Abstract
A new mapping method to interpolate satellite altimeter data to regular grid is developed and tested in this study.  The technique is based on complex empirical orthogonal function (EOF) analysis.  Satellite altimetry data are decomposed into different eigenmodes and the information of each mode is divided into the amplitude component and the phase component and is then interpolated to a regular finer grid respectively, followed by the reconstruction of the data with regular grid from the summation of the dominant eigenmodes.  Two idealized experiments are conducted to demonstrate how the technique works and its advantages over linear interpolation methods.  A more realistic case, in which the sea surface height (SSH) data are observed from a numerical model run in a similar way to satellite altimeters as the “observations”, is chosen for validation purpose.  Detailed comparison between the interpolated field and the “truth” field (model output field) is given.  The technique is then applied to the TOPEX/Poseidon (T/P) and Jason 1 altimetry data.

1. Introduction
Measurements of the ocean environment are difficult and expensive, especially with the conventional observing techniques.  As a result, oceanic data are usually sparse and non-uniformly sampled in time and space.  It is often difficult to obtain observations with sufficient resolution to resolve the phenomena of interest.  In order to optimize the huge amount of resources invested in observing the ocean, efforts are usually made to station spacing.  However, unwanted data gaps and holes are still inevitable due to many reasons, such as those introduced by removal of abnormal (non-physical) values during data editing.
Many earth-observing satellites launched over recent years have provided scientists huge amount of data.  This partially solves the aforementioned problem.  One such instrument important to oceanographers is the satellite altimeter.  Satellite altimeters supply frequent near-global data coverage of the global ocean, which allows altimeter-derived estimates of sea surface height (SSH) to be based on data collected over much of the ocean surface, in contrast to the geographically sparse coastal data provided by tide gauges.  SSH is a very important dynamic variable, which plays a crucial role in oceanography studies, such as the estimation of ocean circulation.  Since it is measured at the ocean surface, this variable is one of the most easily observed oceanic variables and thus has been widely used in oceanography research.  Previous studies have shown the capability of dynamically transferring the SSH observations into deep oceanic layers by using ocean models.  Four-dimensional ocean circulation patterns can be reconstructed with the use of assimilation procedures.
Despite the large spatial coverage provided by the orbiting altimeter (Figure),
 there are still gaps between the ground tracks comparable to the size of mesoscale oceanic features, such as oceanic eddies with diameters of roughly 100 kilometers.  For example, loop Current eddies in the Gulf of Mexico are large (typically 150 to 200 kilometers) anticyclones with anomalously high sea levels in the center, commonly over 50 centimeters.  These, along with cyclonic eddies and some smaller features, generally propagate toward the west.  While observing these eddies with T/P and Jason-1 data, major difficulties arise when the centers of these eddies are located between satellite tracks and can not be observed.  Traditional interpolation of these satellite data will result in intermittent occurrences of these eddies in spatial maps of SSH constructed from TOPEX/Poseidon (T/P) and Jason-1 data and can not completely resolve the whole process of the eddy’s propagation.  As a consequence, it is necessary to use a good interpolation procedure to create a regular set of data values as part of the data processing.  Besides, data with regular grid both in time and space are often required in research, e.g., the initialization of an oceanic model.
One of the early attempts to map irregularly distributed data to data set with regular grid is function fitting, in which the analysis function is expanded in a finite series of ordered mathematical basis functions with unknown expansion coefficients.  The coefficients are determined by either an exact fit to observations (analyzed values are required to be equal to observed values at observation locations) or through a least-square fit between the analysis and observations.  Once the coefficients are determined, the analyzed variables can be evaluated at any location within the analysis domain.  The first attempt of using function fitting for objective analysis dated back to 1949 (Panofsky).  In his study, a cubic polynomial regional fitting was applied with arbitrarily specified constant weightings.  Gilchrist and Cressman (1954) conducted another study of local quadratic fitting.  One of the more advanced methods is the optimal interpolation (OI) or statistical interpolation approach, which combines the model background field and the observation field to obtain the optimal estimate field by minimizing the analysis error covariance.  The knowledge of spatial error covariance for both the model field and the observations is required (Lorenc 1981, 1988), and a good estimate of these is one of the key factors of the quality of the interpolated field.
While most conventional mapping techniques directly interpolate the observations themselves, the purpose of this study is to develop an interpolation method which applies the interpolation to the phase and amplitude of different modes decomposed from the original data.  Naturally, a time series can be expanded in a series of Fourier functions.  The frequency and the amplitude are the two variables to characterize each Fourier function or each mode.  With this information the interpolation could be applied to the phase and amplitude of each function.  This kind of interpolation is reasonable, especially for traveling features, like Rossby waves, which may propagate to locations not being observed.
The next section explains the data and the model used in the study, followed by the depiction of the theoretical background of the technique in section 3.  Four experiments, from the simplest idealized case to the most complicated real case, are conducted in the following section.  Discussions and conclusions are given after that.
2. Model and Data

2.1. Synthetic data
For validation purpose, an oceanic model is used to simulate the truth and the model output is then sampled at the simulated altimeter observation locations in a similar manner to the TOPEX/Poseidon and Jason-1 satellite as the “observations”.  The model used in this study is the Navy Coastal Ocean Model (NCOM) developed at the Naval Research Laboratory－Stennis Space Center (Martin, 2000; Morey et al., 2003).  It uses a hybrid sigma-z level coordinate.  The free surface is a sigma level, and the levels below the free surface are a specified number of sigma and z-levels.

The NCOM is a fully three-dimensional primitive equation ocean model with the hydrostatic, incompressible, and Boussinesq approximations.  The equations, in Cartesian coordinates, are 
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where t is the time, x, y, and z are the three coordinate directions, u, v, and w are the three components of the velocity, Q is a volume flux source term, v is the vector velocity, T is the potential temperature, S is the salinity, 
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 is the horizontal gradient operator, f is the Coriolis parameter, p is the pressure, 
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 is the water density, 
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 is a reference water density, g is the acceleration of gravity, 
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 and 
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 are the horizontal mixing terms for momentum, 
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 is the horizontal mixing coefficient for scalar fields (potential temperature and salinity), 
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 are the vertical eddy coefficients for momentum and scalar fields, respectively, 
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 is the solar radiation, and 
[image: image17.wmf]g

 is a function describing the solar extinction.  

2.2. TOPEX/Poseidon and Jason-1 Altimeter Data
Satellite altimeters use microwave radar to determine the instantaneous elevation of the SSH of the ocean relative to an Earth-centered coordinate system, providing an absolute-reference frame for studies of sea level rise.  For the purpose of this research, data from the TOPEX/Poseidon (T/P) and Jason-1 satellite altimeters are chosen to be tested with the mapping technique.

The T/P satellite altimeter provided SSH measurements with a root mean square error of less than five centimeters from its launch in August 1992 until its failure in October 2005.  The satellite had a 10-day repeat orbit, with 6.2 kilometers between observations along the ground track, and a 315-kilometer distance between neighboring ground tracks at the equator.  A complete cycle in the data record consists of 127 orbits and each orbit has a period of 112 minutes.

Jason-1, a follow-on to the T/P mission with similar functions, was launched on December 2001.  After a period of flying in tandem with T/P, T/P was commanded to move onto a parallel ground track mid-way between two adjacent Jason-1 ground tracks.  With the addition of this new satellite, the spatial coverage of the observations doubled for the period during which both instruments operated.

3. Methodology

3.1. Complex empirical orthogonal function (EOF) analysis

This method is based on complex EOF analysis (Barnett, 1983; Shriver et al., 1991).  Complex EOF analysis extracts physical information on propagating features from a two-dimensional data array,
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where D is an NxM matrix with elements 
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, and N and M are the numbers of space and time points, respectively.  It has a Fourier representation in the form of
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where the Fourier coefficients (a, b) are defined in the usual manner.

Description of traveling features requires that the function is defined in the time domain by the complex representation of a variable
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where 
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where the real part is 
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After the Hilbert transform, the regular EOF procedures are applied.  The component eigenmodes with propagating information are obtained and M pairs of complex vectors 
[image: image32.wmf]i

T

 and
[image: image33.wmf]i

S

, are determined as


[image: image34.wmf]M

m

i

T

T

´

=

1

)

(

,













(13)


[image: image35.wmf]1

)

(

´

=

N

n

i

S

S

,













(14)
where S is the spatial function and T is the temporal function, and elements of both vectors are complex.
By definition the complex spatial function S(x) can be represented as 
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where E(x) is the amplitude and 
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 is the phase.  Similarly, the temporal function can be rewritten as
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Their product (real part) is
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E(x) (the spatial amplitude function) shows the amplitude variability in space associated with a given eigenmode, and R(t) (the temporal amplitude function) provides that in time.  For a line of constant phase (letting
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or rearranging,
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The phase speed is
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3.2. Mapping satellite altimeter data
Complex EOF analysis decomposes data into different modes, which are orthogonal to each other, identifies the propagating information, and obtains the spatial and temporal information associated with each mode.  The most significant modes (modes with larger eigenvalues compared to others) are chosen among all modes and contain most of the variability.  The phase and amplitude information of the temporal function and spatial function with respect to each mode is mapped to a regular finer grid in time and/or space.  From these remapped phase and amplitude functions, the new temporal functions and spatial functions with regular grid are rebuilt and the data set is reconstructed by summing the product of the temporal function and spatial function associated with each mode.
4. Experiments and Results
4.1. Idealized Experiment one

As a demonstration, the method is tested with a simple analytical experiment requiring only the temporal interpolation.  In this case, a sinusoidal wave is propagating to the right and sampled at each one fourth of its period as the “observations” (i.e., there are four observations, or samples, during each cycle).  The result obtained from a traditional linear interpolation method (the data set is linearly interpolated in time) is shown as a comparison with that from the new mapping method (Figure 2.4).  Since there is only one sinusoidal wave component in the observations, the complex EOF method catches more than 99% of the total variance with one mode.  In order to identify the propagating information, the complex EOF technique gets both the amplitude and phase information for each eigenmode.  Since they are two different variables to characterize a traveling feature, it is rational to deal with them separately.  The phase and amplitude information of each mode is interpolated in time to a finer grid.  Both the shape and the traveling speed of the wave are retained during its propagation.   The amplitude of the wave (reconstructed from the mapping technique) at the interpolated time is recovered perfectly, while that of the gridded data from the linear interpolation is underestimated when not observed. 
Though it is straightforward to interpolate the amplitude of each mode, the interpolation of the phase is complicated, since it is defined in the interval [-π, π).  The complicity of this is shown in the following example.  Assume there are three adjacent observations and their phases are
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where 0, 2, 4 are the observation locations.

Interpolate the values linearly to the positions 1 and 3, we get
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However, because the phase is wrapped in the interval of [-π, π) by definition, the phases at these locations change to 
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Interpolation of these observations to location 1 and 3 yields
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Usually the observation density is pretty high in reality so that it is appropriate to assume that the phases of observations at neighboring locations are close to each other.  It is clear that the wrapping of the phase in the second interpolation case leads to an abrupt jump between locations 0 and 2, making an abnormal interpolated value at location 1.  Therefore, it is necessary to unwrap the phase to make it smooth before the interpolation.  The smoothness condition here is defined as the phase difference between two neighboring observation locations is less than π.
4.2. Idealized Experiment Two

The second experiment demonstrates how the spatial interpolation of this technique (Figure 2.5) works.  In this experiment a synthetic eddy propagates to the west.  The SSH field is sampled at locations simulating an orbiting satellite altimeter observational pattern as the observations.  The mapping method is applied to interpolate the synthetic along-track SSH observations onto a finer regular spatial grid.  The top five eigenmodes account for 99.27% of the total variance and are chosen for interpolation.  The reconstruction yields an SSH field very close to the “truth”.  A closer look shows that the technique recovers the maximum successfully when the eddy moves to between ground tracks and is not observed.
The unwrapping of phase follows the same idea as in the previous experiment, but is more complicated, since the phase to be interpolated is an irregularly distributed, to some extent, two-dimensional field.  One of the solutions to it in this study is to divide the whole domain into different diamond areas encompassed by the satellite altimeter ground tracks as the sub-domains.  Once a diamond area is identified, one needs to move along the perimeter in one direction (clockwise or anticlockwise), from the starting point to the ending point, to unwrap the phase.  If a part of the diamond area is broken because of the land or the size of the domain, the starting and ending points would be naturally treated as the boundaries, between which the smoothness is not required.  If the diamond area is self-enclosed, the starting and ending points will be neighboring points and it is not guaranteed that the phase values at these two locations will not satisfy the smoothness condition after unwrapping, so one should break it manually.  The location to break the perimeter could be where the amplitude is the smallest so that the interpolation results of the phase at nearby locations are not very important.  The interpolation of phase is conducted afterwards within the diamond area and one should repeat this procedure for other diamond areas.  The same observation locations may appear in different diamond areas, but the unwrapped phase values at these locations are not required to be the same in different sub-domains, because the difference, which can be nothing but a multiple of 2π, does not make any difference to the final reconstructed data product.  The interpolation of the amplitude is applied globally to the data within the whole domain.  
The interpolation recovers both the shape and the propagation speed of the eddy.  The eddy moves smoothly to the west as in the truth field.  It is worth mentioning that the core of the eddy is successfully retained when the eddy moves to between satellite ground tracks and is not observed by the altimeter.
4.3. Idealized Experiment Three

This experiment is designed to simulate a more realistic scenario in which the SSH is sparsely sampled by satellite altimeters.  The NCOM is configured for a domain covering the entire Gulf of Mexico and the northwestern Caribbean (98.15°W–80.60°W, 15.55°N​​​​​–31.50°N). The horizontal resolution is 0.05° in both latitude and longitude and there are 352 grid points zonally and 320 grid points meridionally.  It has 20 evenly spaced sigma levels above 100 m depth and 40 z-levels below 100 m with a maximum depth of 4000 m.  Open boundaries are found along the eastern edge of the domain, in the Caribbean and the Florida Straits.  This model is integrated for a period of 11 years from rest forced by wind stress, latent, sensible, and radiative heat fluxes derived from the DaSilva et al. (1994) 0.5° × 0.5° analyzed COADS monthly climatology fields.  The 1994 World Ocean Atlas (National Oceanic and Atmospheric Administration, 1994) (WOA94) is used to derive the model initial temperature and salinity fields.  

After an eleven-year spin-up period the NCOM is run for an additional 100 days to generate the truth.  A linear interpolator of the truth field from the native model grid to the simulated altimeter observation locations is chosen as the observing system.  Since the native model resolution is high, the linear interpolation should be enough to get the observations with good quality.  The model SSH data are sampled along locations corresponding to T/P and Jason-1 observation locations every ten days as the observations and the mapping technique is then applied to get a gridded field with the native model resolution and one-day intervals.
The mapping technique recovers most of the features of the truth field from the simulated along-track SSH observations.  The difference field (Fig   ) between the truth and the mapped field supplies a clearer comparison showing that the gridded SSH reconstructed from the mapping method represents the truth field well.  Specially, though there is no any observation at Day 5, with the propagation information extracted from the along-track data, the mapping technique identifies all the features successfully.
In this experiment, many complicated dynamical features are involved.  This makes the interpolation of the phase much more complicated than in experiment two.  As mentioned in experiment one, the breaking points of the diamond area are usually located at positions where the amplitude is the smallest (near-zero amplitude is preferred).  However, it is very hard to make the best choice in reality.  An approximate way to map the phase is chosen.  Suppose we have a complex number 
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where E is the complex number, a is the real part of E, and b is its imaginary part.  It can also be rewritten as
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where c is the amplitude, and d+ei is the complex number normalized by its amplitude.  Instead of interpolating the phase, apply this interpolation to this normalized value.  This will introduce a small error into the interpolation.  However, both the unwrapping of the phase in each diamond area and the separation of the whole domain into each diamond area can be avoided.  After interpolation, the gridded value of each mode is rebuilt using (23).
4.4. Real Case
The mapping technique is applied to a real-world case in this experiment.  The observation fields are derived from T/P and Jason-1 along-track SSH anomaly data and the mapping method is used to interpolate the along-track data to a regular grid.  While it is acceptable for this application to assume that the observation time for each point within each ground track in the domain is the same for each cycle, the observations from different ground tracks are by no means simultaneous.  Therefore, synchronization of the data from different tracks is necessary.  The data from each track are processed first and interpolated over time, as illustrated in experiment one, to the same time grid with the mapping method, and then the same technique is applied to the synchronized data from all tracks as a whole data set to map the data to a regular grid at one-day time intervals (Figure).  Finally, a mean SSH field is added back to the mapped SSH anomaly in order to obtain the full SSH field.
5. Discussion and Conclusion
A new mapping technique based on complex EOF analysis has been developed and tested in this study.  Instead of interpolating the observations directly in the physical space, the mapping technique decomposes the observations into different eigenmodes first with complex EOF analysis.  This allows the interpolation to be conducted to information with simpler dynamics than if it were applied to the original data, which combines all the different physical information.  Thus, it is easier for the mapping technique to get a physically reasonable result.  Since both the temporal functions and the spatial functions are complex, the phase and amplitude information associated with each mode can be separated for interpolation.  This is beneficial especially for traveling features, in which the pattern of the phase change is totally different from and usually irrelevant to that of the amplitude change.  The results of the experiments prove that it is a powerful alternative to conventional mapping technique.  The results of the three idealized experiment are consistently close to the truth field and successfully recover most features.  The real case also supplies physically reasonable results.
The complex EOF analysis is crucial in decomposing the original observations into modes with simpler physics.  In order to improve the quality of the gridded data product, the observation record must be of enough length.  This is highly dependent on the scale of the features of interest.  When a propagating feature moves to between ground tracks, even though it is not observed by the satellite altimeter, it was observed when it passed a track last time and will be observed when it passes another track in a future time.  When complex EOF analysis deals with this kind of features, the traveling information is stored in the temporal function and the spatial function associated with each eigenmode, which leads to the successful recovery of the feature.  However, this argument is not valid for features not moving at all.  The successful mapping of them requires observations with higher density.
For efficiency purpose, not all the eigenmodes but only the dominant ones are picked for interpolation.  As a result, some of the variances will be lost after the interpolation.  Usually, the number of dominant modes is chosen in such a way that the total variance explained by them is higher than 95%, so the residual is small and the impact of the variance loss on the quality of the interpolated data set is negligible.

For a temporal interpolation, the interpolation is only applied to each temporal function associated with each eigenmode, not like the conventional interpolation in physical space, where the interpolation must be conducted to each point in space.  Similarly, for a spatial interpolation, the interpolation is only applied to each spatial function associated with each eigenmode.  As a result, it is more computationally efficient.  The same argument applies to the interpolation conducted both in time and space.
The T/P and Jason-1 SSH data are chosen in this study, because they are almost identical.  Observations from other satellites can be used because of the flexibility of this technique.  The synchronization procedure mentioned in experiment three can convert observations from different satellites to the same time grid, allowing the mapping technique to be applied.
The main purpose of this study is to introduce a new concept to the data gridding studies.  The theory and the applications of this method have shown its effectiveness and applicability to the irregularly spaced observations, especially the satellite altimeter SSH observations.  The quality and performance of this technique may be improved by replacing the current phase and amplitude gridding method and introduction of observations from more satellites.
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