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Overview

Hurricane Isabel, 12 Sept. 2003

Images of polygonal hurricane eyewalls have spurred interest in
wave-vortex coupling—role in intensification?

Established models of linear instability (e.g. Montgomery,
Schubert, Nolan, Schecter etc.):

Centrifugal (symmetric) instability: fast; observed?

Vortex Rossby Waves (VRW): barotropic VRW-VRW coupling.

Rossby-Inertial-Buoyancy (RIB): baroclinic VRW-IB coupling.
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Overview (II)

Properties of the RIB instability:

Observed to require a sharp negative PV gradient, arguably
where the VR and IB waves couple.

First studied at small Froude number by Ford (1994) who
concluded:
“unlikely to be of any practical interest in geophysical fluid
dynamics”

Relevant in the “superspin” regime of large Rossby (R0) and
Froude (Fr) numbers, e.g. hurricanes.

Attractive → unstable at wave-number 2 which is “missing” in
VRW-VRW models (Terwey & Montgomery, 2002).

However, Rossby character of RIB instability has
never been formally established at large Fr.
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Outline

Investigate the nature of the 3D instability that lives on a piece-wise
constant vorticity profile (Schubert profile) using three models:

Model # 1:

Construct analytic normal mode solutions.

Solve for the eigenvalue (frequency) numerically.

Model # 2:

Derive an approximate analytic dispersion relation for
baroclinic modes on the Schubert base-state.

Model # 3:

Solve the initial value problem for the linearized primitive
equations numerically.
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Base State

Piecewise constant vorticity (Schubert 1999):
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Normal Mode Solutions

φ(r, θ, z, t) = φ̂(r) exp [i(lθ + mz − νt)]

Parameters:

l = Azimuthal wave-number

m = Vertical wave-vector

ν = Frequency

{r1, r2, ξ1, ξ2} = Base-state Vorticity

Ω(r) = Base-state Angular Velocity

N = Brunt-Vaisala Frequency

Non-Dimensional Numbers:

R0 =
ξ2

f
= Rossby Number

Fr =
r2mξ2

N
= Froude Number
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Model #1: 3-Region Analytic Model
Numerical Eigenvalues
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Analytic Model

Pressure equation from linearized primitive equations [e.g. Smyth and
McWilliams, 1998]:

(

rπ′

Φa − σ2

)

′

+

[

− l

σ

(

2Ω + f

Φa − σ2

)

′

− l2

r(Φa − σ2)
− m2r

N2

]

π = 0

where

σ = ν − lΩ(r)

Φa = (2Ω(r) + f)(Z + f)

= Absolute centrifugal stability

Step 1: Define

G =
π′r

Φa − σ2

and take limit Fr → ∞.
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Analytic Model (II)

Equation set:

G =
π′r

Φa − σ2

0 = r3

(

G′

r

)

′

− m2r2

N2
(Φa − σ2)G

with polarization relations:

ur = i
σ

r
G − il

r2

(2Ω + f)

(Φa − σ2)

N2

m2
G′

uθ = (Z + f)
G

r
− l

r2

σ

(Φa − σ2)

N2

m2
G′

uz = −σG′

mr

Note: exact momentum balance, approximate incompressibility.
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Solution

Region I (r ≤ r1):

π = Jl

(
√

σ2 − Φa

N2
mr

)

Region II (r1 < r ≤ r2):

r2(σ2 − Φa)2 = a1r
2 + a2 + a3r

−2

≈ a1r
2 + a2 + a3[(r1 + r2)/2]−2

Resulting equation is

r2G′′ − rG′ + (C + Br2)G = 0

with solution

G = r
[

c1Jν(
√

Br) + c2Yν(
√

Br)
]

and ν =
√

1 − C.
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Solution (II)

Region III (r > r2):

r2(σ2 − Φa)2 = a1r
2 + a2 + a3r

−2

≈ a1r
2 + a2 + a3

(

2r−2
2 − r2r−4

2

)

Resulting equation is

r2G′′ − rG′ + (C + Br2)G = 0

with solution (radiation boundary condition)

G = rHν(
√

Br)

and ν =
√

1 − C.
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Example: Exponentially Unstable Mode

Solve eigenvalue problem for jump conditions at (r1, r2).

lim
ǫ→0

ur(r1 − ǫ) = ur(r1 + ǫ), π(r1 − ǫ) = π(r1 + ǫ)
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Features of Unstable Modes

Instability:
Modes become unstable when (equivalently)

r2 ≪ Rossby Deformation Radius

Rotational Froude Number ≪ 1

Frequency:

Im(ν) ∼ Fr
−1/2

Re(ν) − lΩ(r2) ∼ Fr
−1/2
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Phase Diagram
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Unstable wave couples a retrograde inertial oscillation
and a prograde gravity wave.
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Model #2: Approximate Analytic Dispersion Relation
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Dispersion Relation

Analysis of the jump conditions at r2 suggests an edge wave BC:

ur(r2)
∣

∣

r2+ǫ = 0

Using the WKB approximation to relate π′ to π we find the dispersion
relation:

ν = lΩ2 −
1√
2

√

N(2Ω2 + f)√
r2m

√

√

√

√

r2

Ld

±

√

(

r2

Ld

)2

− 4l2

with stability criterion

r2 < 2lLd
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Dispersion Relation (II)

Unstable: (r < 2lLd)

Im(ν) = ± 1√
2

√

lN(2Ω2 + f)√
r2m

∼ 1√
Fr

Stable: (r > 2lLd)
Wave 1:

ν = lΩ2 −
√

2Ω2 + f
√

f

This is an inertial oscillation that is retrograde at small Rossby number.
Wave 2:

ν = lΩ2 −
√

2Ω2 + f

f

lN

r2m

This is an inertia-gravity wave that is prograde at large Froude number.

These waves phase-lock and grow when r2 = lLd
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Interpretation

Very large body of literature on the non-centrifugal (non-symmetric)
instability of stably stratified vortices with sharp vorticity gradients
(Kurihara, Willoughby, Ford).

This work: Inertia-Gravity-Edge Instability

Outer vorticity gradient acts as a moving edge (ur = 0). The total
centrifugal force ∼ 2Ω2 + f at r2 supports the waves.

Mode is similar to stratified Taylor-Couette instability (Yavneh,
McWilliams, Molemaker), with no Rossby character.

Modern Interpretation (Schecter, Montgomery, Hodyss, Nolan etc.):
Rossby-Inertia-Buoyancy Instability

RIB instability couples an inner Vortex Rossby wave with an outer
inertia-buoyancy wave.

Requires relatively sharp negative PV gradient for instability.
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Test of Two Hypotheses

Present Analysis (large Fr):

Im(ν) ∼
√

2Ω2 + f√
Fr

, Independent of ξ2

Ford (1994; small Fr):

Im(ν) ∼ Fr
2l

(

lΩ2 −
ξ2

2

)2l

+ O(Fr
2l+2)

Experiment: Using the linearized primitive equations, we solve
initial-value problem for the Schubert base-state:

Case 1: Vary the Vorticity Jump ξ2(r1, ξ1) keeping the Angular
Velocity Ω2 fixed.

Case 2: Vary the Angular Velocity Ω2(r1, ξ1) keeping the Vorticity
Jump ξ2 fixed.

Hypothesis: VRW coupling will exhibit ξ2-dependence.
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Model #3: Numerical Primitive Equation Model
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Simulations & Numerics

Base-state:

Radius

Z,
Ω

r1 r2

ξ2

ξ1

Vorticity (Z)
Angular V (Ω)

Numerics:

Strong Stability Preserving 3rd-Order RK (SSP33).

PV conserving numerical scheme.
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Results
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Approximate numerical result:

Im(ν) ∼ (2Ω + 1)0.6ξ0.1
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Results (II)
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Approximate numerical result:
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Summary

Investigated unstable modes that grow on vorticity gradients.

In the superspin regime of large Froude and Rossby numbers:

Inertial-Gravity-Edge Instability: coupling of a retro-
grade inertial oscillation and a prograde gravity wave.

Approximate dispersion relation:

ν = lΩ2 −
1√
2

√

N(2Ω2 + f)√
r2m

√

√

√

√

r2

Ld

±

√

(

r2

Ld

)2

− 4l2

We find little or no evidence of a Rossby-wave character (vorticity
gradient dependence) in the growth rate.

However, the oscillation frequency does have a mild
vorticity-gradient dependence; this is currently being investigated.
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