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Abstract This study utilizes Deep Neural Networks (DNN) to improve the K‐Profile Parameterization
(KPP) for the vertical mixing effects in the ocean's surface boundary layer turbulence. The deep neural networks
were trained using 11‐year turbulence‐resolving solutions, obtained by running a large eddy simulation model
for Ocean Station Papa, to predict the turbulence velocity scale coefficient and unresolved shear coefficient in
the KPP. The DNN‐augmented KPP schemes (KPP_DNN) have been implemented in the General Ocean
Turbulence Model (GOTM). The KPP_DNN is stable for long‐term integration and more efficient than existing
variants of KPP schemes with wave effects. Three different KPP_DNN schemes, each differing in their input
and output variables, have been developed and trained. The performance of models utilizing the KPP_DNN
schemes is compared to those employing traditional deterministic first‐order and second‐moment closure
turbulent mixing parameterizations. Solution comparisons indicate that the simulated mixed layer becomes
cooler and deeper when wave effects are included in parameterizations, aligning closer with observations. In the
KPP framework, the velocity scale of unresolved shear, which is used to calculate ocean surface boundary layer
depth, has a greater impact on the simulated mixed layer than the magnitude of diffusivity does. In the
KPP_DNN, unresolved shear depends not only on wave forcing, but also on the mixed layer depth and buoyancy
forcing.

Plain Language Summary The uppermost tens of meters of the ocean, known as the ocean surface
boundary layer, are rich in intricate and chaotic fine‐scale (cm to 100s m) ocean currents referred to as
turbulence. These currents, spanning from centimeters to hundreds of meters, play pivotal roles in shaping the
oceanic environment and influencing Earth's climate dynamics. Despite their significance, simulating these
fine‐scale ocean currents remains beyond the capabilities of current and foreseeable supercomputing resources.
Consequently, simplified formulas derived from fundamental principles are commonly employed to
approximate these currents in ocean and climate models. However, these approximations still cannot cover all
types of choppy currents and uncertainties in these approximations represent a substantial source of bias in
contemporary ocean and climate modeling endeavors. In this study, we enhance one of the prevalent physics‐
based approximations of fine‐scale turbulent currents using machine learning techniques. Our tests show that
integrating machine learning in physics‐based approximation is stable and efficient and is suitable for use in
ocean and climate models.

1. Introduction
The ocean surface boundary layer (OSBL) is a thin layer below the ocean surface, typically extending tens to a
hundred meters in thickness, and is strongly affected by external forcing such as wind, waves, and net heat fluxes.
Ocean currents within the OSBL are highly turbulent, with the scale of these turbulent currents ranging from
centimeters to several hundred meters. These turbulent currents have a profound impact on ocean dynamics, both
within and beyond the OSBL, playing a significant role in sustaining marine ecosystems and shaping global
climates. However, despite advances in oceanography, accurately simulating these turbulent processes remains a
formidable challenge, particularly in regional and global ocean models, where directly resolving these dynamics
is computationally infeasible in the foreseeable future (Fox‐Kemper et al., 2014, 2019).
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In realistic ocean and climate models, the turbulent flux of a variable x, that is, w′x′, is calculated as:

w′x′ = − Kx(
∂x
∂z
− γx) (1)

here, x represents a property in ocean water such as momentum, temperature, or material concentrations; z is the
vertical coordinate; and w is the vertical velocity of water. The overbar in Equation 1 represents the ensemble
average, while the prime denotes the turbulent fluctuation, that is, x′ = x − x. Kx in Equation 1 is the eddy
viscosity or diffusivity, represented by simplified physics‐based formulas called parameterizations. These pa-
rameterizations incorporate empirical, tunable coefficients. In early studies, the coefficients were tuned using in
situ observations of temperature and salinity (e.g., Large et al., 1994). However, in situ observations are
modulated by turbulent currents as well as submesoscale to large‐scale currents. Over the past 20 years,
turbulence‐resolving simulations of OSBL turbulence, using Large Eddy Simulation (LES) models, have become
available, with LES solutions being used to derive empirical parameters (Harcourt, 2015; Van Roekel
et al., 2012). LES models simulate OSBL turbulence exclusively, excluding submesoscale to large‐scale pro-
cesses, thus are superior to tune parameterizations of turbulent mixing. The second right‐hand term, γx in
Equation 1, represents the non‐local heat and material transport that are not proportional to the local gradient of
temperature and material concentrations. For momentum, γx is assumed zero in most studies, although a non‐zero
γx term was recently proposed by Large et al. (2019). The non‐local effects can be important when coherent
convective and/or Langmuir cells dominate. This study focuses on improving of Kx, which improves both the
local (downgradient) and nonlocal portion of the KPP diagnosed flux.

Turbulent mixing parameterization schemes typically fall into two categories. The first category is the first‐order
closure scheme, in which parameters directly relate to the forcing conditions and water property profiles. A well‐
known example is the K‐profile parametrization (KPP) scheme. The KPP scheme was initially proposed for
turbulence in atmospheric boundary layers (Troen & Mahrt, 1986) and later adapted for the OSBL (Large
et al., 1994). Due to its computational efficiency and stability, the KPP scheme is widely used in realistic sim-
ulations for regional and global oceans (e.g., Belcher et al., 2012; Q. Li & Fox‐Kemper, 2017; McWilliams &
Sullivan, 2000; Van Roekel et al., 2018; Vertenstein et al., 2012). Another well‐known first‐order closure scheme
is the energetics‐based planetary boundary layer scheme (ePBL, Reichl & Hallberg, 2018). The second category
is the second‐moment closure (SMC) scheme, where turbulent diffusivity and turbulent viscosity are derived from
turbulence statistics (kinetic energy, length scale, and dissipation rate) and empirically calculated in the scheme
(Kantha & Clayson, 1994; Umlauf & Burchard, 2003). The SMC scheme, being computationally more expensive
than the KPP scheme, is more commonly used in simulations of coastal oceans, where the current environment is
more complicated (e.g., Sane et al., 2021; Warner et al., 2005) than in global and regional oceans. Recent studies
have revised both the KPP and SMC schemes to include enhanced turbulent mixing effect due to wave‐driven
Langmuir turbulence, that is, KPPLT and SMCLT. Studies have shown that the use of KPPLT and SMCLT
generally improves the simulations of sea surface temperature (SST) and the mixed layer depth (MLD) for global
(Q. Li et al., 2016) and regional oceans (Ali et al., 2019). However, a recent study (Q. Li et al., 2019) examining 11
mixing parameterization schemes, including KPP, SMC, KPPLT, and SMCLT, found substantial differences in
the solutions provided by these methods, indicating persistent biases across all schemes.

Further refining traditional turbulent mixing parameterizations is challenging. In the upper ocean, turbulent
mixing is driven by diverse combinations of wind, wave, and buoyancy conditions. However, traditional
deterministic parameterization schemes were developed based on a small subset of the realistic conditions across
the global ocean (e.g., Figure 1 in Q. Li et al., 2019). Furthermore, although the scaling law is well‐established for
a specific turbulent regime, it is not well‐defined for common scenarios over the world's oceans, where the three
types of turbulence are equally significant. It is challenging to identify optimal functional forms and coefficients
to adequately encompass the vast turbulent regimes due to diverse combinations of wind, wave, and buoyancy
conditions.

In light of these challenges, recent efforts have begun exploring alternative approaches to take advantage of the
recent development of machine learning techniques, especially deep neural networks (DNNs), to enhance the
representation of the mixing effects of OSBL turbulence. Deep neural networks utilize extensive data as truth to
establish non‐linear relationships between the inputs and predicted outcomes. Early attempts aimed to replace
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traditional mixing parameterization by directly predicting turbulent fluxes using DNNs (e.g., Gentine et al., 2018;
Liang et al., 2022; Rasp et al., 2018). While these DNNs have shown promising results in predicting turbulent flux
profiles, ensuring numerical stability when integrating them with realistic climate models for long‐term use poses
challenges (e.g., Noah D Brenowitz et al., 2020; Chattopadhyay & Hassanzadeh, 2023; Rasp, 2020).

An alternative approach is to retain the physics‐based framework in traditional parameterizations and use DNN to
predict parameters that are uncertain in those parameterizations. Sane et al. (2023) trained DNNs to predict
profiles of eddy diffusivity in the OSBL under the framework of the ePBL (Reichl & Hallberg, 2018) using
simulations based on a SMC scheme as the truth. The authors further coupled the ePBL‐DNN model into the
Modular Ocean Model (MOM, e.g., Adcroft et al., 2019), and demonstrated its stability for long‐term integration.
Zhu et al. (2022) trained DNNs to predict mixing coefficients in the interior ocean (below the OSBL) based on in‐
situ microstructure observations at the equatorial Pacific Ocean. By implementing it into the MOM, they
demonstrated that incorporating a DNN into the model reduces cold biases in the equatorial Pacific. The study,
however, focused only on the KPP below the OSBL, but did not attempt to improve the KPP for the effects of
OSBL turbulence.

However, the DNN models in those two studies are not based on LES solutions and have not targeted the popular
KPP model. In this study, we aim to bridge the gap by using high‐resolution LES simulations to develop DNN
models capable of predicting key turbulent mixing parameters in the widely used KPP model. The models in this
study are designed to enhance the realism of OSBL simulations within the framework of the KPP scheme, without
altering fundamental equations or time‐stepping mechanisms, thus facilitating straightforward integration into
existing ocean models. The rest of the paper is organized as follows: Section 2 presents the framework of the
DNN‐augmented KPP (KPP_DNN) and outlines the data used to train the DNNs. Section 3 provides details on the
implementation of the DNN‐augmented KPP schemes into the General Ocean Turbulence Model (GOTM).
Section 4 describes how the GOTM is configured. Section 5 evaluates the performance of the KPP_DNN and
compares the KPP_DNN with traditional parameterizations. Section 6 explores the use of the KPP_DNN to
understand OSBL turbulence and deficiency in physics‐based parameterizations. Section 7 summarizes the major
findings of the study and discusses future research directions.

2. The K‐Profile Parameterization Augmented by Deep Neural Networks (KPP_DNN)
2.1. Model Description

In the KPP framework (Large et al., 1994), the expression for viscosity or diffusivity Kx is given by:

Kx(σ) = wx(σ) hGx(σ) (2)

here,wx is a velocity scale related to the surface forcing and the Monin‐Obukhov similarity theory, h is the surface
boundary layer depth, and Gx(σ) is a dimensionless shape function, with σ = z/h the depth normalized by h. The
OSBL depth h is the depth to which the impact of surface forcing reaches. In low and mid‐latitudes, where mixed
layers are relatively shallow and the Coriolis effect is relatively weak, the OSBL depth often equals the MLD, and

Figure 1. The architecture of a deep neural network model.
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deepening of the OSBL is limited by stratification. In higher latitudes, observations show that the OSBL can at
times be substantially shallower than the mixed layer (Carranza et al., 2018) and the deepening of the OSBL is
limited by the rotation of the earth when convection is weak (Liu et al., 2018). When convection dominates, the
impact due to the earth's rotation on the depth of OSBL is small.

In mixing parameterizations, the OSBL depth h is typically diagnosed by identifying the depth at which the bulk
Richardson number (Rib), a measure of the relative importance between shear and stable stratification, exceeds a
critical value Ric. This criterion is based on linear stability analysis, which shows that stably stratified shear flow
is unstable and turbulent mixing quenches when the gradient Ri exceeds a critical value of 0.3, that is,
Rib > Ric= 0.3. Below the OSBL depth, Ri is larger than Ric and the flow is stable. Above the depth, Rib is smaller
than Ric and the flow is turbulent. In the KPP scheme, the bulk Richardson number Rib(z) is used and the critical
bulk Richardson number is set to be 0.3 (Large et al., 1994). Rib(z) is related to ocean current and stratification as,

Rib(z) =
z(br − b(z))

(ur − u(z))2 + U2
t (z)

(3)

here, b is the buoyancy, defined as b = g[αθ(θ − θr) − βs(s − sr)], with θ the potential temperature, s the salinity,
αθ and βs the corresponding thermal and saline expansion coefficients, respectively; u is the water current vector.
The subscript r denotes the vertically averaged value over the surface layer. The effect of turbulence is repre-
sented using the velocity scale of the unresolved shear U2

t (z) :

U2
t (z) =

CvN(z)wx(z)|z|
Ric

(4)

where Cv is a dimensionless coefficient and N is the Brunt‐Väsälä frequency.

Recent studies have shown that the effects of non‐breaking waves greatly modulate turbulent fluxes in the OSBL,
either enhancing or suppressing turbulent fluxes depending on the alignment between wind and waves
(McWilliams et al., 2014; Van Roekel et al., 2012). When wind and waves are largely aligned, as is common
across the global ocean, turbulence is enhanced by wave‐driven Langmuir turbulence. When waves are signif-
icantly misaligned with the wind, as occurs when the swell is strong, turbulence is suppressed. Several recent
studies (e.g., Q. Li & Fox‐Kemper, 2017; Q. Li et al., 2019; McWilliams & Sullivan, 2000; Van Roekel
et al., 2012) have been devoted to including wave effects into the KPP framework. In those parameterizations,
referred to as KPPLT hereafter, the turbulent velocity scale (wx), and the unresolved shear velocity scale, U2

t (z) ,
are modified as,

Kx(σ) = ϵwx(σ)|h|Gx(σ) (5)

U2
t (z) = ηU

2
t (z)

⃒
⃒
LMD (6)

where the subscript LMD (Large, McWilliams and Doney) indicates the term is calculated using a formula in
Large et al. (1994), the velocity scale coefficient ϵ and the unresolved shear coefficient η are calculated using
traditional deterministic functions of wind and wave forcing (e.g., Q. Li & Fox‐Kemper, 2017; Reichl
et al., 2016).

In this study, these two coefficients will be determined by Deep feedforward Neural Networks (DNNs), as
opposed to traditional deterministic functions in existing studies. The DNN augmented parameterization will be
called KPP_DNN hereafter.

A DNN is made up of multiple densely connected layers, including one input layer, one output layer, and multiple
hidden layers (Figure 1). Each layer includes multiple neurons. Neurons between layers are connected by the
following relationship:

Xi,j = f(∑
Nj− 1

k=1
wk,i,j− 1Xk,j− 1 + bk,i,j− 1) (7)
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where Xi,jmeans the i th neuron in the j th layer, Nj is the number of neurons in the j th layer. wk,i,j− 1 and bk,i,j− 1 are
the weight and bias that link neuron Xk,j− 1 to neuron Xi,j, respectively. In this study, the Leaky Rectified Linear
Unit function (Leaky ReLU, α(x) = max(0.1x,x)) is used as the activation function. Other activation functions,
including tangent hyperbolic and ReLU, were tested as well, but did not improve the results.

The DNN's input layer consists of water‐column variables, including potential temperature profiles (θ), salinity
profiles (s), and key OSBL turbulence drivers, including wind stress (τx,τy), shortwave radiation at the ocean
surface (Sw), net heat flux excluding short wave radiation (Qf), the rate of evaporation minus precipitation (Qs),
vertical profiles of Stokes drift associated with ocean surface waves (ust,vst) and the OSBL depth from the pre-
vious time step. The output layer consists of a single neuron in each DNN model, predicting a specific parameter.
Specifically, we have two different DNN models based on the output: model Dϵ to predict the turbulent velocity
scale coefficient (ϵ), and model Dη to predict the unresolved shear coefficient (η). To prevent the DNN models
from predicting unphysical values, ϵ and η were scaled to a range of 0–1, and a sigmoid activation was added to
the output layer to ensure the predictions by the DNN models always fall within this range.

The DNNmodel utilizes a vast array of computations characterized by nonlinear activation functions with distinct
weights and biases. Integrating a well‐tuned DNN model into a traditional physics‐based parameterization
scheme not only preserves the computational stability and efficiency of a traditional physics‐based model but also
enables a more flexible and effective non‐linear mapping from input variables to output parameters than what
traditional deterministic formulas could achieve.

Compared to other machine learning model architectures, such as Long‐Short Term Memory (LSTM, Hochreiter
& Schmidhuber, 1997) and Fourier Neural Operator (e.g., Z. Li et al., 2020), the neural network using basic
densely connected layers is much more efficient and equally accurate for the purposes of this study.

2.2. Data Generation and Curation

The data used to develop and test the KPP_DNN schemes are turbulence‐resolving simulations for Ocean Station
Papa (OSP) using the NCAR‐LES model for the OSBL (e.g., Sullivan &McWilliams, 2010). OSP (50°N, 145°W,
see Figure 2a) is located within the Northern Pacific subpolar gyre. With a long history of continuous atmospheric
and oceanographic in situ observations (Cronin et al., 2023; Whitney & Tortell, 2006), OSP has been served as a
pivotal site for monitoring ocean climate (e.g., Bond et al., 2015; R. E. Thomson & Tabata, 1987), understanding
ocean physical and biogeochemical processes, and developing parameterization schemes extensively employed in
diverse ocean models (e.g., Chalikov, 2005; Craig & Banner, 1994; Gaspar et al., 1990; Kantha & Clayson, 1994;
Large et al., 1994). Figures 2b and 2c present the probability of OSBL turbulence regime at OSP based on the

Figure 2. Panel (a) shows the location of Ocean Station Papa (OSP) in the north Pacific Ocean. Panels (b, c) are regime diagrams showing the forcing conditions at OSP
between 2010 and 2022. In panel (b, c), the x axis is the turbulent Langmuir number (Lat), while the y axis is the mixed layer depth h divided by the Langmuir stability
length LL. Panel (b) corresponds to conditions of destabilizing net surface buoyancy forces, whereas panel (c) is for conditions under stabilizing buoyancy forces. The
blue contours are the probability (30%, 60%, 90% and 99%) of a certain parameter combination in the global ocean, while the red contours are the probability (30%, 60%,
90% and 99%) in OSP. In panel (b), the thin dashed contours show turbulent dissipation rate, and the thick solid black lines encompass regimes where one of the three
types of turbulence contributes over 90% to total dissipation. In panel (c), the thick black line is the maximum equilibrium − h/LL value according to Pearson
et al. (2015).
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observed forcing conditions. The most common turbulence regime at OSP is a mix of the three types of turbu-
lence. There are periods when Langmuir turbulence dominates, while convection or shear‐driven turbulence
seldom dominates. Different from the global ocean (compare the blue and black contours), the OSBL at OSP is
seldom strongly convective or strongly stabilizing. LES models are currently the state‐of‐the‐art tool to study
OSBL and submsoscale turbulence (e.g., Bodner et al., 2020; Skyllingstad & Denbo, 1995; Yuan & Liang, 2021),
and to develop parameterizations for those processes (e.g., Bodner et al., 2023; Liang et al., 2013; Liang
et al., 2018; Liu et al., 2022).

The use of the NCAR‐LES model to generate data is similar to that reported in Liang et al. (2017, 2022): The
domain of the LES model is configured with 160 uniformly distributed horizontal grid points, spanning 300 m in
each horizontal direction, Vertically, the LES model features 128 stretched grid points across a 200 m depth, with
the finest grid equal 0.2 m at the ocean surface. The LES model was driven by a combination of observed hourly
meteorological (Cronin et al., 2015), wave conditions (J. Thomson et al., 2013) and the derived surface flux
products at OSP from September 2010 to December 2022. These inputs include wind stresses, wave conditions,
shortwave radiation, net surface heat flux (excluding shortwave radiation), and the rate of evaporation minus
precipitation, at OSP from September 2010 to December 2022. Periods when the observational wave data were
not available were excluded from LES simulations. The LES simulations were restarted every 10 days, and initial
conditions of each restart were derived from observed water column temperature and salinity profiles, linearly
interpolated to LES vertical grids. The restart procedure is to ensure that the LES solutions do not deviate from the
true state of the ocean, as large‐ and mesoscale processes that also modulate the physical states of the upper ocean
at the station (Cronin et al., 2015) are not resolved by the LES model. Comparisons with observations show that
the LES simulations closely align with observed upper‐ocean states with this approach (see Figure 3). In total, 367
LES simulations were conducted.

The turbulence‐resolving LES solution data set differs from that used by Liang et al. (2022) in two ways: Firstly,
the simulation period is longer, spanning from 2010 to 2022 in the current study, as opposed to 2010 to 2019 in
Liang et al. (2022), thereby offering more data for model training and testing. Secondly, shortwave radiation
penetrates the OSBL in the current study while shortwave radiation was applied only at the ocean surface in Liang
et al. (2022). The shortwave radiation at depth z, Qsw(z), is calculated as

Qsw(z) = Qsw,0 ( r ez/μ1 + (1 − r) ez/μ2 ) (8)

where Qsw,0 is the net shortwave radiation at the ocean surface. r = 0.58, μ1 = 0.35 and μ2 = 23 are three
empirically determined constants (Paulson & Simpson, 1977) to fit the data in Jerlov (1976). The penetrative
shortwave radiation is more realistic than a surface shortwave flux. In LES simulations, the penetrating shortwave
radiation led to thicker OSBLs and more modest increases in SST when compared to simulations driven by
shortwave radiation only at the ocean surface. The use of penetrative shortwave radiation is also consistent with
realistic ocean models. Therefore, the KPP_DNN trained using the set of LES solutions could be implemented
into realistic ocean models.

Ensemble‐averaged profiles of temperature, salinity, velocities, turbulent kinetic energy (TKE), and their tur-
bulent fluxes were calculated online and output every 30 min. The depth of the OSBL h was diagnosed as the
depth at which the vertical gradient of momentum flux decreases to 2 × 10− 7 m/s2. η was then diagnosed using
Equations 4 and 6 with a Ric = 0.3. wx and G(σ) in Equation 5 were first calculated using the LES solutions and
formulas detailed in Large et al. (1994). ϵwas then obtained by minimizing the difference between the momentum
fluxes using Equation 1 and the output momentum flux from LES solutions.

2.3. Model Training

The turbulence‐resolving LES data were separated into three data sets: the training, the validation and the testing,
at a ratio of approximately 6:2:2. The validation data set was used to monitor the neural network training and
prevent overfitting, while the testing data set was used to evaluate the model after the training process was
completed. This partition followed the random block sampling strategy (Schultz et al., 2021), dividing the data by
LES runs, each covering a 10‐day period. This strategy efficiently avoids spurious correlations among the data
sets and ensures that all three data sets represent different climatological conditions over the entire study period.
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The predicted coefficients ϵ in model Dϵ and η in model Dη were compared with ϵ and η diagnosed from LES
solutions as detailed in Section 2.2. Mean square errors served as the loss to update trainable parameters in the
DNNs. The DNNs were trained using TensorFlow and Keras within the R programming environment. The ar-
chitecture of these DNNs varied significantly, encompassing a range of different layers (1, 2, 4, 6, 8, and 12) and
neurons per layer (2, 4, 8, 16, and 32), to explore the optimal structure for our specific application. The Adam
optimizer was employed across all models. Each model was trained for 1,000 epochs. The learning rate was
reduced by a factor of 0.1 whenever a plateau in validation loss, quantified as Mean Squared Error (MSE), was
detected during the training process. The criterion for selecting the best model was based on the smallest vali-
dation loss, a standard measure of model accuracy on unseen data, ensuring that the chosen model has the highest
generalization capability.

3. Implementation of KPP_DNN in the General Ocean Turbulence Model (GOTM)
The GOTM (Burchard et al., 1999) is a single‐column model designed to examine the behavior of various tur-
bulent mixing parameterization schemes in the OSBL. It provides a versatile framework, allowing for the
straightforward compilation and execution of different OSBL turbulent mixing parameterization schemes,
making it the ideal testbed for developing and testing mixing parameterizations. The current GOTM model

Figure 3. Comparison between the Large Eddy Simulation|large eddy simulations solutions and in situ observations at Ocean
Station Papa. (a) Mixed layer depth; (b) mean temperature in the mixed layer; (c) mean salinity in the mixed layer.
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includes a variety of first‐order and second‐moment closure schemes,
allowing for the comparison of different schemes within the same framework.

Adding to the capability of the GOTM, this study implements the trained
DNNs, their structure and trainable parameters, into the model. The GOTM,
like most earth system models, is coded exclusively in Fortran, while DNN
models are typically written in high‐level programming languages like Py-
thon and R, utilizing deep learning libraries such as Keras (Gulli & Pal, 2017;
Ketkar & Ketkar, 2017). There are two approaches that a DNN model could
be implemented in a Fortran code: The first is to hard‐code the entire DNN
structure and trainable parameters directly into Fortran (e.g., N. D. Brenowitz
& Bretherton, 2018; Gagne et al., 2020). The other approach, adopted in this
study, is to overcome the computer language interoperability by incorporating

a software library that connects Fortran and Python environments, such as the Fortran‐Keras Bridge (FKB, Ott
et al., 2020) used in this study.

The process involves converting a trained DNN using Keras, saved in HDF format, into an ASCII file offline. This
ASCII file is specifically structured for easy interpretation by the FKB. In a FKB informed Fortran program, the
DNNmodel, including its structure and weights, is reconstructed by loading this ASCII file. During each timestep
of integration in the GOTM, the necessary input array, composed of outputs from the GOTM model and forcing
conditions, as detailed in Section 2.3, was normalized and fed into the loaded DNN model. Subsequently, the
DNN's predictions were then denormalized and integrated back into GOTM to compute the enhancement factors
in Equation 6.

4. Model Configurations
Three different KPP_DNNs were compared against seven existing physics‐based parameterizations (Table 1)
using the GOTM. The three KPP_DNNs vary in complexity. In KPP_DNN1, only the coefficients for the velocity
scale coefficient ϵ predicted by Dϵ were utilized. In KPP_DNN2a, both the velocity scale coefficient ϵ predicted
by Dϵ and the unresolved shear coefficient η predicted by Dη were used. Wave‐induced stokes profiles were not
included as inputs of the KPP_DNN2a. KPP_DNN2bwas the same as KPP_DNN2a but additionally incorporated
Stokes profiles as inputs. For ocean models not yet coupled with wave models, the KPP_DNN2b could be
employed by reading in pre‐calculated Stokes profiles calculated offline from wave spectrum products (e.g., Ali
et al., 2019; Q. Li et al., 2016), or the KPP_DNN2a can be utilized without the Stokes drift as inputs.

The best‐trained DNN models, identified by the smallest validation loss during training, are configured with 2
hidden layers of 16 neurons each for Dϵ and 4 hidden layers of 16 neurons each for Dη in KPP_DNN2a, and 4
hidden layers of 8 neurons each for Dϵ and 8 hidden layers of 8 neurons each for Dη in KPP_DNN2b. The
performance of the training process and the model is in the (see Figure S1 in Supporting Information S1 for
training and validation loss curves and Figure S2 in Supporting Information S1 for density distribution curves for
DNN predictions and LES truths in the Supporting Information S1).

Seven well‐known traditional deterministic parameterizations were also selected for comparison (Table 1). The
KPP_LMD is the basis of KPP schemes and does not incorporate the enhancement of non‐breaking waves.
KPPLT_VR12 adds the enhancement of non‐breaking wave effects only to the turbulent velocity scale but leaves
the unresolved shear component unchanged. KPPLT_LF17 builds on KPPLT_VR12 and includes modification
on both the velocity scale and the unresolved shear components. KPPLT_RW16 is similar to KPPLT_LF17, but
formulas and coefficients that modify velocity scale and the unresolved shear were tuned using LES solutions
under hurricane conditions, thus has a stronger enhancement than KPPLT_LF17. It should be noted that all three
KPPLT schemes have considered the effects of wind‐wave misalignment. Across the global oceans, wind and
waves are often misaligned (e.g., Abolfazli et al., 2020; Hanley et al., 2010). When waves align with the wind,
Langmuir turbulence enhances OSBL turbulence. When waves oppose the wind, OSBL turbulence is suppressed
(e.g., McWilliams et al., 2014). All KPPLT schemes were tuned using LES solutions.

SMC_KC94 is the second closure model tuned using data over at a few different locations across the global
oceans. This scheme does not include the non‐breaking wave effects. SMCLT_H15 generalizes SMC_KC94 to

Table 1
List of Parameterization Names and the References for the Traditional
Deterministic Parameterization Schemes Compared in This Study

Parameterization name References

KPP_LMD Large et al. (1994)

KPPLT_VR12 Van Roekel et al. (2012)

KPPLT_RW16 Reichl et al. (2016)

KPPLT_LF17 Q. Li and Fox‐Kemper (2017)

SMC_KC94 Kantha and Clayson (1994)

SMCLT_H15 Harcourt (2015)
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incorporate the impact of non‐breaking waves by including the Stokes profiles in the governing equations. Co-
efficients in the SMCLT_H15 scheme were tuned using LES solutions.

The performance of the seven traditional parameterizations and the three variants of KPP_DNN schemes is
compared using the GOTM for the year 2011–2016, when observed meteorological conditions and directional
wave spectra were continuously available. The GOTM simulations are divided into two sets. Both sets of sim-
ulations were driven by observed meteorological and wave conditions. They differ by the surface buoyancy fluxes
used to drive the model. In the first set of simulation (set 1), surface buoyancy flux products at OSP provided by
Pacific Marine Environmental Laboratory (PMEL), were used as input. Those fluxes were calculated using the
Coupled Ocean‐Atmosphere Response Experiment (COARE) algorithm with the observed ocean and atmosphere
conditions. In the second set of simulations (set 2), surface buoyancy fluxes were calculated using the same
COARE algorithms online during the GOTM simulations. The online flux calculation is based on observed
meteorological condition and the simulated SST and sea surface salinity (SSS). The approach in the pre‐
calculated surface buoyancy flux has been commonly used in studies aiming at improving or comparing mix-
ing parameterization schemes (e.g., Q. Li et al., 2019). In this model configuration, forcing conditions are
identical among different simulations and the difference in solutions are purely due to mixing parameterizations.
The online calculation of surface buoyancy flux in the second set of simulation is consistent with that in most
realistic ocean simulations using regional and global models (e.g., Chassignet et al., 2020). In simulations driven
by pre‐calculated buoyancy fluxes, corrected fluxes to nudge the simulated SST and SSS to their climatological
states are usually imposed to prevent the long‐term drift in the solutions (e.g., Barnier et al., 1995). With this
approach, however, the surface buoyancy flux is different among simulations using different mixing parame-
terizations. The GOTM simulations were restarted at the beginning of each year using observed temperature and
salinity profiles as initial conditions. In each simulation, outputs were recorded at every 30 min. It should be noted
that the GOTM with all parameterizations could be integrated for a full 6‐year period without any stability issue.
However, restarting at the beginning of each year mitigates the long‐term drift in the solution due to the exclusion
of larger‐scale processes in the 1‐D vertical column model (see Figure S3 in Supporting Information S1).

5. Performance of the KPP_DNN Models
5.1. Model Evaluation Using LES Solutions

To directly evaluate the performance of GOTM models using different turbulent mixing schemes, we compared
them with LES solutions. We conducted several 9‐day simulations coinciding with all the testing periods,
initializing from the beginning of day 2 in each simulation, and ran for 9 days for each testing period. We then
calculated three statistics for SSTs—mean standard deviation, root mean square errors, and correlations—for all
the testing periods from both the LES solutions and GOTM simulations. Comparisons of four variants of KPP
schemes, including KPP_DNN2b, KPPLT_LF17, KPPLT_RW16, and KPP_LMD, using the Taylor diagram
(Figure 4) show that KPP_DNN2a and KPP_DNN2b share similar evaluation statistics, and both are superior to
all other schemes in terms of root mean square error and correlation. Among the traditional deterministic schemes,
the performance of KPPLT_LF17 is close to that of KPP_DNN2a and KPP_DNN2b, as simulations used to tune
KPPLT_LF17 is also typical to mid‐latitude stratified ocean. In agreement with Q. Li et al. (2019), the perfor-
mance of KPPLT_RW16 and KPP_LMD is not as good for OSP, as KPPLT_RW16 was tuned using LES
simulations of hurricane‐forced OSBL, while KPP_LMD was tuned using observation over the global ocean.

5.2. Model Comparison Using Long‐Term Integration

Figure 5 shows the evolution of surface forcing and ocean temperature profiles calculated using various mixing
parameterizations for the year 2013 using pre‐calculated surface buoyancy fluxes. Forcing conditions are iden-
tical for these solutions. Both wind and buoyancy fluxes exhibit distinct seasonal variability. Winds are weaker
and stabilizing surface buoyancy fluxes prevail from March to early September. During winter, there were
multiple storms characterized by short‐term and significant strengthening in both wind and destabilizing surface
buoyancy fluxes. For example, during the cold front in late September, the daily average wind speed doubled
within a single day and remained above 12 m/s for approximately 1 week.

Figure 5b displays the temperature profiles calculated using KPP_LMD. From January to March, there is minimal
variability in the simulated MLD and temperature. The simulated mixed layer was relatively deep, close to 100 m,
and the mixed layer temperature was around 5°C. The upper ocean re‐stratified quickly in April. The MLD
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shallowed from − 100 to − 20 m during April. However, the warming of the
mixed layer during the month is relatively modest, about 2°C. The mixed
layer continued to warm, reaching a maximum temperature of 17.6°C in early
September. Since then, the mixed layer cooled and deepened. It should be
noted that a marine heatwave, famously known as “the Blob,” started in the
winter of 2013/2014 (Bond et al., 2015; Di Lorenzo & Mantua, 2016)
resulting in a shallower and warmer mixed layer at the end of 2013 than the
beginning of the year. In addition to the seasonal cycle, rapid mixed layer
cooling and deepening associated with storms are also evident, leading to
short‐term variability in both mixed layer temperature and depth. For
example, storms in early June led to notable mixed layer cooling and deep-
ening during the longer‐term seasonal warming of the mixed layer during
summer, while a storm in late September accelerated mixed deepening and
cooling during fall.

Figures 5c–5j show the differences between different parameterizations and
KPP_LMD. In KPPLT_VR12 and KPP_DNN1, wave effects are incorpo-
rated only into the velocity scale coefficient ϵ, but not in unresolved shear
coefficient η. The results (Figures 5c and 5h) demonstrate only a slight impact
on the simulated temperature profiles. The deviation in temperature from the
baseline KPP_LMD remained relatively minor, less than 1°C throughout the
year. The mixed layer was only slightly deeper after September.

In the KPP schemes that include wave effects in both velocity scale coeffi-
cient ϵ and unresolved shear coefficient η, that is, KPPLT_LF17,
KPPLT_RW16, KPP_DNN2a and KPP_DNN2b, as shown in Figures 5d, 5e,
5i and 5j, the simulated mixed layer using those schemes was evidently cooler
and deeper throughout the year than that using KPP_LMD. A warm anomaly
was observed at a depth of approximately 120 m throughout the year. That is
the greatest depth that the mixed layer reached in March and well below the
mixed layer after April when the water column re‐stratified, thus highlighting

the significance of OSBL mixing in shaping upper‐ocean thermal profiles and heat transfer between the surface
and the interior ocean. Among these solutions, the one using KPPLT_RW16 displays the most rapid mixed layer
cooling and deepening in Fall, implying the strongest mixing during that period, consistent with the finding by Q.
Li et al. (2019). The stronger mixing by KPPLT_RW16 is attributed to the use of hurricane conditions to tune the
coefficients. The simulated short‐term mixed layer cooling and deepening due to storms, and the subsequent
short‐term warming and restratification by these four parameterizations were also more dramatic than those by
KPP_LMD, KPPLT_VR12 and KPP_DNN1. These results highlight the importance of accounting for the un-
resolved shear coefficient η in modeling wave effects in parameterizations under the KPP framework.

For SMC_KC94 (Figure 5f), which did not incorporate wave effects, the simulated mixed layer tends to be
shallower and warmer throughout the year compared to that in KPP_LMD, indicating that the parameterized
mixing in SMC_KC94 is weaker than that in KPP_LMD. This is particularly evident during the first half of the
year when the mixed layer warms and re‐stratifies. With the inclusion of wave effects, the simulation using
SMC_H15 yields a mixed layer that is cooler and deeper compared to the one using SMC_KC94. Between
January andMarch, the simulated mixed layer using SMC_H15 exhibits higher temperatures than those generated
by the KPPLT and KPP_DNN2 schemes. The re‐stratification predicted by SMC_H15 occurs more rapidly than
that by KPP_LMD, evidenced by a sharper increase in mixed layer temperature during April. The simulated
mixed layer cooling and deepening rates by SMC_H15 in fall is close to those using KPPLT_LF17, KPP_DNN2a
and KPP_DNN2b.

The time series of SST for the years 2011–2016 are presented in Figure 6. Observed SST is plotted as reference
and is not a metric to evaluate the 1D simulations, as observed SST includes contributions from processes other
than OSBL turbulence. The simulated SST is mostly warmer than observation at the end of the year for all years.
At the OSP, large‐ and meso‐scale processes also contribute to the annual cycle of SST (Cronin et al., 2015).
Across the six years simulated, SST was the highest using the SMC_KC94 and the lowest using KPPLT_RW16,

Figure 4. Taylor diagram for the rate of change of simulated mixed‐layer
averaged potential temperature. The solid lines, dashed lines and dotted lines
represent contours of normalized standard deviations, the normalized root
mean square errors and the correlations, respectively. The standard
deviations and the root mean square errors were normalized by dividing the
standard deviation of the truth (Large eddy simulations solutions).
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Figure 5.
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respectively, implying that mixing is the weakest in SMC_KC94 and is the strongest in KPPLT_RW16. When
using KPPLT_VR12 and KPP_DNN1, the simulated SST is close to that in KPP_LMD throughout the 6 years,
reaffirming that KPP parameterizations without counting on wave effects on unresolved shear coefficient η has
only limited impact on the evolution of MLD and temperature within the mixed layer.

The simulated SSTs using KPPLT_LF17, SMCLT_H15, KPP_DNN2a, and KPP_DNN2b were lower than that
using KPP_LMD, KPPLT_VR12, KPP_DNN1, and SMC_KC94, but higher than that using KPPLT_RW16.
There is a considerable difference between the solutions of the two KPP_DNN2 schemes: KPP_DNN2a and
KPP_DNN2b. The simulated SSTs by the two schemes were close to each other for the year 2013. In other
simulated years, the simulated SSTs when using KPP_DNN2b were noticeably cooler than that using
KPP_DNN2a. The difference between KPP_DNN2a and KPP_DNN2b highlights the different roles that waves
played in different years.

The simulated SSTs using KPPLT_LF17, SMCLT_H15, KPP_DNN2a, and KPP_DNN2b were more closely
aligned with both the magnitude and the tendency of the observed SSTs in OSP than using KPP_LMD,
KPPLT_VR12, KPPLT_RW16 and SMC_KC94. However, it is important to note that the one‐dimensional
column models like the GOTM do not account for processes at a scale larger than boundary layer turbulence,
such as submesoscale, mesoscale, and large‐scale circulations. Therefore, differences between GOTM solutions
and observations should be interpreted with caution as they could be due to contributions by those larger‐scale
processes. As pointed out by Large et al. (1994), OSP is often impacted by heat advection between September
and February, a factor that can significantly modulate SSTs but is not included in the 1D GOTM simulation, thus
often causing larger discrepancies between simulated and observed SSTs during these months. For example,
observed cooling is stronger than the simulated cooling by all schemes during November 2016 and warmer than
the simulated cooling by all schemes with wave effects during December 2013.

The simulated SSTs, derived using online flux calculation (set 2), are presented in Figure 7. With online flux
calculation, the buoyancy fluxes vary across different simulations. A lower simulated SST results in smaller
surface heat loss, as both the outgoing long wave and the sensible heat loss calculated from the COARE algorithm
are both smaller. Different from the solutions using pre‐calculated fluxes (set 1) shown in Figure 6, the differences
in SST among simulations employing different turbulent mixing schemes in Figure 7 were much smaller, mostly
less than 0.5°C. The simulated SSTs using different parameterization schemes were also more closely aligned
with observations. However, starting from November, consistent biases from the observed SSTs were found in
each simulated year, with SSTs generally being higher except for the year 2013. The deviated SSTs in winter are
due to the advection effects which are not considered in the 1D GOTM model, while the unique SST biases in
winter 2013, is likely due to the heatwave “Blob.” These biases underscore the influence of advection on SSTs, an
impact that could not be completely mitigated by online flux calculation using bulk formulas.

Figure 8 shows the differences in the simulated MLDs between simulations driven by pre‐calculated buoyancy
fluxes (set 1) and those driven by fluxes calculated online using bulk formulas (set 2). During the summer months,
the simulated MLDs in set 1, using pre‐calculated flux, were mostly slightly shallower with KPP_LMD, and
slightly thicker with KPPLT_RW16 in comparison with the observed MLDs. Simulated MLDs in set 2, which
used online flux calculation, were shallower and better aligned to observations. During this period, online flux
calculation reduces biases in both simulated SSTs andMLDs. However, during the colder months from January to
April and after November, when the simulated SST is higher than the observed SST (Figure 7), the simulated
MLDs were deeper when driven by fluxes calculated online using bulk formula. Note that during these periods,
the MLDs in simulations using parameterization schemes with wave enhancements (KPPLT_LF17,
KPPLT_RW16 and KPP_DNN2b) were deeper than the observed mixed layer. Results of simulations over a 6‐
year period from 2011 to 2016 (see Figure S3 in Supporting Information S1) confirms that all the simulations
using online flux calculation efficiently eliminates the warming drift of SSTs, but the deviations of MLDs in

Figure 5. Comparison of the potential temperature profile evolutions at Ocean Station Papa in the year 2013 using various simulation schemes. Forcing conditions are
identical in these simulations (set 1). (a) Time series for observed 10‐m wind speeds (thin red line) and net surface buoyancy fluxes (thin blue line). The smoothed thick
lines show the daily averaged values. (b) Potential temperature evolution calculated using KPP_LMD. Panels (c–j) show the difference in simulated temperature from
KPP_LMD for all other parameterizations. The mixed layer depth (MLD), defined by the depth at which the density exceeds the surface value by 0.03 kg/m³, from
KPP_LMD is indicated by thin red lines in panels (b–j), whereas the mixed layer depths from other schemes are delineated by blue lines in panels (c–j).
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colder months amplified over years, even for KPP_LMD. While the online flux calculation has the potential to
reduce biases in the simulated SST, it could conversely increase biases in the simulated MLDs.

5.3. The Efficiency of KPP_DNNs

A parameterization must be efficient so that it can be used in realistic ocean models for long‐term integrations.
The efficiency of the KPP_DNNs is evaluated by comparing them with the traditional KPP and KPPLT schemes
(refer to Table 2) within the GOTM framework.

Simulations were conducted on a dedicated single core of Intel Cascade Lake (Intel® Xeon® Platinum 8,260
Processor) CPUs on the Louisiana Optical Network Initiative's high‐performance computing server (LONI‐
HPC). The year 2013 served as the benchmark period for the GOTM model runs to evaluate efficiency. In all
simulations, the forcing and configuration were identical. To ensure accuracy in measuring computational effi-
ciency, we disabled output.

The results showed that the run times for KPP_DNNs are comparable with those of traditional KPP and KPPLT
schemes. Specifically, the run time for KPP_DNNs exceeds less than 4% that of KPP_LMD and KPPLT_VR12

Figure 6. Comparison of observed sea surface temperature (SST) time series at Ocean Station Papa and simulated SST time
series using different schemes from 2011 to 2016 (panels a, f) in simulation Set 1. All simulations were driven by identical
surface forcing conditions, that is, using pre‐calculated surface buoyancy fluxes.
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but is 8% faster than that for KPPLT_LF17% and 22% faster than that for KPPLT_RW16. This comparison
suggests that KPP_DNN schemes are suitable for implementation in realistic ocean and climate models.

6. Neural Network Enabled Understanding of OSBL Turbulence and
Parameterization
Neural networks excel at discovering complex relationships and can be employed to help understand the
complicated dynamics in OSBL turbulence and potential missing relationships in traditional physics‐based KPP
schemes.

Figure 9 presents the dependence of the velocity scale coefficient (ϵ in Equation 5) on turbulent Langmuir number
and MLD and compares it across KPPLT_LF17, KPPLT_RW16, and KPP_DNN2b. In all three schemes, the
magnitude of ϵ shows a clear dependence on the non‐dimensional turbulent Langmuir number (Lat). Specifically,
a smaller Lat is associated with a larger ϵ, indicating wave‐induced turbulence has a larger effect on mixing. ϵ by
KPPLT_RW16 (Figures 9c and 9d) is the largest among the three schemes. ϵ by KPP_DNN2b displays a
dependence on the MLD as well. The deeper the MLD, the larger the ϵ.

Figure 10 shows the unresolved shear coefficient (η in Equation 6) for KPPLT_LF17, KPPLT_RW16, and
KPP_DNN2b. As demonstrated in the simulated temperature profiles and SST (Figures 5 and 6), the magnitude of

Figure 7. Same as Figure 6, but for Simulation Set 2 using buoyancy flux calculated online.
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the unresolved shear coefficient η is more impactful than the magnitude of the velocity scale ϵ coefficient in the
simulation of upper‐ocean temperature and stratification.

For KPPLT_LF17 (Figures 10a and 10b), η only varies with forcing conditions when surface buoyancy forcing is
destabilizing. Under stabilizing buoyancy forcing conditions, the velocity scale of unresolved shear U2

t by
KPPLT_LF17 is the same as that by KPP_LMD, thus η= 1.0 regardless of the
wind‐wave‐buoyancy condition or MLD. Under destabilizing buoyancy
forcing conditions, the average value of η ranges from 1.0 to 2.5, but there is
no apparent correlation between η and either Lat or MLD. For KPPLT_RW16
(Figures 10c and 10d), there is an apparent relationship between η and Lat.
The more dominant the wave effect over the wind effect, the smaller the Lat
and the larger the η. However, there are no apparent differences of η in
magnitudes under different buoyancy forcing conditions or MLD if Lat is the
same. The more dominant the wave effect over the wind effect, the smaller the
Lat and the larger the η.

In KPP_DNN2b (Figures 10e and 10f), η is impacted not only by Lat, but also
by MLD and surface buoyancy forcing. Similar to KPPLT_LF17 and

Figure 8. Comparison of simulated MLDs between General Ocean Turbulence Model simulations using Pacific Marine
Environmental Laboratory derived flux products and those using COARE‐v3.6 online calculated fluxes for the year 2011
(panel (a)) to 2016 (panel (f)). The MLDs were diagnosed as the depth where water density exceeds surface water density by
0.03 kg/m3. A 5‐day running average was used to remove high‐frequency fluctuations.

Table 2
List of Parameterization Names and Their Run Time

Simulation name Run time (seconds)

KPP_LMD 3.06

KPPLT_VR12 3.07

KPPLT_LF17 3.48

KPPLT_RW16 4.12

KPP_DNN1 3.09

KPP_DNN2a 3.16

KPP_DNN2b 3.20
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KPPLT_RW16, η increases with decreasing turbulence Langmuir number for all MLDs. However, different from
the two KPPLT schemes, there is also an evident relationship between η and MLD: η decreases with increasing
MLD, implying a weaker influence of Langmuir circulations on mixed layer deepening when the mixed layer is
deeper. Langmuir circulation arises from wave‐current interaction close to the surface, where it exhibits the
greatest intensity (e.g., McWilliams et al., 1997). Q. Li and Fox‐Kemper (2020); Weller and Price (1988) found
no significant wave effect at the base of the mixed layer if the MLD exceeds − 40 m deep.

Furthermore, η also depends on whether the surface buoyancy forcing is stabilizing or destabilizing. For the same
Lat and MLD, η is larger when surface buoyancy forcing is stabilizing, indicating that the traditional KPP scheme
(KPP_LMD) more significantly and more consistently underestimates the entrainment effect. As discussed in Ali
et al. (2019), due to an underestimation of entrainment effect, KPP schemes tend to underestimate the sum-
mertime MLD everywhere, during which season stabilizing buoyancy forcing is predominant. The KPPLT
schemes, such as the KPPLT_LF17 slightly improve the simulated summertime MLD, but still underestimate it.
The KPP_DNN2b scheme identifies the limitation of KPP_LMD and predicts larger η under stabilizing buoyancy
forcing.

7. Conclusions
In this study, feedforward DNNs tuned using 11‐year solutions of turbulence‐resolving large eddy simulations
(LES) driven by realistic forcing conditions at OSP, are used to improve one of the most popular parameteri-
zations for mixing in the OSBL, the KPP. Specifically, the DNNs are used to parameterize two coefficients: the

Figure 9. Comparison of the velocity scales coefficient (ϵ) computed by two of the traditional deterministic KPPLT schemes,
that is, KPPLT_LF17 (panels a, b) and KPPLT_RW16 (panels c, d), and predicted by the KPP_DNN2b (panels e, f). The
color scale in each hexagon represents the average enhancement of velocity scale ϵ over all data points contained in the
hexagon region. Only hexagons averaged over more than 50 data points are shown. The upper row (panels a, b, and c)
corresponds to conditions of destabilizing buoyancy forces, whereas the lower row (panels d, e, and f) represents conditions
under stabilizing buoyancy forces. Different from the regime diagrams in Figure 2, the y‐axis is the mixed layer depth.
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turbulent velocity scale coefficient ϵ and the unresolved shear coefficient η in Equations 5 and 6 respectively.
These two coefficients revise the turbulent velocity scale and the unresolved shear, two key parameters in the
KPP. The KPP_DNNs are implemented into the GOTM, a one‐dimensional column model and commonly used
testbed of turbulence parameterization. The KPP_DNNs are compared with seven popular traditional deter-
ministic schemes, including variants of the first‐order KPP and SMC schemes within the GOTM using simu-
lations for upper‐ocean conditions at OSP between 2011 and 2016. Key conclusions from this study are
summarized as follows:

• The KPP_DNNs are stable, accurate and efficient for integration over several years. The KPP_DNN scheme
including wave effects, that is, the KPP_DNN2b, is 8% faster than KPPLT_LF17% and 22% faster than
KPPLT_RW16.

• When using the pre‐calculated flux products, the simulated mixed layer is the warmest and the shallowest
using the schemes without wave effects, that is, KPP_LMD and SMC_KC94. The simulated re‐stratification
in spring is faster when SMC compared to KPP.

• Biases in the simulated SST are smaller when using online buoyancy flux calculation using bulk formulas
(Simulation Set 2) compared to using pre‐calculated flux (Simulation Set 1). However, biases in the simulated
MLD are larger with the online buoyancy flux calculation.

• In KPP_DNN2b, the value of the turbulent velocity scale coefficient ϵ and the unresolved shear coefficient η
not only increases with decreasing Lat, but also changes with the thickness of the mixed layer. As the mixed
layer deepens, ϵ increases while η decreases. When MLD and Lat are identical, η is smaller when surface
buoyancy forcing is destabilizing compared to stabilizing.

The KPP_DNN2 schemes not only reproduce the dependence of turbulent mixing on Langmuir number, but also
uncover the dependence on the MLD and whether the surface buoyancy forcing is stabilizing or destabilizing.
This study highlights the ability of deep learning to discover relationships and physics not easily identified in

Figure 10. Same as Figure 9, but for the unresolved shear coefficient (η).
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traditional deterministic KPP schemes, and to incorporate complex, multifaceted influences on turbulent mixing
in the OSBL.

There are two main directions for further studies.

1. The first is to implement and evaluate the KPP_DNNs in a realistic ocean model for a regional ocean. We are
currently conducting LES simulations for the Gulf of Mexico and will include those new simulations in the
training data set of the KPP_DNNs. Both the KPP_DNN2b scheme, with Stokes drift profiles included as
model inputs, and the KPP_DNN2a will be implemented in the HYCOM model configured for the Gulf of
Mexico (Dukhovskoy et al., 2015; Laxenaire et al., 2023).

2. The capability of the KPP_DNN scheme will be expanded to include other turbulent and geographic regimes
by including training data for those regimes and geographic locations as training data. The current KPP_DNN
is trained using LES solutions at OSP, where turbulence is typical of the mid‐latitude oceans, and is accurate
for the mid‐latitude oceans with similar turbulent regimes. To have a KPP_DNN suitable for other regions,
existing and new LES simulations for strongly convective high‐latitude oceans (e.g., Skyllingstad &
Denbo, 1995), configuration typical of the equatorial regions (e.g., Schmitt et al., 2024; Whitt et al., 2022), and
strongly forced hurricane conditions (e.g., Liang et al., 2020) can be added to the training data set. Finally,
some other factors and conditions, such as the horizontal component of the Earth's rotation (Liu et al., 2018),
and a background front (e.g., Fan et al., 2018; Taylor & Thompson, 2023; Yuan & Liang, 2021) also modulates
OSBL turbulence. Adding those LES simulations will further expand the capability of KPP_DNN. The
advantage of neural networks is their flexibility to accurately map any input to any output. This advantage will
be evident when the KPP_DNN is used for multiple regimes.

Data Availability Statement
The observed temperature and salinity profiles, the forcing data, the derived surface fluxes at OSP can be
downloaded from the PMEL website (https://www.pmel.noaa.gov/ocs/data/disdel/). The GOTM codes with
KPP_DNN model and COARE bulk flux algorithm implemented are available at Liang (2024).
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