuration). These two regions
south of 15°S coincide with the location where tidal errors are increased with
global porous barriers (Figure 9), which suggests the local changes in tidal
errors are largely due to local porous barriers.

Table 2
Changes in Global Tidal Error From 0.36° Resolution (in cm)

Region Global Atlantic + Arctic Pacific Indian Southern No southern

Δϵ − 1.62 − 0.19 − 2.78 − 0.22 − 0.41 − 3.03

Figure 10. Globally averaged RMS error for M2 tides as a function of
horizontal resolution. As in Figure 5 but for porous barriers implemented
only north of 15°S.
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These results suggest possibilities of further reducing global tidal errors by tuning the implementation of porous
barriers. But more importantly, we further confirm the findings in the previous section, that porous barriers can
faithfully reintroduce the sub‐grid scale topographic effect to the coarse resolution simulations, which may result
in increases of local tidal errors where high‐resolution tides are worse than low‐resolution.

5.4. Other Tidal Constituents

Sensitivity of tidal errors to porous barriers are tested for non‐M2 tidal constituents, and the global RMS errors are
compared in Table 3. Porous barriers are implemented globally for all cases. The results show that porous barriers
reduce the global tidal errors for both semidiurnal and diurnal tides.

6. Discussions and Conclusions
In this work, we study the application of porous barriers, a representation of sub‐grid scale topography, to global
barotropic tides. A series of experiments with various horizontal resolutions are designed. Globally averaged tidal
RMS errors, referenced to the observationally‐based product TPXO, increase with coarsened resolutions. The
error increase is due to contributions from both amplitude and phase, with phase error changes being the relatively
larger factor. A global implementation of porous barriers can revert some of the changes from the coarsened
horizontal resolution, especially phase errors. Overall, at a given resolution, the globally averaged tidal RMS error
is significantly reduced with porous barriers.

Porous barriers are intended to objectively reintroduce sub‐grid scale geometric effects from fine resolution
topography data sets, which is reflected in tidal error changes of both positive and negative signs. The
geographical distribution of tidal error changes from fine to coarse resolution is non‐uniform. Specific regions,

such as the Hudson Bay, areas around New Zealand, and areas around
Madagascar in the southwestern Indian Ocean, exhibit poorer local tides in
the baseline experiment with finer horizontal resolution. While in coarsened
resolution experiments porous barriers tend to reduce tidal errors in most
places, we also observe increases in tidal error in locations that are aligned
with regions where tidal errors are larger at finer resolution than coarse res-
olution experiments.

We explore the possibility of further fine‐tuning porous barriers by modifying
locations of implementation. Specifically, we target regions where tidal errors
are increased with porous barriers. The case with porous barriers

Figure 11. (a) Locations of divided domains south of 15°S for sensitivities of local porous barriers. The domain boxes are shown overlaying on a map of ocean
topography. Note that the bended longitudinal lines in the Antarctica are due to the fact that model grid has a dislocated singularity away from the South Pole. (b) Global
tidal errors (total errors) from experiments with porous barriers north of 15°S and the corresponding box south of 15°S. (c) Global tidal errors from experiments with
global porous barriers excluding the corresponding box south of 15°S. In (b) and (c), the shaded color denotes the changes from the their reference tidal errors, which are
4.50 cm for north of 15°S implementation and 6.47 cm for global implementation, respectively.

Table 3
Global Tidal Errors of Various Tidal Constituents From 0.36° Resolution
(in cm)

M2 K1 S2 O1 N2

ϵcontrol (cm) 8.09 2.65 4.07 1.45 1.98

ϵporous (cm) 6.47 1.91 2.43 1.21 1.45

Note. Only the total errors are shown. For each constituent, the wave drag
coefficient is re‐tuned to for optimal tides at a given resolution.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004056

WANG ET AL. 13 of 18

 19422466, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004056, W
iley O

nline L
ibrary on [22/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



implemented only north of 15°S results in even better tidal error reductions than a global implementation. These
results are caused by excluding regions with reduced local tidal errors in low‐resolution simulations in com-
parison with the highest resolution case, specifically the two regions south of 15°S. First of all, it is possible that
regions where tidal errors are increased by porous barriers are affected by the quality of local and remote
topography. Second, the subtleties of Southern Ocean topography may play a role. For instance, simulations in
this work do not include dynamical ice shelves in the Antarctica, which has been shown to impact global tidal
errors (Pal et al., 2023). Third, the optimal topography configuration may not be necessarily consistent for
physical processes of various timescales and frequencies, which means different implementations may be needed
depending on the focus of the simulations. For tides, rather than providing conclusive guidelines on how porous
barriers should be implemented geographically, we emphasize that this exercise suggests possibilities of further
refinement, in which case phase error in particular can be reduced in coarse horizontal resolution simulations.

The objective of this work is to demonstrate the capability of porous barriers and our experiments are designed in
an idealized and simple setup. Rather than configuring the most accurate tides in MOM6, we focus on the changes
of tidal errors with resolutions and changes with porous barriers at a given resolution. Therefore, instead of
extracting sub‐grid scale topographic details from finer resolutions, we use topography from a reasonable ac-
curate baseline setup (0.04° resolution) as the source for sub‐grid scale topography in coarse resolution runs. This
ensures that no further topographic details relative to the baseline are introduced through the application of porous
barriers, which allows a self‐consistent comparison across model resolutions. In practice, it is likely that the
accuracy of the modeled tides can be further improved with finer and more accurate topography than the baseline
employed here. We expect porous barriers to be a useful tool to further improve tides with a given source
topography data set and horizontal resolution of the model.

The construction and implementation of porous barriers is a rather simplified version compared with
Adcroft (2013) in that we are not taking into consideration the structure and connectivity within coarsened grid
cells. Adcroft (2013) proposed an objective mapping method to ensure that the effects due to walls within
coarsened resolution cells, which would otherwise be ignored, are incorporated into sub‐grid scale structure in
walls surrounding grid cells, thus avoiding the creation of deep pathways. We choose not to adopt this approach
for simplicity. It is possible that with a more faithful construction of porous barriers that includes the inner cell
geometries, tides at coarsened resolutions could be further improved. We leave this for possibility as a subject for
future research.

Another aspect of sub‐grid scale topography is the so‐called “porous media,” where a profile of topography at cell
centers is used to constrain the volume/mass capacity of the grid cells. However, porous media do not affect fully
submerged grid cells when there is only one layer in the vertical direction. As discussed in Section 4.1, we did not
find the addition of wetting and drying near the coastlines to change our results significantly. Thus we conclude
that porous media would not be effective in improving tides in this setup. However, porous medias could
potentially be a useful complement to the porous barriers in multi‐layer simulations.

Appendix A: Governing Shallow‐Water Equations
Dynamics of one‐layer barotropic simulations in MOM6 is governed by shallow‐water equations (Equation A1
and A2). Here, u is horizontal velocity, f + ζ is the total vertical vorticity, where f is the Coriolis parameter and
ζ = ∂xv − ∂yu is relative vertical vorticity. η is SSH anomaly of total thickness h referenced to the resting depth of
the ocean, ηEQ and ηSAL are the equilibrium tide and SAL effect, respectively (see Section 2 for their expressions).
Fquad is a quadratic bottom drag and Fh is horizontal viscosity term. Fwave is a parameterized linear wave drag
term, elaborated in Appendix B.

∂tu = − ( f + ζ)k̂ × u − ∇[
1
2
(u2 + v2)] − g∇(η − ηEQ − ηSAL) + Fquad + Fwave + Fh (A1)

∂tη = − ∇ ⋅ (uh) (A2)

In MOM6, the continuous shallow‐water equations above are discretized on an Arakawa C‐grid. Porous barriers
modify the grid cell widths in the discretized continuity Equation A2, which can be approximated as Equation 5.
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Appendix B: Parameterized Linear Wave Drag for Open‐Ocean Tidal Dissipation
We adopt the wave drag scheme by Jayne and St. Laurent (2001) (hereinafter, JSL). The adoption of JSL wave
drag scheme in this work is similar to Buijsman et al. (2015), to which the readers are referred for more details.

In essence, the wave drag force term is expressed in Equation B1, where χ is a non‐dimensional tuning parameter,
u is ocean (barotropic) velocity, and h is total water column thickness. CJSL is a pre‐calculated piston velocity that
is a function of both bottom roughness and bottom buoyancy frequency. A global map of CJSL for the baseline
case (0.04° horizontal resolution) is shown in Figure B1. Note that largeCJSL is located near ocean ridges andCJSL
is only non‐zero for regions deeper than 1,000 m.

Fwave = χ
CJSLu
h

(B1)

Appendix C: Comparison of Self‐Attraction and Loading Schemes
We show a demonstration of the utility of inline SAL in a comparisonwith two other types of SAL schemes used in
previous studies: a scalar approximation (Accad&Pekeris, 1978), inwhich the SAL is simply a fraction of the SSH
anomaly and a read‐in method, in which time‐invariant amplitudes and phases of the M2 tidal SAL from
observationally‐baseddata set areprovided to themodels. InlineSALismoreaccurate than the scalar approximation
because the latter does not account for the scale‐selective nature of SAL. In contrast to read‐in SAL, inline SAL can
be used in studies of past and future tides, in which the tides and their SAL signal have changed significantly. The
iterativemethod, where the oceanmodel is run repeatedly to get a converged off‐line SAL, can also be used for past
and future tides, but we exclude it from our tests in this paper because it offers no advantages over inline SAL.

We first compare the results from the baseline simulation in Table C1. For each SAL scheme, wave drag co-
efficients are re‐tuned and listed in the leftmost column of Table C1. The scalar approximation results in much
larger tidal errors than inline SAL. Tidal errors from inline SAL are comparable to these from read‐in SAL, which
uses observed tidal SAL amplitudes and phases as inputs to the model. Read‐in SAL, however, is not applicable to
non‐periodic motions; moreover, it removes the dynamical feedbacks between bottom pressure anomaly and the
SAL term and is therefore incapable of handling the changing tides in climate change scenarios. Due to the
obvious advantages in small tidal errors and dynamical justifications, we argue that inline SAL should be the top
choice for global tidal simulations.

Next, experiments with coarsened horizontal resolutions and their corresponding experiments with porous bar-
riers are repeated with two other SAL schemes in Figure C1. Consistent with the comparison of the baseline cases,
inline SAL results in the most accurate tides for all resolutions (solid curves). The superior performance of inline
SAL in lower resolutions over the read‐in method suggests the importance of SAL's dynamical interaction. With
porous barriers (dashed curves), all SAL schemes show considerable improvement of tidal errors in coarsened
resolution simulations, which provides supports to the robustness of results on the utility of porous barriers.

Figure B1. Map of piston velocity CJSL used in Jayne and St. Laurent (2001) linear wave drag scheme. The black contours are
used to denote locations of the 1,000‐m isobath.
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Data Availability Statement
The version of MOM6 source code used in all simulations of this work can be found at https://github.com/
herrwang0/MOM6/releases/tag/paper_porousbarriers. Runtime parameters, input files for the model, and output
from all simulations in this work is stored at Wang et al. (2023) (https://doi.org/10.5281/zenodo.8166251).
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