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ABSTRACT 

 

This study focuses on the interannual and intraseasonal variability of evaporative sources 

for rainfall events during the Indian monsoon. The monsoon is an important part of the economy 

and lifestyle in India, thus, any improvements in our understanding of its mechanisms would be 

directly beneficial to society. We first discuss the use of evaporative sources for rainfall events as 

an important tool to help increase our knowledge of the variations of the monsoon.  We then 

outline the variability of the monsoon on an interannual (wet and dry years) and intraseasonal 

(active and break periods) time scale. We use three reanalyses (NCEP-R2, CFSR, and MERRA) 

and an IMD gridded rainfall dataset to trace the location and strength of evaporative sources via 

a quasi-isentropic back trajectory program. The program uses reanalysis winds and evaporation, 

among other parameters, to estimate these sources back in time. We discuss the differences in 

parameters between the datasets on a seasonal, interannual, and intraseasonal time scale. We then 

thoroughly investigate the strength and location of evaporative sources between datasets on 

interannual and intraseasonal time scales, and we attempt to explain the variations by analyzing 

the differences in the input parameters and circulation mechanisms themselves. 

The study finds that the evaporative sources for given interannual or intraseasonal rainfall 

events do vary in strength and location. Interannually, the strongest change in evaporative source 

occurs over central India and the Arabian Sea, suggesting that the overall monsoon flow 

contributes moisture for Indian rainfall on this time scale. Intraseasonally, the strongest change 

in evaporative source occurs over the Bay of Bengal, suggesting that low pressure systems 

contribute moisture for Indian rainfall on this time scale. All three reanalyses yield similar fields 

of evaporative source. We conclude that accurate prediction of the Indian monsoon requires 

improved understanding of both interannual and intraseasonal oscillations since the sources of 

moisture for these events are unique.
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background and motivation 

  

The Indian monsoon is a boreal summertime (June – September) phenomenon that features an 

annual reversal of the winds over India along with the occurrence of 75% to 90% of the 

country’s annual precipitation (Mooley and Parthasarthy 1984). A typical monsoon circulation 

features the low-level Mascarene High off the eastern coast of southern Africa, the monsoon 

trough over central India, and cross-equatorial and southwesterly flow connecting these two 

regions and advecting moisture over India (Krisnamurthy and Bhalme 1976). Because of its 

enormous contribution to total rainfall, the monsoon has widespread impacts on the Indian 

economy as well as on the robustness of a given year’s agricultural yield (Krishnamurthy and 

Shukla 2000). Agricultural success is highly dependent on precipitation since crops are largely 

rain-fed across most of the country (Kerr 1996). Variability of the monsoon on interannual and 

intraseasonal time scales is a well-documented and common occurrence (Sperber et al. 2000; 

Lawrence and Webster 2001; Goswami and Mohan 2001) and therefore has large implications 

for the population of India. Variability studies are necessary for improved understanding and 

prediction of the seasonal and intraseasonal changes in the monsoon’s character. 

Variability of the monsoon is driven by different mechanisms depending on the time 

scale of interest. Krishnamurthy and Shukla (2000) showed that the Indian monsoon is inherently 

difficult to predict for this reason. They concluded that seasonal mean rainfall over India is 

influenced by seasonally persisting, externally forced conditions as well as intraseasonal, 

fluctuating oscillations that differ in spatial character (Figure 1-1). Goswami and Mohan (2001) 

used outgoing longwave radiation (OLR) and described the intraseasonal oscillations as chaotic 

and unpredictable. They suggested that overall monsoon predictability depends on the influence 

of the intraseasonal fluctuations on the seasonal mean and found the influence to be non-

negligible. If the monsoon were maintained only by external, slowly varying, boundary-forced 

conditions as outlined in Shukla (1998), its predictability would be considerably simpler than 
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what we currently see. He showed that a tropical atmospheric circulation will evolve to the initial 

conditions set by ocean forcing, regardless of the initial atmospheric conditions. However, with 

regard to the Indian monsoon, the chaotic intraseasonal oscillations confound the ability to 

predict its performance on the basis of the seasonally persistent component of variation or the 

nearby ocean conditions alone. For this reason, improved prediction and understanding of the 

monsoon intraseasonal variability is vital for improved prediction of the overall monsoon 

character (Waliser et al. 2003). 

  

1.2 Evaporative sources 

 

To improve the understanding of the mechanisms of Indian monsoon variability, we set out to 

quantify the changes in evaporative sources for the summertime precipitation events over India. 

In general, moisture sources are a good metric by which to study climate variability in the 

tropics. Small changes in temperature, especially in the tropics, lead to large changes in 

saturation vapor pressure, and thus, variation in moisture fields. Mooley and Parthasarthy (1984) 

showed that in the tropics, variability in evapotranspiration plays a large role in tropical climate 

patterns and should be used to document climate changes in low-latitude regions. This is a valid 

assumption, considering that interannual and intraseasonal temperature changes in the tropics are 

small compared to those in the mid-latitudes. 

Evaporative source is defined as the source of water molecules for a given precipitation 

event over a region (Dirmeyer and Brubaker 1999). The sources of precipitation in a region 

originate from moisture already in the atmosphere over the region, convergence of atmospheric 

moisture advected into the region by winds, and evaporation of surface moisture into the 

atmosphere over the region, either from land or water (Trenberth 1999). Trenberth et al. (2003) 

explained that global evaporation rates are on the order of five mm day
-1 

during the summer and 

that they partly contribute to precipitation. However, convergence of moisture from remote 

locations explains the source of moisture for moderate and heavy precipitation events that 

commonly exceed this local rate of evaporation. Trenberth et al. (2003) concluded that moisture 

already in place over a given precipitation event contributes little to overall moisture source, and 

that the largest contributors to moisture are evaporation and remote advection. Figure 1-1 

illustrates the overall contribution of remote advection and local evaporation to precipitation 

events over a region. 
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1.2.1 Evaporation and soil moisture 

In their study, Dirmeyer and Brubaker (1999) assumed that evaporation contributes to overall 

rainfall and that surface and soil moisture control evaporation. They concluded that rainfall is a 

function of soil moisture. The assumption that soil moisture controls evaporation is a valid one 

used by others in the literature, including Trenberth (1999), who stated that local evaporation is 

dictated by surface or soil moisture and used that assumption to characterize the local and remote 

influences of moisture over different regions. Dirmeyer and Brubaker (1999) also claimed that 

soil moisture can change the thermodynamics as well as the atmospheric circulation of a given 

state. Indeed, Paegle et al. (1996) showed that evaporation influences the low-level jet and 

downstream convergence patterns over the Great Plains of the United States. They found that dry 

conditions over Texas lead to increased precipitation over the Mississippi River basin. Koster et 

al. (2004) reported that soil moisture can influence weather through its impact on surface fluxes, 

and that oceanic or boundary-forced impacts on precipitation are relatively small compared to 

the impacts of soil moisture on precipitation in mid-latitude locations.  

Over India, soil moisture controls much of the climate patterns that dominant the region, 

despite its tropical location. Koster et al. (2004) discovered regions of the globe where land 

atmosphere coupling strength reveals ―hot spots,‖ or regions where the atmosphere responds 

strongly to land surface conditions and changes within those parameters. India was considered to 

be such a region in their study, particularly during the summertime monsoon season. This 

suggests that monitoring of soil moisture within the region will yield improved seasonal 

forecasting, especially of monsoon precipitation events. Dirmeyer (1999) completed a study in 

which he ran climate models with and without a high-quality, global soil wetness dataset. He 

concluded that improved soil wetness leads to an enhancement in the simulation of precipitation, 

particularly over the monsoon region of southern Asia, and therefore, an improvement in the 

modeling of precipitation regimes in the region. Finally, Arpe et al. (1998) completed a study of 

model sensitivity to boundary-forcing conditions over India. They stated that inclusion of 

realistic soil moisture into a 90-day forecast of monsoon circulation over India improves the skill 

of precipitation forecasts over that region. 

The assumption that rainfall is a function of evaporation is potentially troublesome in the 

tropical latitudes, where moisture is usually unlimited because of high precipitation amounts, 

especially in the summer. In this case, the strength and amount of incoming solar radiation 



4 
 

dictates atmospheric moisture levels more so than evaporation rates. However, according to 

Misra (2008), the Indian monsoon regime during the boreal summer is, in fact, moisture-limited. 

This result mimics those outlined above that suggest the importance of soil moisture for 

evaporation events. Misra (2008) found that it is only during the boreal winter that incoming 

solar energy plays an important role in dictating rainfall regimes in the region. Therefore, we 

consider the assumption that rainfall controls evaporation to be valid over our domain of interest. 

1.2.2 Remote Advection 

Moisture sources are not limited to local evaporation processes. Advection of moisture from 

nearby landmasses or ocean basins by winds is equally important in contributing to moisture for 

precipitation. Brubaker et al. (1993) cited Benton et al. (1950) and their conclusion that water 

vapor from the oceans could pass over continental regions without immediately raining out as 

precipitation. Budyko (1974) concluded that a majority of precipitation is generated from 

moisture of ―external origin‖ rather than of local origin. Evaporation off the oceans is a large 

component here, as the surface of the oceans is always wet and moisture is unlimited (Trenberth 

1999). However, remote land regions also contribute to externally-originating moisture, as 

upstream evaporation over the surface creates atmospheric moisture that may be advected by 

winds (Brubaker et al. 1993). Trenberth and Guillemot (1998) claimed that this terrestrial- and 

marine-based atmospheric moisture either flows past a region or converges over it and 

precipitates out; the mechanism depends on the dynamics of the circulation. 

In India, remote advection largely impacts the moisture that enters the region. In their 

study, Cadet and Reverdin (1981) assumed that the onset of the Indian monsoon is associated 

with cross-equatorial water vapor transport passing from eastern Africa, over the Arabian Sea, 

and into India. They concluded that 70% of the moisture passing over the southwestern coast of 

India originates from the southern hemisphere, and that the remaining moisture advects in from 

the Arabian Sea along the path of the flow. Likewise, Lim et al. (2002) isolated two main regions 

of moisture over southern Asia in their study of the seasonal cycle of the Asian monsoon. They 

showed that a continuous supply of moisture from the Indian Ocean, as well as from the western 

Pacific Ocean, sustains the seasonal monsoon rainfall events that occur during the boreal 

summer. The source over the Indian Ocean is the persistent supplier of moisture over India, 

whereas the western Pacific source plays a role in the East Asian monsoon (not discussed here). 

Low-level moisture convergence into the Indian region is related to subsequent monsoon rainfall. 
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These studies suggest that remote regions contribute strongly to moisture for precipitation during 

the monsoon. 

1.2.3 Tracing evaporative sources 

Since Indian monsoon rainfall is largely dictated by contributions of moisture from evaporation, 

soil moisture, and remote advection, tracing evaporative sources for summertime rainfall events 

will help improve the understanding of monsoon variability. In fact, Trenberth et al. (2003) 

stated that tracking the movement of moisture serves to elucidate the large-scale circulation 

patterns that bring moisture to a given region. We assume that isolating evaporative sources 

using back trajectories will help us infer source regions and help explain if proposed mechanisms 

for monsoon variability are responsible for the variation in rainfall that we observe. In their 

study, Dirmeyer and Brubaker (1999) set out to answer two important questions: 

1. What moisture sources dominate the precipitation patterns? 

2. What is the magnitude and character of interannual and intraseasonal variability in 

moisture sources and sinks [precipitation]? 

We attempt to answer these same questions and to assess whether there is interannual or 

intraseasonal variability in these evaporative sources with the goal of elucidating a portion of the 

total variability of the monsoon.  

Past studies by Dirmeyer and Brubaker (1999) found significant interannual variation in 

the evaporative sources over the Midwest U.S. during drought and flood years. They found 

variability in the spatial layout of evaporative sources from year to year and also isolated 

differences in the ratios of local to remote evaporative contribute to total atmospheric moisture 

over the region. Chan and Misra (2009) found a significant difference in interannual evaporative 

source over the southeastern U.S. using a similar technique. They discovered that wet boreal 

summers feature remote evaporation that is advected from the ocean, whereas dry boreal 

summers feature more localized evaporative sources originating closer to the U.S. We 

subsequently characterize the variability of moisture sources, if any, over the Indian region to 

note any changes in the character of moisture sources over the region. 
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1.3 Monsoon variability 

 

1.3.1 Interannual variability 

As mentioned earlier, interannual monsoon variability is a well-documented phenomenon. The 

standard deviation of seasonal monsoon rainfall is only about 10% of the mean (Gadgil 2003) 

and is smaller than the interannual variation exhibited in other tropical climate systems (Webster 

2002). However, this is sufficient to have years often labeled as ―flood‖ or ―drought‖ in the 

literature because of the significant impact on agriculture (Krishnamurthy and Shukla 2000). 

Using empirical orthogonal function (EOF) analysis, Krishnamurthy and Shukla (2000) 

demonstrated that drought or flood years are characterized by rainfall anomalies of the same sign 

over most of the Indian region (Figure 1-2a). Therefore, wet years feature a countrywide increase 

in rainfall over the monsoon season, whereas dry years feature a countrywide reduction in 

rainfall. Additionally, the interannual variation of rainfall over India is nonperiodic 

(Krishnamurthy and Kinter 2003), such that dry years do not immediately precede or follow wet 

years.  Several proposed mechanisms of variability are discussed below. 

The El Niño Southern Oscillation (ENSO) plays an important role in maintaining 

interannual variability of the monsoon. In their study, Kumar et al. (1999) suggested that there is 

an inverse relationship between the seasonal rainfall over India and the summertime phase of 

ENSO. A weak monsoon occurs along with a developing warm ENSO event, whereas a strong 

monsoon occurs along with a developing cold ENSO event. During a warm ENSO, the tropical 

Walker circulation shifts toward the east; the rising limb moves over the eastern Pacific warm 

pool and the sinking limb moves over India. Subsidence and drier air over the country lead to a 

drought during the summertime. In similar studies, Krishnamurthy and Kinter (2003) and 

Kirtman and Shukla (2000) discovered that this inverse correlation peaks in the October through 

January period following the monsoon season.  

Another proposed mechanism of monsoon interannual variability is the tropical biennial 

oscillation (TBO). As outlined by Meehl (1994) and Meehl (1997), the TBO is a series of 

changes in the ocean surface and atmospheric circulation over southern Asia and the western 

Pacific. The oscillation starts with anomalously warm SSTs in the central Indian Ocean during a 

winter prior to a monsoon season. These anomalies persist into the following summer because of 

the memory effects of the ocean described in the study. The persistent warm SSTs lead to 
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enhanced monsoon rainfall that season due to an increase in land-sea temperature contrast. 

Accompanying the strong monsoon are increased mixing and evaporation due to winds over the 

ocean and subsequent cooling of the waters. The cool temperature anomalies persist through the 

following winter and summer, and a weak monsoon is experienced in India during the next 

season. This coupled air-sea interaction peaks every two years and helps explain some of the 

changes in annual monsoon rainfall (Krishnamurthy and Kinter 2003), but Fasullo (2004) 

concluded it is often confounded by changes in the phase of ENSO. 

Furthermore, changes in snow cover over Eurasia have been shown to affect the 

interannual variability of the monsoon. According to Bamzai and Shukla (1999), there is a 

significant inverse correlation between the amount of wintertime snow cover over western 

Eurasia and the following summer’s rainfall over India. The mechanism is described by several 

authors, including Vernekar et al. (1995). They suggested that above-average amounts of snow 

and increased soil moisture over the Tibetan plateau funnel the energy from springtime incoming 

solar radiation toward melting the snow instead of increasing the temperature of the otherwise 

exposed land surface. The subsequent reduction in sensible heat flux over land reduces the 

temperature gradient from the ocean to the land and thereby reduces the overall monsoon 

circulation.  

 Overall, these mechanisms feature large-scale changes in monsoon circulation and 

incorporate either land-sea temperature contrasts or shifts in the tropical Walker circulation. 

Wang et al. (2001) suggested that monsoon interannual variability is generally dictated by these 

large-scale changes, and noted a strengthening of the entire monsoon circulation, including the 

monsoon trough and the low-level cross equatorial flow, during above-average monsoon 

seasons. 

1.3.2 Intraseasonal variability 

Intraseasonal variability explains the other, more chaotic component of seasonal monsoon 

rainfall totals. The variation in these rainfall anomalies is some greater than the variation of 

yearly rainfall anomalies (Waliser et al. 2003). In their study, Krishnamurthy and Shukla (2000) 

used EOF analysis to isolate the major mode of intraseasonal variation and found that anomalies 

of one sign exist over most of central India and that opposite-signed anomalies exist over the 

northern plains and far western India (Figure 1-2b). They identified these variations as ―active‖ 

(―break‖) periods, during which increased (decreased) rainfall occurs for a period of days over 
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central (northern and southern) India (Figure 1-3). The length of a given active or break spell is 

not official and ranges from a few days (Krishnamurthy and Kinter 2003) up to 60 days (Suhas 

and Goswami 2008). Waliser et al. (2003) described this mode of variability has ―recurrent‖ and 

attributed a large portion of total monsoon rainfall to its activity. 

Krishnamurthy and Shukla (2006) broke the intraseasonal variability into two 

components: a 45-day oscillation that moves north and east, and a 20-day oscillation that moves 

north and west. Goswami and Mohan (2001) previously discussed the 45-day mode in their 

study. They stated that summertime intraseasonal oscillations (ISOs) result from a fluctuation in 

the tropical convergence zone (TCZ) between two regions. The northern region is over the 

monsoon trough, an area of low pressure that extends west to east from northwestern India to the 

Bay of Bengal. The atmospheric conditions associated with this position result in lowland 

convergence of atmospheric moisture and increased rainfall over India; the TCZ enhances the 

monsoon circulation in this position. When the TCZ moves toward the south, over the equatorial 

ocean away from the trough, the monsoon flow is weakened and a break in rainfall is observed. 

Krishnamurthy and Shukla (2006) described the same mode by proposing a shift in the monsoon 

trough itself. During active periods, the monsoon trough lies over the northern plains and 

enhances rainfall over central India. During break periods, the trough moves north to the 

Himalayan foothills, enhancing rain to the north and leading to drought in central India. These 

oscillations have been shown to have some relationship with the Madden-Julian Oscillation 

(MJO) (Madden and Julian 1994), a well-known, generally boreal wintertime phenomenon 

characterized by intraseasonal (30 – 60 day) convective anomalies over the tropical oceans 

(Gadgil 2003). 

Krishnamurthy and Shukla (2006) attributed most of the 20-day mode activity to the 

passage of low pressure systems (LPSs) over India from the Bay of Bengal. Many studies have 

found a high correlation with the activity of LPSs in the northern Indian Ocean and the 

intraseasonal monsoon oscillations (Krishnamurthy and Shukla 2006; Goswami et al. 2003; 

Goswami et al. 2008). During active periods, the number of days when a LPS is recorded in the 

Indian monsoon region increases dramatically, up to seven times that of a break period 

(Krishnamurthy and Shukla 2006). This is countered by a significant decrease in the amount of 

LPSs recorded during monsoon break periods (Figure 1-4). This result suggests that LPS activity 

plays an important role in maintaining the intraseasonal variation of monsoon rains. Occasional 
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tropical cyclones advecting into eastern India from the Bay of Bengal during the monsoon are an 

example of strong LPSs associated with monsoon ISO activity. 

Figure 1-5 illustrates the overall contributions of mechanisms from various time scales to 

the monsoon climate system. 

1.3.3 Interannual variation of intraseasonal oscillations 

There is substantial debate regarding the existence of interannual variability of the monsoon 

ISOs. Goswami and Mohan (2001) formulated a hypothesis that the monsoon ISOs are directly 

related to the seasonal strength of the monsoon. Thus, they expected a higher occurrence of 

active (break) periods during a strong (weak) monsoon, having assumed that these periods 

directly contribute to seasonal monsoon totals. They concluded that the probability density 

functions (PDFs) of ISO activity are asymmetric and different in wet and dry years, suggesting 

some validity in their initial hypothesis. Sperber et al. (2000) also concluded that ISO activity 

and interannual activity were directly related and that more active (break) phases occur during 

wet (dry) years. In their study, Lawrence and Webster (2001) argued that ISO activity is weakly 

inversely correlated to Indian monsoon rainfall activity. They did not consider PDFs, but claimed 

that when ISO activity is strong during the summer (i.e., distinct active and break periods), 

monsoon strength is relatively weak.  

However, other studies provide counterarguments. Singh et al. (1992) concluded that 

there is no relationship between ISO activity and monsoon rainfall. Similarly, Jones et al. (2004) 

focused on intraseasonal oscillations in both ISO and MJO, and found that there is no statistically 

significant difference in tropical intraseasonal activity of any sort from year to year. In this study, 

we will attempt to isolate interannual variability of the evaporative sources for intraseasonal 

rainfall events, but we do not assume a correlated or uncorrelated relationship between the two. 

We detail the source and use of all datasets in Chapter 2 and then discuss methodology 

and techniques of the study in Chapter 3. Here we specifically discuss the quasi-isentropic back 

trajectory program that forms the core of our study and allows us to trace evaporative sources 

back in time. Chapter 4 details the results of the study by comparison of various parameters of 

the datasets themselves and then by discussion of interannual and intraseasonal variability of the 

evaporative source for monsoon rainfall events. Finally, Chapter 5 gives a summary and 

conclusions of the findings, followed by ideas for future work 

 



10 
 

 
 

Figure 1-1. Diagram showing atmospheric moisture contribution over a land region. E represents 

local evaporation, P represents precipitation, and the F terms represent flux of moisture from the 

winds. Pa and Pm represent precipitation from advected and local moisture, respectively. From 

Brubaker et al. (1993). 

 

 

 

 

 
 

Figure 1-2. Plot showing the in EOFs of rainfall anomalies for daily (a) and seasonal (b) time 

scales over India. Sign differs across the country on a daily time scale and is of the same sign 

seasonally. From Krishnamurthy and Shukla (2000). 
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Figure 1-3. Active (a) versus break (b) composite rainfall anomalies. Active composites feature 

positive rainfall anomalies over central India and negative anomalies to the north and south. 

Break composites have the opposite pattern. From Krishnamurthy and Shukla (2006). 

 

 

 

 

 
 

Figure 1-4. Plot showing the origin and tracks of LPSs during active phase (a) and break phase 

(b) composites of the monsoon. From Goswami and Mohan (2001). 
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Figure 1-5. Diagram showing components and linkages of the monsoon system. In this study, we 

focus on the changes in monsoon climate due to global influences on an interannual scale 

(ENSO, TBO) and due to intraseasonal variability. Intraseasonal variability is dictated by 

internal atmospheric processes including rainfall, boundary conditions of the ocean, and land 

processes including soil moisture. From Lau et al (2000). 
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CHAPTER TWO 

DATA 

 

2.1 Precipitation 

 

2.1.1 IMD rainfall 

This study incorporates the Indian Meteorological Department (IMD) high-resolution daily 

gridded rainfall dataset over the Indian region. The dataset was originally created by Rajeevan et 

al. (2006) for their analysis of active and break spells during the Indian monsoon. It is an IMD 

rain-gauge-based dataset that has been interpolated to a 1
o
 latitude x 1

o 
longitude grid over India 

and spans each day from 1951–2003. Rajeevan et al. (2006) used rainfall records from 1803 of 

6329 available stations that had a minimum of 90% data availability during the entire timeframe 

so that inconsistencies due to changing station density could be avoided. These stations are 

highly clustered in western India and become sparser over the northern plains and eastern central 

India (Figure 2-1). The data were interpolated to a rectangular grid (35 x 32) using a weighted-

sum method with radii of influence developed by Shepard (1968).The grid covers the entire 

country and surrounding waters, but has values of rainfall only over land. 

 The rainfall data are highly reliable, as the IMD maintains high standards when 

monitoring precipitation because of its inherent and important role in agriculture (Sikka 2003).  

Various quality control checks include station location and coding verification, and these ensure 

that the dataset is a trustworthy one for this study. Rajeevan et al. (2006) compared the IMD 

gridded dataset with the Variability Analysis of Surface Climate Observations (VASClimo) 

dataset and found significant correlation between the two. The VASClimo dataset is a new 

station-based, global-gridded rainfall dataset developed by Beck et al. (2005) that has undergone 

extensive quality control, thorough interpolation, and error checks between station values and the 

interpolated values. The two datasets differ only slightly throughout most of India, and show 

high correlation over the region. Both datasets also display similar coefficients of variation, and 

thus, similar trends in interannual variation in rainfall, which are important to this study 

(Rajeevan et al. 2006). 
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2.1.2 CMORPH 

We also incorporate the satellite-based Climate Prediction Center (CPC) morphing method 

(CMORPH) precipitation estimates (Joyce et al. 2004). These are global precipitation analyses 

that are available on a high-resolution (eight square kilometer) grid. They are derived from 

passive satellite microwave scans as well as geostationary satellite infrared (IR) scans. The 

morphing technique uses motion vectors derived half-hourly from the IR data to advect the 

precipitation estimates received from the passive microwave data. This technique was 

demonstrated to estimate precipitation better than microwave estimates or blended microwave-IR 

estimates alone. 

CMORPH is used to correct the diurnal cycle of precipitation in the different reanalyses 

at tropical latitudes. It is also used to give our daily IMD rainfall data a three-hourly diurnal 

signal, scaled to the reanalysis precipitation signal, which is required by the temporal resolution 

of our back trajectory program (Chapter 3.3). The correction technique is described in detail by 

Dirmeyer and Brubaker (2007). It was used to compensate for known errors in reanalysis 

precipitation estimates over the tropics, where precipitation is largely convectively driven and 

encounters problems due to convective parameterization schemes. 

 

2.2 Reanalysis 

 

This study uses three different reanalysis products to provide input parameters for use in the 

back-trajectory program described below. These include the the National Centers for 

Environmental Prediction/Department (NCEP/DOE) Reanalysis-2 (R2), the NCEP Climate 

Forecast System Reanalysis (CFSR), and the Modern Era Retrospect-analysis for Research and 

Applications (MERRA) datasets. From these datasets, we work with surface latent heat flux, 

surface precipitation rate, surface pressure, specific humidity, temperature, and the u- and v- 

components of the wind. Potential temperature and precipitable water (PW) are calculated from 

surface pressure and temperature and from specific humidity, respectively. 

2.2.1 R2 

First, we use six-hourly global T62 (192 x 81), Gaussian-gridded R2 upper-air (in 17 

sigma-pressure coordinates) and land surface data. The data are available from 1979 to the 

present day. R2 uses a two-layer land surface model (LSM) developed at Oregon State 

University (OSU) (Pan and Mahrt 1987). It estimates the movement of water between a thin, 
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upper layer, which responds to diurnal changes in weather, and a thicker, lower-layer, which 

responds to changes in climate. The R2 dataset is considered an improvement over Reanalysis-1 

(R1) (Kalnay et al. 1996), which had several known processing and human-caused errors 

(Kanamitsu et al. 2002).  

Among the improvements most pertinent to this study (Kanamitsu et al. 2002) is the use 

of simple rainfall assimilation over land surfaces for better representation of soil moisture. The 

replacement of model precipitation with an observed five-day mean (pentad) precipitation from 

satellite-gauge-based NCEP/Climate Prediction Center (CPC) fixed previous issues where model 

soil wetness was not reasonably maintained in the tropics (Maurer et al. 2000). Additionally, 

smoother orography in R2 improved upon the sensible and latent heat fluxes estimated in R1. 

Several enhancements in model physics led to increases in the accuracy of surface fluxes and 

land hydrology budgets, and changes in boundary layer parameterizations slightly improved 

tropical precipitation estimates (Kanamitsu et al. 2002). These changes in parameterizations also 

improved the estimate of PW or column moisture in R2. The R2 PW more closely approaches 

the estimates of the National Aeronautics and Space Administration (NASA) water vapor 

estimates. R2 was intended as an upgrade to R1 (Higgins et al. 2010) and is used in this study as 

a baseline to compare with our other, newer datasets. 

2.2.2 CFSR 

Next, we use six-hourly global T382 (1152 x 576), Gaussian-gridded CFSR upper-air (on 

64 pressure levels) and land surface data. The data are available from 1979 to the present day. 

The dataset uses the NCEP-based Noah-LSM. The Noah-LSM predicts land surface water and 

energy fluxes dynamically and uses a layer-based approach to soil moisture in which governing 

equations compute the transfer of water within four layers of soil (Kumar et al. 2008).  This 

dataset was completed in January 2010 and uses a coupled atmosphere-ocean-land surface-sea 

ice system (Saha et al. 2010).  

This dataset is believed to be superior to R2 and R1 because of its model coupling, higher 

spatial resolution, and more modern data assimilation system (Higgins et al. 2010; Saha et al. 

2010). The CFSR atmospheric and land surface models are newer than those for R2, suggesting 

that CFSR parameters are more current and reliable. CFSR uses satellite radiances instead of the 

derived temperature or moisture profiles used in R2, which leads to an improvement in the 

generation of those fields to more closely match observation (Saha et al. 2010). CFSR also uses 
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global precipitation analyses to directly force the land surface analysis. In the tropics, for 

example, the satellite-based CPC Merged Analysis of Precipitation (CMAP) dataset is highly 

weighted in the surface analysis. This technique should improve upon the analysis from R2, 

which relies on ―nudging‖ the soil moisture on the basis of precipitation analysis and prevents 

this field from deviating far from climatology (Kanamitsu et al. 2002). Higgins et al. (2010) 

compared CFSR daily precipitation statistics to the CPC Unified Rain Gauge Database and 

found that they were improved compared to those estimated in R2 and R1. However, according 

to Saha et al. (2010), the mass balance of the atmospheric water content (given by evaporation 

minus precipitation) is still ―worrisome‖ in CFSR, as it decreases noticeably after 1998 and 

could indicate incorrect assimilation of data and potential unreliability of those fields. Thus, the 

CFSR evaporation estimates should still be treated with caution, as they play a major role in this 

study. 

2.2.3 MERRA 

 Finally, we use six-hourly global (540 x 361), Gaussian-gridded MERRA upper-air (on 

42 pressure levels) and one-hourly global (540 x 361), Gaussian-gridded MERRA land surface 

data. The data are a NASA-based product and are available from 1979 to 2007. The dataset uses 

NASA’s Catchment-LSM (CLSM), which, like the Noah-LSM, dynamically predicts land 

surface water and energy fluxes. However, it uses a topographically based approach instead of a 

layer-based approach to soil moisture (Kumar et al. 2008). The CLSM uses topographic 

characteristics and bulk moisture variables to predict soil moisture for each catchment, or 

computation unit of the model. It then calculates the distribution of moisture at a sub-catchment 

level, which is considered an improvement over traditional one-dimension LSMs such as the 

Noah-LSM. However, Kumar et al. (2008) concluded that both the Noah-LSM and the CLSM 

exhibit soil moisture that responds similarly to forcing from the atmosphere and yield 

comparable values for that field. 

This dataset is also believed to be an improvement upon the R2 and R1 reanalyses. Like 

CFSR, MERRA incorporates satellite radiances to fix to the temperature and moisture profile 

issues possible in the R2 and R1 datasets (Bosilovich et al. 2008). Additionally, MERRA’s data 

assimilation system, the Goddard Earth Observing System-Version 5 (GEOS-5), was shown by 

Bosilovich et al. (2008) to provide significant improvement over previous NCEP reanalyses 

regarding precipitation and water and energy cycles. However, Chen and Bosilovich (2008) 
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noted that there is still room for improvement in simulation of the water and energy cycles in 

MERRA. This is especially true in tropical latitudes prior to the 21
st
 century, a significant spatial 

and temporal portion of our study.  

 

2.3 Problems with reanalysis estimates 

 

Finally, it should be noted that model-based estimates, such as surface evaporation rate or latent 

heat flux, should be viewed with caution. Evaporation is ―amongst the most poorly measured 

hydroclimate fields‖ (Nigam and Ruiz-Barradas 2006), but it plays an important role in the water 

balance and evaporative sources of the Earth system as explained above. Since it cannot be 

directly measured, evaporation is estimated, sometimes inaccurately, from reanalysis land 

surface models that are driven by observed parameters such as precipitation and temperature 

(Ruiz-Barradas and Nigam 2004).  

Koster el al. (2004) describes that sparse observations of soil moisture and subsequent 

evaporation prevents a clear demonstration of its impacts on precipitation. They state that these 

impacts are often seen in atmospheric generation circulation models (AGCMs). Furthermore, 

Trenberth and Guillemot (1998) concluded that ―substantial biases‖ exist in the moisture fields 

of the R2 and R1 reanalyses, where tropical structures are not well-defined. We recall studies by 

Dirmeyer (1999), Arpe et al. (1998), and another by Beljaars et al. (1996) that elucidated the 

importance of evaporation in modeling. Beljaars et al. (1996) completed a parallel study of two 

precipitation forecasts with different land surface schemes: one with constrained boundary 

conditions for soil moisture and another that produced its own soil moisture with input from the 

atmospheric model. The second scheme resulted in precipitation forecasts that were more 

realistic, since more moisture was available for evaporation and subsequent precipitation.  

Thus, evaporation from land surfaces largely impacts precipitation estimates but is highly 

dependent on the land surface model used in a given reanalysis. The land surface models have a 

high potential to be unreliable because of poor model physics, varied resolution, or sparse 

observations. Since each of the three reanalyses we use in this study has its own land surface 

model, it is clear that the evaporation parameter will have a prominent effect on the moisture 

sources we wish to track. 

 

 



18 
 

 
 

Figure 2-1. The location of rain-gauge stations from which the India gridded rainfall dataset was 

created. Notice the concentration of stations along west central India and the southern tier and 

relative sparseness in the west. From Rajeevan et al. (2006). 
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CHAPTER THREE 

METHODOLOGY 

 

3.1 Isolating interannual variability 

 

Rainfall data from the IMD gridded dataset were area-averaged over all-India from June 

1 to September 30 for each year from 1951 to 2003. The June-July-August-September (JJAS) 

period is generally regarded as the peak of the monsoon season, so these months were used to 

represent the bulk of the rainfall. A climatological area-averaged rainfall for India was found, 

and then each year’s anomalous rainfall was calculated. The five wettest and driest years after 

1979 were selected and labeled as wet and dry, respectively (Figure 3-1). We also include five 

years with small deviation from the climatological mean and labeled them as neutral; these were 

included to increase our sample size and give a base for average conditions. The years are listed 

in Table 3-1 below, along with that year’s seasonal rainfall deviation from the long-term mean.  

Comparison of the results with the central India (73
o
E–86

 o
E, 16

 o
N–26

 o
N) area-averaged 

rainfall yielded nearly the same years for each case. Central India is unique to the northern plains 

and western coast of India in that intraseasonal rainfall anomalies tend to be of opposite sign in 

this region compared to the others, as described above. Although the results of all-India and 

central India interannual variability yielded similar results, we used the all-India wet, dry, and 

neutral years to capture the interannual variability of the entire subcontinent. Rainfall over all-

India tends to be highly correlated with rainfall that falls in the ―monsoon zone,‖ an area 

described by Gadgil (2003) that receives significant monsoon rainfall and is ―commonly used‖ in 

studies of Indian monsoon variability (Lawrence and Webster 2001). 

 

3.2 Isolating intraseasonal variability 

 

Rainfall anomaly data from the IMD were area-averaged over central India for each day (15 May 

to 15 October) for each of our years of interest. The 15-day ―tails‖ on either side of the monsoon 

season are important when filtering the data, as explained below, and create a 152-day time 
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series. We defined an intraseasonal, or a single active (break), period to consist of above (below) 

average rainfall for a period of 10 to 30 days. We chose to isolate rainfall variations since active 

and break periods are ―traditionally defined‖ using precipitation factors (Goswami and Mohan 

2001), although other studies isolate intraseasonal changes in OLR, winds, or other parameters. 

Central India precipitation also responds differently than northern or southern India precipitation 

intraseasonally, so we limited our domain to a box from 73
o
E – 86

 o
E and 16

 o
N – 26

 o
N. 

We then extracted the low-frequency 20-60-day mode from the time series using a simple 

recursive first-order Butterworth filter to isolate nonperiodic oscillations of that length 

(Krishnamurti and Subrahmanyam 1995). The tails allowed us to observe oscillations during the 

monsoon season without skewing during the JJAS season because of the presence of endpoints. 

A method similar to this was used by Herndon et al. (1999), who used a wavenumber-frequency 

filter to isolate OLR data over India with periods of 25 to 80 days.  

Next, we recorded an active (break) period if a continuous anomaly of above (below) 

zero precipitation was observed for 10–30 days (Figure 3-2). We converted each period’s 

beginning and ending day to pentads, where at least three out of the five pentad days had to lie in 

the given period to be assigned to that period. The specific starting and ending dates for each 

defined active and break period are given in Tables A-1 and A-2, respectively. We used the 

pentad-to-date conversion table (Table A-3) to convert those dates into pentad dates for use in 

our quasi-isentropic back trajectory program.  

Since we used a 20 – 60 filter and selected days with anomalies above or below zero, 

almost every day in each year’s time series was assigned to either active or break phase. Previous 

studies have imposed stricter guidelines when defining an active or break phase of the monsoon, 

such as anomalous departures of one standard deviation beyond the mean (Krishnamurthi and 

Subrahmanyam (1995). However, in this study, we make the argument that monsoon 

intraseasonal activity is continuous and recurrent and assign each day to a given phase of the 

intraseasonal oscillation. 

 We compared the intraseasonal oscillations isolated from the Butterworth filter and 

incorporated into our analysis to the actual IMD gridded rainfall data (not shown). For most 

years, the general trends in increasing and decreasing rainfall throughout the season are well-

captured by the filtered oscillations. The actual rainfall data naturally feature more noise than the 
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filtered data. Using the latter allowed us to run our QIBT for more consistent stretches of time 

than would have otherwise been possible. 

 

3.3 Quasi-isentropic back trajectory program 

 

We used a quasi-isentropic back trajectory (QIBT) program to locate the evaporative sources of 

precipitation events over central India. Dirmeyer and Brubaker (1999) developed this method for 

a similar study of evaporative source variability over the central United States. We give a basic 

description of the program’s mechanisms in the following section. 

 Following the technique of Dirmeyer and Brubaker (1999), we first release one hundred 

saturated air parcels at every grid point where and when rain has fallen over central India at a 

rate proportional to the corrected three-hourly precipitation rate at the point. We consider rainfall 

in pentad time, which is the sum of precipitation for five consecutive days. There are 73 pentads 

per year. We linearly interpolate the six-hourly reanalysis data to one-hourly time steps, a 

technique which produces stable results for evaporative source (Dirmeyer and Brubaker 1999). 

Therefore, for every pentad time step, we have 40 precipitation time steps and 120 reanalysis 

time steps.  

The moisture content of the parcels is equal to the amount of rainfall at the initial grid 

point during the pentad. These parcels are assigned a random vertical level that is weighted by 

humidity so that most parcels are released near the surface, where water vapor is higher. Each 

parcel is tagged with the environmental potential temperature (calculated from surface pressure 

and temperature) and isentropically advected backward in time with reanalysis winds. The parcel 

trajectory is the average of two other trajectories described by Merrill (1989): 

1. A backward trajectory locates a parcel from its original point (x
n
, y

n
) at time n to a 

new point (x
n-1*

, y
n-1* 

) at time n-1* using the winds at time n.  

2. A forward trajectory locates a parcel from point (x
n-1*

, y
n-1*

) to another point (x
n*

,y
n*

) 

back to time n using the winds at time n-1.  

The backward trajectory and the negative forward trajectory are averaged to arrive at the final 

point (x
n-1

, y
n-1

), which is then bilinearly-interpolated to the nearest grid point. The remote grid 

point potential temperature is reevaluated and the parcel is assigned a level in the vertical 

corresponding to its potential temperature.  If the potential temperature of the parcel is found to 
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be lower than the surface potential temperature, it is assigned that value such that the parcel 

never intersects the ground.  

At every time step, we assume that some of the water vapor in the parcel, k, comes from 

the evaporation (E) occurring the grid point (x,y) directly below it. We then remove water vapor 

from the parcel at a rate given by: 

Sx,y,k,p(i,j,t) = 
𝐸 (𝑥 ,𝑦 ,𝑝)

𝑃𝑊   𝑥 ,𝑦 ,𝑝    
, 

where Sx,y,k,p(i,j,t) represents the source of moisture for grid point (i, j) at time t contributed by 

evaporation from remote point (x,y) into parcel k at tracing time p. The back tracing continues for 

a period of 15 days or until the parcel has lost 90% of its moisture because of the moisture 

removal dictated by Sx,y,k,p(i,j,t). Over 95% of these parcels are accounted for by the QIBT after 

15 days. We chose to trace the parcels up to 15 days prior to release to conserve moisture for the 

individual precipitation events. Although atmospheric predictability becomes chaotic after 

several days (Shukla 1998), we observe that the general spatial layout of evaporative source is 

established in five (Figure 3-3a) days and especially ten (Figures 3-3b) days. Extending the 

sources back 15 or 20 days (Figure 3-3 c–d) does not introduce new sources of evaporation but 

simply enhances their magnitude. Additionally, the ratio Sx,y,k,p(i,j,t) usually has values of 1/10 

day
-1

 over most of India since evaporation is an order of magnitude lower than precipitable water 

values. Thus, we need to trace back longer in time than just ten days to ensure that we have 

conserved moisture in our parcels.  Chan and Misra (2009) and Dirmeyer et al. (1999) followed 

the same line of reasoning in their studies of back trajectory analysis.  

We can predict the character of the evaporative sources on the basis of the reanalysis 

parameters alone. The rate of removal fraction in the QIBT indicates that remote evaporation and 

precipitable water values as well as local rainfall values will have large implications on the 

length of the back trajectories. High evaporation rates and low values of precipitable water lead 

to a large rate of removal of moisture from the parcels, which will remain localized and fail to 

trace as far back as parcels passing through environments with low evaporation and high 

precipitable water. Likewise, at initial grid points where rainfall values are high, the parcels have 

the potential to trace farther back in time because they contain more moisture that must originate 

from the environment. Furthermore, reanalysis winds largely dictate the spatial patterns of the 

trajectories, as they are the source of advection back in time. 
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 We record the evaporative source of the released parcels every pentad throughout the 

summer or for specific pentads, depending on the source we wish to isolate. We use pentad-

averaged evaporative sources because they are computationally less expensive and because our 

time scales of interest are larger than five days and are not affected by the time averaging. To 

calculate total evaporative source for rainfall at a given grid point (i,j) at pentad time t, we take 

the sum of individual Sx,y,k,p(i,j,t) fields from all global grid points (x,y), from all parcels k, and 

through the time of the longest trajectory pf, to get the contribution of evaporation (E) to rainfall 

over grid point (i,j) in central India: 

E(i,j,t) =   𝑥 ,𝑦    𝑚
𝑘=1   

𝑝𝑓
𝑝=0  Sx,y,k,p(i,j,t) 

We understand that the area and time sum of these evaporative contributions from all remote grid 

points over the entire season should nearly equal, but never exceed, the amount of precipitation 

(P) that fell into the central India domain over the same portion of time since all moisture for 

precipitation events is accounted for by initial rainfall totals into a given grid point: 

   
𝑖 ,𝑗 ,𝑡 E(i,j,t) =    

𝑖 ,𝑗 ,𝑡 P(i,j,t). 

We also calculate the recycling ratios over central India, which are the fraction of rainfall 

that originates from local evapotranspiration to the total rainfall over the region. This ratio (R) is 

given by: 

R= 
   
𝑖 ,𝑗 ,𝑡 𝐸𝐴 (𝑖 ,𝑗 ,𝑡)

   
𝑖 ,𝑗 ,𝑡 𝑃(𝑖 ,𝑗 ,𝑡)

 , 

where EA(i,j,t) is the evaporative source totaled over an area A (central India) instead of the 

entire domain: 

 EA(i,j,t) =   𝐴    𝑚
𝑘=1   

𝑝𝑓
𝑝=0  Sx,y,k,p(i,j,t). 

 It should be noted that there are potential problems with the technique outlined above. 

Dirmeyer and Brubaker (1999) showed that there are no precipitation sinks incorporated into the 

trajectory so that parcel potential temperature is maintained throughout the tracking period. Thus, 

the only source of moisture is evaporation and the only sink is precipitation as the parcels move 

forward from their origin, and the possibility of phase changes due to diabatic processes (e.g. 

condensation or reevaporation from cloud vapor) is not considered. Chan and Misra (2009) 

suggested that this assumption will overextend the trajectories. Additionally, this program relies 

on evaporation and precipitable water as the major contributor to moisture for individual parcels. 
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As noted in Chapter 1.2.1, solar radiation may play an important role in contributing to 

atmospheric moisture in the tropical Indian region as well. 

 To prepare the reanalysis data for use in the QIBT program, we converted the upper air 

data from pressure coordinates to isentropic, sigma coordinates so that the parcels follow lines of 

constant potential temperature. The R2 data were downloaded in sigma coordinates originally, 

but we manually converted the CFSR and MERRA upper air datasets. To accomplish this task, 

we converted pressure-leveled data to sigma-leveled spectral coefficients data. We forced each 

dataset to match the 17 vertical sigma levels of the R2 reanalysis, while simultaneously 

regridding the data to the R2 T62 grid for consistency. We also regridded the CFSR and 

MERRA flux datasets, as well as the IMD gridded rainfall dataset, to the T62 grid before running 

the QIBT program so that comparison among the datasets was possible. 

 

3.4 Checking the evaporative source 

 

To check the accuracy of the QIBT program, we compared the program’s account of moisture 

traced back from central India (   
𝑖 ,𝑗 ,𝑡 E(i,j,t)) with the actual IMD rainfall data, regridded to the 

T62 grid for comparison. We found the standard error between the estimated moisture 

originating from evaporative source across the domain and the actual IMD rainfall data and 

compared the results among the three datasets. We observed that MERRA performed the best in 

terms of accounting for moisture that contributed to precipitation over central India. MERRA 

showed a 3.7% error, whereas R2 showed 7.6%, and CFSR showed 10.6% (Table 3-2).  

 

3.5 Statistical calcuations 

 
We calculated the percentage difference between cases throughout this study. These calculations 

were completed to compare the overall magnitude of the differences between dataset parameters, 

rainfall, or evaporative source among the reanalyses or among the modes of interannual or 

intraseasonal variability. The percentage difference between field A and field B in this study is 

given by:  

𝐷 = 100 ∗
𝐴 − 𝐵

𝐵
, 
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where A and B are parameters with the same unit. The difference D gives the magnitude of the 

difference between fields A and B in relation to the reference field B. 

 Additionally, we checked the significance of the percentage difference between the 

means of two parameters from conceptual populations, 𝜇1 and 𝜇2, by calculating the small-

sample test statistic t and testing the null hypothesis (H0) that there was no difference in the 

means. The null hypothesis is given by: 

H0: 𝜇1 −  𝜇2 = 0. 

The test statistic assumes that the two samples are approximately normally distributed with 

similar population variances and that the two samples are independent of each other. The statistic 

is given by: 

𝑡 =
 𝑥1− 𝑥2 − 𝐻0

 𝑠2 
1

𝑛1
+

1

𝑛2
 

,  

where 𝑥1 and 𝑥2 are the means of the two samples, 𝑛1 and 𝑛2 are the sample sizes, and 𝑠2 is the 

pooled estimator of variance between the samples, given by: 

𝑠2 =   
 𝑛1−1 𝑠1

2+  𝑛2−1 𝑠2
2

𝑛1+𝑛2−2
,  

where 𝑠1
2and 𝑠2

2 represent the variances of samples 1 and 2, respectively.We reject the null 

hypothesis and assume that the means are significantly different wherever the value of the test 

statistic lies within ± tα/2, which represents the critical value of t for α=0.10 or 90% confidence 

and 𝑛1 + 𝑛2degrees of freedom. 
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Figure 3-1. Graph showing each year’s deviation from climatological (1951-2003) average of 

seasonal (JJAS) rainfall over all-India. The abscissa is the year (note: not sequential) and the 

ordinate is the percentage difference between a given year’s rainfall and the climatological 

average. Dry years are colored in red, neutral in yellow, and wet in green. The long-term mean is 

shown by the black solid line and one standard deviation by dashed lines. 

 

 

 

 

 

 

 

 

Table 3-1. Specific years chosen (between 1979 and 2003) for wet, dry, and neutral years. The 

average of all three cases makes up a set of 15 years, which we refer to as ―all years,‖ or 

climatology, for the purposes of this study. Also shown is each year’s percentage deviation 

above the long-term, 53-year average. 
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Figure 3-2. Graphs showing the intraseasonal oscillations isolated from the central India area-

averaged rainfall data in all (a), dry (b), and wet (c) years. Plots show the rainfall anomalies 

compared to the yearly average in mm day
-1

. The abscissa is the season day, starting with 15 

May, and the ordinate is the rainfall anomaly in mm day
-1

. The results have been filtered through 

a 20-60-day simple first-order recursive Butterworth filter. 
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Figure 3-3. Seasonal accumulated evaporative source for the 1996 (neutral) monsoon season, 

using parcels traced back in R2 for five (a), ten (b), 15 (c), and 20 (d) days. The box represents 

the central India domain from which parcels were released. 
 

 

 

 

Table 3-2. Percent error between moisture accounted for by the QIBT for rainfall events over 

central India (seasonal) and the actual IMD rainfall that fell into central India over the same time. 

 

Percent Error between QIBT Estimates and IMD Rainfall 

R2 CFSR MERRA 

7.6 10.5 3.7 

 

 

A B 

C D 

Accumulated 
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CHAPTER FOUR 

RESULTS 

 

4.1 Dataset parameter variability 

 

Our QIBT program uses several surface and upper air variables from each of our three datasets. 

The variables of most interest to this study are latent heat flux (LHF), low-level (850-hPa) winds, 

and precipitable water (PW). LHF or evaporation and PW are related to the rate of removal of 

moisture from each of our parcels, whereas the winds act to advect our parcels backward and 

forward in time (Section 2.3). We first analyze each parameter on a monsoon-seasonal (JJAS) 

time scale. We then isolate the differences between them on interannual and intraseasonal time 

scales to identify possible mechanisms to explain the changes in evaporative sources for different 

rainfall events in different datasets.  

We recall initial statements made in Chapter 1 that evaporation dictates rainfall and can 

influence climate and weather patterns. In the following section, we assume that environmental 

differences on certain time scales influence our evaporative sources; however, it is likely that 

character of evaporative sources and weather patterns can influence the environment as well, and 

it is ultimately difficult to predict cause-and-effect relationships in for these cases. 

4.1.1 Seasonal average  

As described previously, model-based evaporation estimates are among the most important (but 

most difficult to estimate) parameters used in this study. Thus, we expect any changes in 

evaporation estimates to manifest themselves as changes in the magnitude or position of 

evaporative sources for our rainfall events especially over land, where moisture is limited. We 

see that R2 average seasonal evaporation is highest over the tropical Indian Ocean with maxima 

over the southern Bay of Bengal and southwestern Arabian Sea to the north (Figure 4-1a). Both 

regions exhibit evaporation of over 6 mm day
-1

. As expected, evaporation is low over the desert 

regions and the Tibetan plateau north of India, where moisture and evaporation are limited. 

Evaporation is moderate (2 mm day
-1

 – 4 mm day
-1

) over the Indian subcontinent, where it 

decreases in magnitude from the south to the north. Evaporation is also increased around smaller 



30 
 

water bodies in the domain such as the Persian Gulf and the Red Sea, where moisture is less 

limited than in surrounding land regions. 

When compared to CFSR (Figure 4-1b), R2 exhibits significantly greater evaporation 

over eastern central India (10% – 25% increase), northern India (over 100% increase), and also 

over the southern tip of the subcontinent (over 100% increase). Over much of the eastern 

Arabian Sea, R2 shows significantly less (10%–25%) evaporation compared to CFSR. Overall, 

R2 estimates greater evaporation over land and less evaporation over water when compared to 

CFSR. MERRA shows significantly more evaporation over northwestern India (over 100% 

increase) and over the tropical Indian Ocean and Bay of Bengal (10% – 25% increase) when 

compared to R2 (Figure 4-1c). Small areas of significant reduction in LHF in R2 are observed 

over far western central India (up to 50% reduction) in this comparison. The differences between 

the newer datasets and R2 could be attributed to their use of similar-response LSMs. 

We consider the seasonal average diurnal cycle of evaporation estimates for each dataset 

to check for consistency (Figure 4-2). All reanalyses show similar magnitude peaks in 

evaporation of around 7 mm day
-1

 – 8 mm day
-1

 of evaporation around 06Z over central India. 

R2 (MERRA) exhibits more evaporation compared to the other datasets prior to (after) 06Z. 

Overall, CFSR exhibits the lowest rate of evaporation among the datasets throughout the day. 

This result helps to explain why CFSR had the greatest standard error in conserving moisture for 

precipitation events (Section 3.4). Low evaporation over land forces the parcels to trace further 

back in time in CFSR, which leads to less conservation of moisture in that dataset. 

We also isolate average seasonal 850 hPa winds to confirm the presence of the low-level 

cross-equatorial flow passing north over the eastern coast of Africa, across the Arabian Sea, west 

over the Indian region, and exiting the domain through southeast Asia. In R2 (Figure 4-3a), this 

feature is well noted, with winds in excess of 20 ms
-1

 throughout most of southwesterly flow 

region. Differences in the low-level winds between R2 and MERRA are small (less than 5 ms
-1

) 

and directionally varied over this region (Figure 4-3c), and most of the large anomalies in the 

field (greater than 5 ms
-1

) lie over the land portions of southern China and eastern Africa, well 

away from most monsoon activity. However, differences in the wind between R2 and CFSR are 

more noticeable (Figure 4-3b). Here we see strong (up to 5 ms
-1

), statistically significant easterly 

anomalies over the southern Arabian Sea and southern Bay of Bengal when comparing R2 to 
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CFSR. These anomalies demonstrate that the cross-equatorial flow in R2 is weaker than the 

cross-equatorial flow in CFSR. 

Next, we analyze average seasonal PW values for R2 (Figure 4-4a). As we saw for the 

evaporation field, PW values are highest over the Bay of Bengal, Southeast Asia, and 

southeastern India (over 55 mm) and decrease across the subcontinent toward the northwest (35 

– 50 mm). Values are low over the desert regions and the Tibetan plateau, where the high 

elevation and subsidence limits atmospheric humidity. CFSR (Figure 4-4b) and MERRA (Figure 

4-4c) estimates for PW are significantly higher (up to 25% increase) over eastern central India 

and the Bay of Bengal compared to the estimates from R2. The values in R2 are also higher than 

those from the other datasets over most of eastern Africa and the far western Indian Ocean. 

These results suggest that R2 has universally more (less) column moisture over eastern Africa 

(central India) across our other two datasets. The similarities between CFSR and MERRA 

suggest more consistent column moisture modeling in these datasets possibly due to their 

incorporation of satellite radiances, which are not used in R2. 

Finally, we consider the average seasonal ratio of evaporation to PW (
𝐸

𝑃𝑊
) in each 

dataset. We used this ratio to fractionally remove moisture from parcels that were released over 

central India. Parcels that advect back through regions of high (low) 
𝐸

𝑃𝑊
 lose moisture quickly 

(slowly) and will tend to remain local (advect remotely) compared to the case in which parcels 

advect through a neutral environment. For R2 (Figure 4-5a), we observe that the ratio is around 

10% day
-1

 over much of India, and that it increases to around 15% day
-1

 over the tropical ocean 

and the nearby smaller seas where evaporation is increased. The ratio is low over the desert 

regions where evaporation is almost zero. When compared to CFSR (Figure 4-5b), R2 shows a 

significant increase (30% – 60%) in the ratio over eastern central India and Southeast Asia. The 

ratio is significantly lower (10% – 30%) over the eastern Arabian Sea and the southern Bay of 

Bengal. When compared to MERRA (Figure 4-5c), R2 shows a generally higher ratio over 

eastern central India, the Bay of Bengal, and the tropical Indian Ocean (20% – 60% increased), 

as well as a significantly lower ratio (10% – 30%) over southern China.  

Although the moisture removal ratio differs between datasets, we understand that the rate 

of moisture removal is exponential; that is, parcels with greater moisture content will lose 

moisture faster than parcels with lower moisture content while advecting backward through the 
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same region. Thus, this ratio explains only part of the difference in evaporation sources that we 

trace, as several other factors, including the low-level winds and the rainfall patterns, contribute 

to the positioning and character of each parcel as well. Additionally, the magnitude of the ratio is 

most important closest to the area of release, where parcels have the potential to lose the most 

moisture while advecting backward in time. 

4.1.2 Interannual variability 

We compare the various parameters on an interannual time scale to help explain any potential 

changes that we isolate in evaporative sources during wet years and dry years. In the seasonal 

average 850 hPa wind field, all three datasets show similar differences between wet years and the 

average and between dry years and the average. During wet monsoon seasons (Figure 4-6a–c), 

we see an increase in the overall monsoon circulation and the southwesterly flow with an 

enhancement in the westerly winds (~2 m/s) over the Arabian Sea and across the southern tip of 

India in all datasets. We observe the largest significance differences between the winds over the 

southern Arabian Sea for R2. These eventually loop back over the Bay of Bengal and turn 

southeasterly across eastern central India. In comparing dry years to average (Figure 4-6d–f), we 

see anomalous, statistically significant easterly winds (~2 m/s) passing over southern India and 

into the Arabian Sea and northwesterlies over eastern central India in all datasets. This result 

suggests an overall weakening of the monsoon flow during dry years and is consistent with 

results from Krishnamurthy and Shukla (2000).  

 We also consider the interannual variation of the seasonal average 
𝐸

𝑃𝑊
 ratio. During wet 

years, we observe a decrease (2.5% – 10%) in the ratio over parts of the Arabian Sea and the 

western tropical Indian Ocean in all three datasets (Figure 4-7a–c). Both R2 and CFSR feature a 

similar decrease (2.5% – 10%) in the ratio over the central Bay of Bengal. This extends over 

central India in MERRA. This reduction pattern is attributed to the increase in the PW field over 

most of the southwesterly flow region during wet years (not shown).  

During dry years, we notice an increase (2.5% – 10%) over the Arabian Sea in all 

datasets (Figure 4-7d–f), but the difference is larger in MERRA than it is for R2 or CFSR. We 

attribute this pattern to the decrease in PW available for dry years along the cross-equatorial flow 

path (not shown). In the case for CFSR, we also observe a small increase over the Bay of Bengal 

during dry years.  
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None of these changes in the 
𝐸

𝑃𝑊
 ratio in either case is significant, however, so we are 

uncertain about the contribution of changing environmental moisture to evaporative sources on 

an interannual time scale. The changes are also remote from central India and therefore have less 

influence on the parcel tracks than if the changes were closer to the release region. We assume 

that the change in the wind field at this time scale will dictate the position and magnitude of our 

evaporative sources. 

4.1.3 Intraseasonal variability 

 We notice consistent changes in the intraseasonal average 850 hPa wind fields for each of 

the datasets. In active periods from all datasets (Figure 4-8a–c), we isolate a 4–5 m/s increase in 

the southwesterly component of the winds over the Arabian Sea and across southern India, 

similar to what we saw for the composite of wet years, but with a larger southerly component. 

The winds turn anomalously northward over Southeast Asia and then back toward the northern 

plains of India as southeasterlies. No particular dataset features a wind pattern unique to the 

others, and in each case, most significance lies over the southern Bay of Bengal and the Arabian 

Sea near southern India. Likewise, break periods feature nearly the opposite pattern in 

anomalous winds (Figure 4-8d–f), which is consistent with results from Krishnamurthy and 

Shukla (2000). They concluded in their study that active and break periods are associated with an 

enhancement or reduction in the overall seasonal monsoon circulation. We know that TCs and 

low pressure systems advect from the Bay of Bengal during active periods, but we cannot resolve 

their contribution to the wind field at this resolution. 

 We also observe intraseasonal variation in the intraseasonal average 
𝐸

𝑃𝑊
 ratio for each 

dataset. In active periods from all datasets (Figure 4-9a–c), we see a significant increase (up to 

12.5%) in the ratio over the Bay of Bengal, particularly in the western edge of the basin. In R2 

and CFSR, this increase extends across to the eastern Arabian Sea. In all cases, portions of 

northern central India feature a non-significant decrease in the ratio (2.5 – 12.5%). During active 

periods, the precipitable water and especially the evaporation fields increase compared to 

average (not shown) over these areas, which helps to explain the increase in ratio we observe 

during these times.  

During break periods from all datasets (Figure 4-9d–f), we notice the opposite pattern. 

Areas around the western Bay of Bengal have significant lower-than-average 
𝐸

𝑃𝑊
 ratios, and this 
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reduction extends to the eastern Arabian Sea for CFSR and R2. Portions of northern India also 

exhibit a non-significant increase in the ratio for all three datasets. Likewise, during break 

periods, precipitable water and especially evaporation show reductions compared to normal over 

these areas, which explains the reduction in the ratios that we observe.  

Following Krishnamurthy and Shukla (2006), Goswami et al. (2003), and Goswami et al. 

(2008), we attribute the existence of high moisture potential near the Bay of Bengal during active 

periods to the presence of LPSs in that area during those periods. Since these changes occur 

close to central India, we expect them to have a larger impact on the evaporative sources 

compared to the interannual variation case. 

 

4.2 IMD rainfall variability 

 

IMD gridded rainfall data (Section 2.1) form the core precipitation input for our back trajectory 

program, so we graphically analyze their interannual and intraseasonal variability over India to 

confirm that our methodology properly isolated the expected modes of variation. 

4.2.1 Interannual variability 

We first set out to characterize the daily-average seasonal (JJAS) rainfall patterns over India. In 

all analyzed years (Figure 4-10a), rainfall maximizes over central India, especially along the 

southwestern coast and far eastern portion of the country, where advected moisture encounters 

steep orography and precipitates out as rainfall. This result agrees with the climatology discussed 

extensively in literature (Rajeevan 2003; Gadgil 2003). As expected, the composite of wet years 

features a higher amount of rainfall across the entire subcontinent compared to the climatological 

average rainfall (Figure 4-10c). Likewise, the composite of dry years features a decrease in 

magnitude of seasonal rainfall (Figure 4-10b), with the same overall spatial pattern that we see 

for all years and for wet years. All cases show a maximum of rainfall over central India, which 

has previous been described as the monsoon zone. 

 We also take our composite of wet years and our composite of dry years and compare 

them to all analyzed years. We notice small (less than 30%) increases in the daily-average 

rainfall amounts in wet years compared to all years over most of central India (Figure 4-11a). 

These differences are significant over only the central-most portions of the region. The increases 

are larger (30 – over 50%) and statistically significant in the far western potions of the country. 

Likewise, the differences between dry years and all years are small (less than 20% reduction) and 
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not significant over central India (Figure 4-11b). The reductions are larger (up to 50%) and 

significant in the far western portions of the country. This result concurs with previous studies 

that have found a small standard deviation in the seasonal rainfall compared to the mean (Gadgil 

2003; Krishnamurthy and Shukla 2000), which makes it difficult to study changes in the 

monsoon rainfall on this time scale and with this sample size. We also observe larger percentage 

differences for both wet years and dry years in far western India, but these are caused by small 

changes in this climatologically low-rainfall region; this results in artificially large percentage 

differences in the cases. 

It is interesting to note that most of the significant difference between wet and all years 

and dry and all years lies outside the central India box. Thus, we would assume any interannual 

changes in evaporative source to be due to some parameter other than a significant change in 

rainfall patterns on this time scale (Section 4.1). 

4.2.2 Intraseasonal variability 

Next, we choose to isolate the daily-average rainfall patterns during the active and break periods 

of the Indian monsoon. The composite of active periods from all years (Figure 4-12a) looks very 

similar to the pattern we saw for the wet year composite (Figure 4-10c). Rainfall is maximized 

over central India and especially over the southwestern coast and far eastern portion of the 

country. During break periods (Figure 4-12b), the maximum in rainfall shifts further toward the 

east where more rain occurs over the northern plains and less falls over the central India region. 

 The largest difference between the active and break periods and average conditions is 

located mainly along the central and western portions of the subcontinent. In active periods 

(Figure 4-13a), rainfall is significantly increased (up to 50%) within the western half of the 

central India box, extending toward the coast of the Arabian Sea. There is some (less than 30%) 

drying along the northeastern and southern portions of the country. This pattern is nearly 

opposite to the one we see for break periods (Figure 4-13b). There is significant drying (up to 

50%) in the western and central portions of the country, with a slight increase (up to 30%) in 

rainfall in the northern plains and southern tip of India. This pattern, anomalies of one sign over 

central India and the opposite sign to the north and south, was described by Krishnamurthy and 

Shukla (2000) and shows that the methodology used to isolate intraseasonal variation was 

successful. These results tend to be more statistically significant than those we saw for 
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interannual variability, but we attribute this difference to the increased sample size for and 

greater variance in intraseasonal periods compared to interannual periods.  

Since there is more change in rainfall amounts over central India on this time scale, we 

expect precipitation amounts to play a larger role in dictating intraseasonal evaporative sources 

than in dictating interannual evaporative sources. We also observe that most intraseasonal 

rainfall change occurs over western central India, so during active (break) periods, more parcels 

will be released from western (eastern) portions India compared to average. 

4.2.3 Interannual variability of intraseasonal oscillations 

Finally, we compare our rainfall data to isolate any interannual variability in the intraseasonal 

oscillations of daily-average rainfall patterns. We find that during wet years, active periods are 

significantly (1mm – 7.5mm) wetter than average over all of central India and most of the 

western and northern portions of the country (Figure 4-14a). In dry years, however, active 

periods have anomalies of a mixed sign across India and are not completely ―wet‖ (Figure 4-

14b).  Likewise, during dry years, break periods tend to be universally drier (1mm – 7.5mm) 

compared to average (Figure 4-14d), with some significance in eastern central India and in the 

northernmost parts of the country. In wet years, break periods are actually wetter than the 

climatological average (Figure 4-14c) and significant increases (1mm – 5mm) in rainfall occur 

all around the central India region.  

Since the rainfall difference patterns between wet and dry years for both active and break 

periods are not symmetrical about the mean, we assume that there is some interannual signal in 

the intraseasonal oscillations. We certainly observe this for break periods, which undergo more 

variability interannually over central India compared to active periods. Likewise, we observe that 

dry years have more intraseasonal variability over central India compared to wet years. Thus, we 

expect there to be some interannual change in the evaporative source on the intraseasonal time 

scale since our parcels will be released over different locations with different rates and moisture 

quantities depending on the seasonal and intraseasonal character of the monsoon. 

 

4.3 Evaporative source variability 

 

The ultimate goal of this study is to isolate and document changes in the location, extent, and 

magnitude of the evaporative sources for seasonal and intraseasonal rainfall events during the 

Indian monsoon.  
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4.3.1 Average variability 

We begin by analyzing the evaporative sources for the seasonal (JJAS) average rainfall events 

during all years for R2 (Figure 4-15a). The evaporative source is largely concentrated over 

eastern central India, where terrestrial evaporation presumably plays a role in providing moisture 

for local rainfall events. The sources extend to the east across the Bay of Bengal and diminish 

over Southeast Asia. The sources also extend to the west and south across the Arabian Sea, the 

smaller nearby seas, and toward the eastern African coast and Madagascar. These remote 

influences could be attributed to large evaporation and high moisture ratio over the water bodies 

and the African landmass and subsequent advection of that moisture to central India via the 

winds. The increased onshore flow off the Bay of Bengal during active periods explains how this 

moisture could feed into central India from the east, which is located generally downstream of 

the seasonal cross-equatorial flow. Finally, we see a small extension of high-magnitude 

evaporative source over northwestern India and northern Pakistan, where evaporation and 

moisture ratio are locally high. It is possible that moisture from this region is pulled southward 

from the mid-levels of the atmosphere to supply the rainfall events to the southeast as outlined by 

Krishnamurti et al. (2010).  

Identical plots for composites of wet years (Figure 4-15b) and dry years (Figure 4-15c) 

are also supplied for comparison with the case for all years. Differences on this time scale will be 

explained in the next subsection. Spatial layout is generally similar among the cases, and the 

biggest differences are found in the magnitude of the moisture sources. 

We have also included identical plots for the evaporative sources isolated from both 

CFSR (Figure 4-16) and MERRA (Figure 4-17) for consistency and comparison to R2. Overall 

spatial distribution and magnitude of the evaporative are similar between the three cases, but 

there are major differences between them in certain regions. 

There are significant differences in the seasonal accumulated evaporative sources 

between R2 and CFSR. In R2 (Figure 4-18a), we observe a significant increase (25%–125%) in 

evaporative sources over north-central and northwestern India, where R2 exhibited greater 

evaporation and moisture ratio compared to CFSR. In this region, parcels would potentially 

remain more localized in R2 since they could lose moisture more quickly in that environment. 

When compared to CFSR, R2 shows a significant decrease (25%–75%) in moisture contribution 

from the Bay of Bengal, the Arabian Sea, Southeast Asia, and eastern Africa. Over the oceanic 
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regions, R2 has lower moisture potential and lower winds (specifically over the Arabian Sea) 

than does CFSR. Such conditions support lower marine moisture advection in contribution to 

total rainfall over India. The general lack of remote moisture advection from terrestrial and 

marine sources in R2 can also be explained by the previously mentioned local increase in 

moisture recycling over northwest India. It is plausible that this scenario places less demand on 

remote sources for moisture since most moisture is originating locally and within the system 

itself. 

When we compare the results of R2 to the results of MERRA (Figure 4-18b), we notice a 

somewhat similar result. Compared to MERRA, R2 features greater (25%–125%) moisture 

contribution from northwestern India. This is related to the increase in evaporation and moisture 

ratio fields in R2 compared to MERRA over the region. Again, evaporation from the north 

releases more atmospheric moisture into the column in R2 than in CFSR, which could later feed 

nearby precipitation events. As we saw in the case for R2 and CFSR, there is a reduction (25% – 

50%) of remote moisture advection in R2 compared to MERRA. We recall that R2 featured 

higher evaporation and moisture ratio over the Bay of Bengal compared to MERRA. Thus, 

parcels advecting back through this region would tend to dry out quickly in R2 compared to 

MERRA and thereby decrease the influence of more remote regions. However, unlike the case 

for R2 and CFSR, there is a significant increase (50%–150%) in evaporative source from the far 

eastern Indian Ocean in R2 compared to MERRA. In this case, local evaporation differences 

over India are not as large between R2 and MERRA as they are for R2 and CFSR. Therefore, R2 

advects more moisture from remote areas. 

These results regarding local-to-remote evaporative source influences are confirmed in 

our analysis of the recycling ratios R for each dataset (Table 4-1). In each case, R2 exhibits the 

highest ratio of local to remote evaporative source. CFSR and MERRA show similar ratios, each 

of which is lower than that of R2. 

In the scope of this study, we cannot assess which dataset produces the most accurate 

depiction of moisture sources for the monsoon region because we do not have evaporative source 

observations with which to compare them. However, we reiterate that all datasets produce 

relatively similar results, and note that the CFSR and MERRA datasets are more similar to each 

other than to the R2 dataset. Future studies may incorporate additional reanalyses, which would 

allow for increased analysis between them. 
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4.3.2 Interannual variability 

Next, we choose to isolate differences in the magnitude and location of the seasonal 

accumulated evaporative sources in wet years and in dry years. Here, we see patterns that are 

relatively consistent and expected in each of the datasets.  

First, we compare wet years to all years for R2 (Figure 4-19a). We observe a general 

increase in the evaporative sources from all the regions we observed in Figure 4-15. As expected, 

moisture contribution is higher from all regions because rainfall is increased in wet years 

compared to average. This result confirms the proposal that the overall monsoon flow is 

enhanced in wet years compared to dry (Krishnamurthy and Shukla 2000). However, there are 

significant increases (10%–40%) in small portions of the western Arabian Sea and central India 

in R2. The results are similar for CFSR (Figure 4-19b) and small, significant increases (10%–

50%) occur over the eastern Arabian Sea and western central India. For MERRA (Figure 4-19c), 

small significant increases (10% –50%) occur over the eastern Arabian Sea and central India.  

The significant enhancement of moisture sources from these specific regions 

demonstrates that local evaporation over India and remote advection from marine areas of the 

southwesterly flow region contribute more to the universal increase in moisture source in wet 

years than do terrestrial regions to the north and remote regions to the east. Although the 

moisture ratio is decreased across much of the domain in wet years, the changes in the ratio are 

far located from central India, and they are assumed to have little influence on the moisture 

content of our advected parcels. Since the winds are increased along the southwesterly flow 

region in wet years, it is possible that more parcels follow that trajectory back in time and that 

we isolate more moisture contribution from areas to the west as a consequence. 

For dry years, we observe an overall decrease in the magnitude of the evaporative sources 

compared to all years for all datasets. For R2 and MERRA (Figure 4-19 d;f), the evaporative 

source is significantly reduced (10%–50%) over northwestern India; for CFSR (Figure 4-19e), 

the source is significantly reduced (10% to over 50%) over the Arabian Sea. The case for dry 

years is somewhat different than the case for wet years. For dry years, only CFSR shows that 

most of the universal reduction in moisture occurs over the southwesterly flow region where 

low-level winds are anomalously weaker compared to average. This case is opposite to the one 

observed for wet years. However, for R2 and MERRA, most of the reduction occurs more locally 

and could be influenced more by changes in moisture availability in those areas and less by the 
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overall flow, which is weaker than average in dry years and would have less influence in the 

back trajectories. 

Overall, the mechanisms governing wet year and dry year moisture regimes over central 

India are on a large scale and involve changes in the increase or reduction of mostly remote 

moisture influence for rainfall events. The TBO and Eurasian snow cover mechanisms are two 

such phenomena that occur along with an interannual increase or decrease in overall monsoon 

flow and could explain the changes we observe here. However, it has been shown that moisture 

sources become enhanced (reduced) over different regions of the overall monsoon flow during 

wet (dry) years. This finding suggests that interannual moisture variability involves more than a 

simple oscillation of the overall flow about the climatological mean as this study has assumed. 

4.3.3 Intraseasonal variability 

We now observe the differences in location and strength of the seasonal accumulated evaporative 

sources for active and break rainfall events during the Indian monsoon. For R2 (Figure 4-20a), 

CFSR (Figure 4-20b), and MERRA (Figure 4-20c) we see that active periods feature a 

significant increase (up to 50%) in evaporative source over the northeastern Bay of Bengal and  

extending westward over the Arabian Sea.  

Over the Bay of Bengal, we recall that the moisture ratio is significantly increased in 

active periods compared to average, suggesting higher potential of moisture gain or loss over this 

region. Therefore, any parcels advecting back over the Bay will tend to dry out quickly and 

remain more localized over that region than they would while passing through a neutral 

environment. The increase in southeasterly component of the wind during the active periods also 

forces our parcels to take trajectories that pass through this region more so than they would based 

on climatology. We suggest that these changes could alter our evaporative sources, and we 

attribute the changes to enhancement in overall flow of the monsoon as well as the presence of 

LPSs and TCs that move over India from the Bay of Bengal (Chapter 1.3). In this scenario, TCs 

act as major sources of moisture, which, along with the enhancement in background flow, could 

explain why the Bay of Bengal contributes more moisture to central Indian rainfall events during 

active periods. The increase in moisture contribution from the Arabian Sea in suggests that both 

the southwesterly flow and TC activity could be contributing to the overall enhancement in 

moisture over India that we observe during active periods. 
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We see a cross-correspondence with the results for all break periods (Figure 4-20 d–f). In 

this case, there is a decrease in evaporative source overall most of the domain (up to 50%) and 

most significance is over the northeastern Bay of Bengal and westward into the Arabian Sea. We 

attribute these changes to the absence of the mechanisms we previously suggested for the active 

case. In this case, TCs and LPSs are absent and the overall monsoon circulation is weakened 

compared to active periods, so the largest reduction in moisture contribution occurs over the Bay 

of Bengal where moisture heavily originates during the active periods.  

4.3.4 Interannual variability of intraseasonal oscillations 

The topic of most interest to this study is the interannual variability of intraseasonal oscillations 

in central India rainfall. We have previously considered the possibility of interannual variation of 

the ISOs, and we have shown results that lend truth to that theory. We now attempt to isolate the 

phenomenon in the location and strength of the seasonal accumulated evaporative source.  

 For R2, we see a distinct interannual signal in the intraseasonal oscillations. First, we 

compare all active periods from wet years (Figure 4-21a) to all active periods from dry years 

(Figure 4-21c). There is a significant increase (2.5mm – 10+ mm) in the evaporative source over 

the northeastern Bay of Bengal, central India, and the far eastern Arabian Sea. In this case, we 

assume that both the interannual, increased circulation mechanism, as well as the intraseasonal, 

strengthened monsoon trough mechanism, are playing a role in characterizing the evaporative 

sources. When we look at all active periods from dry years, however, we see a different pattern. 

There is a slight reduction in evaporative source remotely over the northern Arabian Sea and 

locally over northern India but no areas of significance. We do not observe an increase in 

moisture from the Bay of Bengal as we saw for all active periods, but we do see some reductions 

collocated along the same regions where we isolated reductions in evaporative source during dry 

years. Thus, moisture sources are favored in different regions during a given intraseasonal 

oscillation depending on the interannual signal that occurs along with it.  

 Likewise, for break periods, we observe cross-correspondence in the evaporative source 

patterns. Break periods from wet years are, in fact, associated with increased contribution of 

moisture from some remote regions to the north and west (Figure 4-21b). This suggests the 

influence of both interannual and intraseasonal moisture source patterns that we isolated earlier. 

When we isolate the evaporative source of break periods from dry years (Figure 4-21d), we see 

reductions in the same general areas where we saw increases for active periods from wet years. 
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Again, we assume that during break periods from dry years, the contribution of moisture from 

the Bay of Bengal and the cross-equatorial flow regions reduces, leading to the reduction in 

evaporative sources that we observe.  

Interestingly, these results are consistent among our three datasets. We consider the same 

plots for CFSR (Figure 4-22). For all active periods from wet years, we see that the evaporative 

source is enhanced in nearly the same location as it is for R2. The same is true for all active 

periods from dry years, all break periods from wet years, and all break periods from dry years, 

with significant reductions over the Bay of Bengal and the Arabian Sea in the last case, in which 

dry years feature significant reductions in moisture over the same areas. For MERRA (Figure 4-

23), the spatial patterns of the evaporative sources in each of these cases are nearly identical to 

those of R2 and CFSR. For MERRA, we observe greater significance in both the wet active and 

the dry break cases that we do for either R2 or CFSR. We recall large areas of significant 

enhancement or reduction in moisture source for MERRA at the intraseasonal time scale, as well 

as a reduction of moisture from northwestern India during dry years. Again, since we observe the 

effects of large scale and local changes in moisture sources, we assume that both interannual and 

intraseasonal mechanisms are governing the sources of moisture for these individual events. 

Finally, we observe that there is generally more intraseasonal variability during dry (wet) 

years and more interannual variability in the break (active) periods of the intraseasonal 

oscillations over central India (the Arabian Sea). That is, the amplitudes of the changes for these 

cases are larger than the changes in the corresponding cases. This observation lends credence to 

the arguments previously outlined that intraseasonal oscillations vary from year to year and to 

others that suggested that monsoon strength correlates inversely with ISO amplitude. These 

findings are consistent throughout the datasets, and strongly indicate the need to better model 

both intraseasonal and interannual variability of the monsoon in order to improve overall 

predictability. 
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Figure 4-1. Average evaporation rate (mm day
-1

) for the monsoon season (JJAS) for R2 (a), and 

the percentage difference between R2 and CFSR (b) and R2 and MERRA (c). The percentage 

difference is detailed in Chapter 3.5. This technique is widely used in this study and is the same 

for each plot that features it. Areas that are 90% significant, according to a two-tailed t-test, are 

hatched. Regions of small evaporation (< 1 mm day
-1

) are masked out so that the percentage 

difference over the desert regions does not reveal extremely large values due to division by small 

numbers. The square box represents the region from which we released our parcels and is the 

same for every subsequent figure. 
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Figure 4-2. Diurnal cycle of average evaporation for each dataset over central India during the 

monsoon season. Three cycles are shown to demonstrate the oscillation from day to day. The 

abscissa is the time step in UTC time, and the ordinate is evaporation in mm day
-1
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Figure 4-3. Same as Figure 4-1, but for average 850 hPa winds. Scale is shown to the right of 

each subplot (note difference between (a) and (b) and (c)). No mask is used as this is a simple 

difference between the fields. 
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Figure 4-4. Same as Figure 4-1, but for average PW. PW was calculated by taking the vertical 

integral of the specific humidity field up to 275 mb in GrADS. Areas of low PW (< 5 mm) are 

masked out. 
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Figure 4-5. Same as Figure 4-1, but for average 
𝐸

𝑃𝑊
 ratio. Areas of low ratio (< 5%) are masked 

out. 

A 
 

B 
 

C 
 



48 
 

 
 

Figure 4-6. Simple difference in the seasonal average 850 hPa wind fields between wet years and 

all years for R2 (a), CFSR (b), and MERRA (c) and then for dry years and all years for R2 (d), 

CFSR (e), and MERRA (f). Scale is shown at the bottom of the figure. Areas of 90% 

significance are hatched. 
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Figure 4-7. Same as Figure 4-6, but showing the percentage difference in seasonal average 
𝐸

𝑃𝑊
 ratio. Areas of low ratio (< 5%) are masked out. 
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Figure 4-8. Same as Figure 4-6, but between active periods and all periods (a–c) and break 

periods and all periods (d–f). 
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Figure 4-9. Same as Figure 4-7, but between active periods and all periods (a–c) and break 

periods and all periods (d–f). 
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Figure 4-10. Daily-average seasonal IMD gridded rainfall over India for all 15 years (a), all dry 

years (b), and all wet years (c). 
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Figure 4-11. Daily-average seasonal IMD gridded rainfall percentage differences between wet 

years and all years (a), and dry years and all years (b). Areas of 90% significance are hatched. 

 

 

A B 



54 
 

 
 

Figure 4-12. Daily-average IMD gridded rainfall for active periods from all years (a) and break 

periods from all years (b). These represent a composite of all specified periods, which may range 

in length from 10 to 30 days.  

 

 

 
 

Figure 4-13. Percentage difference in daily-average IMD gridded rainfall between active periods 

from all years and all periods (a) and break periods from all years and all periods (b). Areas of 

90% significance are hatched. 
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Figure 4-14. Simple difference in daily-average IMD gridded rainfall between active periods 

from wet years and all periods (a), break periods from wet years (b), active periods from dry 

years (c), and break periods from dry years (d). Areas of 90% significance are hatched. 
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Figure 4-15. Seasonal (JJAS) accumulation of evaporative source as estimated by R2 in all years 

(15a), dry years (15b), and wet years (15c) 
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Figure 4-16. Same as Figure 4-15 but for CFSR. 
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Figure 4-17. Same as Figure 4-15 but for MERRA. 
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Figure 4-18. Percentage difference in seasonal accumulation of evaporative source between R2 

and CFSR in all years (a) and between R2 and MERRA in all years (b). Areas of 90% 

significance are hatched. Areas of low (< 5 mm) evaporative source are masked out. 

 

Table 4-1. This table shows the recycling ratio R of evaporative source for all years, wet years, 

and dry years. The recycling ratio is given by the fraction of evaporative source that exists over 

the central India region over the evaporative source that exists over the entire domain (30
o
E – 

110
 o
E and -10

 o
S – 40

 o
N). 

 

Local-to-remote Moisture Ratio 

 R2 CFSR MERRA 

All Years 25.9 20.1 24.1 
Wet Years 25.7 20.1 23.9 
Dry Years 25.5 20.5 24.3 
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Figure 4-19. Percentage difference in seasonal accumulation of evaporative source between wet 

years and all years for R2 (a), CFSR (b), and MERRA (c), and between dry years and all years 

for R2 (d), CFSR (e), and MERRA (f). Areas of 90% significance are hatched. Areas of low (< 5 

mm) evaporative source are masked out. 
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Figure 4-20. Same as Figure 4-19, but for all active periods from all years (a–c) and all break 

periods from all years (d–f). 
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Figure 4-21. Simple difference in accumulated evaporative source between active periods from 

wet years and all periods (a), break periods from wet years and all periods (b), active periods 

from dry years and all periods (c), and break periods from dry years (d) for R2. Areas of 90% 

significance are hatched.  
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Figure 4-22. Same as Figure 4-21 but for CFSR. 
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Figure 4-23. Same as Figure 4-21 but for MERRA. 
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CHAPTER FIVE 

CONCLUSIONS 

 

In this study, we isolated interannual and intraseasonal changes in the location and magnitude of 

evaporative sources for rainfall events during the summertime Indian monsoon, and we intended 

to improve our understanding of the variability of the monsoon. Overall, we accomplished 

several of the goals laid out in the initial part of this study. 

We found that there are significant differences in the evaporation, wind, and PW fields 

from R2, CFSR, and MERRA. R2 features higher evaporation rates over land compared to CFSR 

or MERRA. The 850 hPa winds tend to be stronger in R2 than in CFSR. The southwesterly flow 

region is enhanced (reduced) during wet (dry) years as well as active (break) periods compared 

to average. The PW values tend to be lower (higher) in R2 than in either CFSR or MERRA over 

eastern India and the Bay of Bengal (eastern Africa). The 
𝐸

𝑃𝑊
 ratio reflects changes in both of the 

fields and varies on interannual and intraseasonal time scales.  

We also confirmed that our methods used to isolate interannual and intraseasonal 

variability in the rainfall were sufficient. Our defined wet years/active periods are significantly 

wetter than average. Our differences on the intraseasonal time scale are more robust due to a 

larger sample size. 

Finally, we traced the evaporative sources interannually and intraseasonally. We found 

that all datasets produce similar plots for seasonal evaporative source and generally 

concentrated it locally over central India. R2 generally produces more local evaporative source 

over land compared to CFSR and MERRA, which feature larger remote influences of the water 

and its associated moisture.  

The location and strength of the evaporative source for interannual rainfall events 

changes most significantly over the central India and parts of the Arabian Sea in all three 

datasets, which suggests changes in the character of the overall monsoon circulation and the 

southwesterly flow. We saw an enhancement in evaporative source for wet years and a reduction 

in evaporative source in dry years. The location and strength of the evaporative source for 
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intraseasonal rainfall events changes most significantly over the northeastern Bay of Bengal and 

the eastern Arabian Sea in all three datasets, which suggests the influence of a strengthened 

monsoon trough and landfalling TCs and LPSs in supplying moisture to the region in active 

periods. We saw an enhancement of the evaporative source for all active periods and a reduction 

in evaporative source for all dry periods. The location and strength of the evaporative sources for 

intraseasonal events are also influenced on an interannual timescale. We found a large 

enhancement in evaporative source over the Bay of Bengal, the Arabian Sea, and most of India 

during active periods from wet years and a reduction in evaporative source over those same 

regions during break periods from dry years. However, active periods from dry years and break 

periods from wet years draw their moisture from sources that are different than in active periods 

from wet years and break periods from dry years, respectively. We also observed changes in the 

variability of the intraseasonal oscillations on interannual time scales and the intraseasonal 

oscillations from year to year. 

We concluded that a combination of precipitation rates, moisture availability, and winds 

plays the largest role in dictating the characteristics of the evaporative source for the monsoon 

rainfall. In cases for which we did not vary the input rainfall dataset, 
𝐸

𝑃𝑊
 ratio and winds had the 

largest influence on the local and remote nature of evaporative source. 

We observed that the dominant changes in the location of the evaporative sources on 

interannual and intraseasonal time scales are not collocated. This result has implications for 

climate predictability over the Indian monsoon region. Although there is current interest in 

improving the interannual predictability of the monsoon, we suggest an improvement in the 

intraseasonal to improve overall predictability. We put forth in this study that models need 

improved estimates of the moisture fields and atmospheric water content, both over the Bay of 

Bengal and the Arabian Sea, to accomplish reliable predictability of the monsoon. 

Several limitations exist within this study. Our analysis relies on just fifteen years of data 

and five years each for the wet and dry cases. This is a necessary consequence of our dataset 

being limited to the period between 1979 and 2003, but the fact remains that larger sample sizes 

would provide greater significance and more validity to our results. We also have not clearly 

identified any physical mechanisms to explain the interannual or intraseasonal variability of 

evaporative source other than the differences in the evaporation, PW, and wind parameters 

outlined above. Differences in the fields of vorticity, outgoing long-wave radiation (OLR), or 
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upper level winds have been documented in monsoon literature and could also be compared 

among our datasets to help isolate changes in the evaporative source on these time scales. Also, 

circulation changes such as those described for ENSO, the TBO, or TC presence could be 

specifically studied to see if they are the main causes of the changes in flow that we observe at 

different time scales. We could attempt to isolate the changes in each of the parameters during 

the interannual changes of the ISOs; these were omitted for this study in the interest of 

conciseness.  

On scales beyond the purview of this study, more research is necessary to accurately 

depict the variation of the monsoon. Although several mechanisms were outlined in Chapter 1 to 

explain interannual and intraseasonal variability, much debate remains regarding the overall 

contribution of each mechanism to total variability of the monsoon. Furthermore, the QIBT used 

in this study has obvious limitations (Chapter 3), and the program’s code itself can be modified 

to introduce solar radiation or sources and sinks of moisture other than the ones previously 

described. This would provide a more accurate representation of the evaporation sources we wish 

to trace. 

Opportunities for future research also exist within this study. Introduction of other 

reanalyses would enhance our intercomparison between datasets, although we would require an 

observation-based parameter regarding evaporative source in order to assess which reanalysis 

provides the most accurate depiction of monsoon moisture. It would be helpful to use EOF 

analysis as cited in the literature to identify the main modes of variability in the interannual and 

intraseasonal evaporative sources. This would allow us to document the dominant features of the 

variance in this parameter and would help us to compare and contrast it to the modes of 

variability of Indian rainfall that are well documented in the literature. However, a larger sample 

size is required before we complete this task with confidence. This study could be altered to 

compare seasonal variability of the monsoon on other time scales, such as that of ENSO. It is 

clear that ENSO and the monsoon are strongly influenced by one another, so it would be 

interesting to note changes in the evaporative source character due to these interactions. Finally, 

our QIBT could be used to trace the evaporative source for monsoon systems across the globe 

and could serve as a proxy method to study transport of dust, pollutants, pathogens, or aerosols 

from one location to another. One such study will attempt to monitor the source regions for dust 

particles moving over the southeastern U.S. from the coast of Africa. Pathogens are known to 
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attach to these particles and become introduced to remote regions via this mode of transport. It 

would be interesting to note changes in dust source regions to improve studies of climatology 

and associated epidemiology over western Africa and to expand this line of research far beyond 

its initial intentions. 
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APPENDIX A 

DATE TABLES 

 

Table A-1. List of the starting and ending dates for each of the active periods we isolated from 

all years (56 total). These were converted to pentad dates for the purposes of this study. An 

active period is defined as 10–30 days of above average (filtered) rainfall 

 

Active Periods 

Start Date End Date Start Date End Date 
15jun1979 29jun1979 14jul1988 07aug1988 
30jul1979 13aug1979 18aug1988 01sep1988 

29aug1979 12sep1979 17sep1988 26sep1988 
13sep1979 27sep1979 05jun1989 04jul1989 
05jun1982 24jun1982 15jul1989 29jul1989 
15jul1982 29jul1982 14aug1989 28aug1989 

09aug1982 23aug1982 18sep1989 02oct1989 
08sep1982 27sep1982 10jun1990 04jul1990 
20jun1983 04jul1983 15jul1990 24jul1990 
04aug1983 18aug1983 09aug1990 23aug1990 
03sep1983 17sep1983 18sep1990 02oct1990 
04jun1984 18jun1984 10jun1994 24jun1994 
29jun1984 13jul1984 05jul1994 19jul1994 
03aug1984 17aug1984 24aug1994 07sep1994 
07sep1984 16sep1984 09jun1996 23jun1996 
31may1985 14jun1985 19jul1996 07aug1996 
15jun1985 29jun1985 18aug1996 16sep1996 
25jul1985 13aug1985 15jun1997 04jul1997 
03sep1985 17sep1985 25jul1997 03aug1997 
15jun1986 29jun1986 19aug1997 02sep1997 
15jul1986 24jul1986 13sep1997 27sep1997 

04aug1986 18aug1986 10jun1998 19jun1998 
08sep1986 22sep1986 30jun1998 14jul1998 
05jun1987 14jun1987 30jul1998 18aug1998 
30jun1987 14jul1987 08sep1998 17sep1998 
19aug1987 02sep1987 15jun2002 29jun2002 
13sep1987 22sep1987 04aug2002 18aug2002 
04jun1988 28jun1988 18sep2002 02oct2002 
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Table A-2. Same as Table A-1 but for all break periods (49 total). 

 

Break Periods 

Start Date End Date Start Date End Date 
30jun1979 29jul1979 02sep1988 16sep1988 
14aug1979 28aug1979 05jul1989 14jul1989 
25jun1982 14jul1982 30jul1989 13aug1989 
30jul1982 08aug1982 29aug1989 17sep1989 

24aug1982 07sep1982 05jul1990 14jul1990 
05jul1983 19jul1983 25jul1990 08aug1990 

19aug1983 02sep1983 24aug1990 17sep1990 
18sep1983 02oct1983 25jun1994 04jul1994 
18jun1984 28jun1984 20jul1994 03aug1994 
14jul1984 02aug1984 04aug1994 23aug1994 

18aug1984 06sep1984 08sep1994 27sep1994 
17sep1984 01oct1984 24jun1996 18jul1996 
30jun1985 24jul1985 03aug1996 17aug1996 
14aug1985 02sep1985 17sep1996 01oct1996 
18sep1985 02oct1985 05jul1997 24jul1997 
30jun1986 14jul1986 04aug1997 18aug1997 
25jul1986 03aug1986 03sep1997 12sep1997 

19aug1986 07sep1986 15jul1998 29jul1998 
23sep1986 02oct1986 19aug1998 07sep1998 
15jun1987 29jun1987 18sep1998 02oct1998 
15jul1987 13aug1987 30jun2002 14jul2002 
03sep1987 12sep1987 20jul2002 03aug2002 
23sep1987 02oct1987 19aug2002 28aug2002 
29jun1988 13jul1988 08sep2002 17sep2002 
08aug1988 17aug1988  
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Table A-3. List of all dates within the timeframe of the study along with their associated pentad-

day. Note how the occurrence of a leap year results in the addition of one Julian day to the 

calendar and also shifts the dates of interest compared to those of a non-leap year. 

 

Pentad Number for Summertime Dates 

 
Pentad 

No Leap Year  Leap Year 

Julian 
Day 

Dates 
Julian 
Day 

Dates 

30 146 5/26 5/25 5/26 5/27 5/28 147 5/25 5/26 5/27 5/28 5/29 
31 151 5/31 5/30 5/31 6/1 6/2 152 5/30 5/31 6/1 6/2 6/3 
32 156 6/5 6/4 6/5 6/6 6/7 157 6/4 6/5 6/6 6/7 6/8 
33 161 6/10 6/9 6/10 6/11 6/12 162 6/9 6/10 6/11 6/12 6/13 
34 166 6/15 6/14 6/15 6/16 6/17 167 6/14 6/15 6/16 6/17 6/18 
35 171 6/20 6/19 6/20 6/21 6/22 172 6/19 6/20 6/21 6/22 6/23 
36 176 6/25 6/24 6/25 6/26 6/27 177 6/24 6/25 6/26 6/27 6/28 
37 181 6/30 6/29 6/30 7/1 7/2 182 6/29 6/30 7/1 7/2 7/3 
38 186 7/5 7/4 7/5 7/6 7/7 187 7/4 7/5 7/6 7/7 7/8 
39 191 7/10 7/9 7/10 7/11 7/12 192 7/9 7/10 7/11 7/12 7/13 
40 196 7/15 7/14 7/15 7/16 7/17 197 7/14 7/15 7/16 7/17 7/18 
41 201 7/20 7/19 7/20 7/21 7/22 202 7/19 7/20 7/21 7/22 7/23 
42 206 7/25 7/24 7/25 7/26 7/27 207 7/24 7/25 7/26 7/27 7/28 
43 211 7/30 7/29 7/30 7/31 8/1 212 7/29 7/30 7/31 8/1 8/2 
44 216 8/4 8/3 8/4 8/5 8/6 217 8/3 8/4 8/5 8/6 8/7 
45 221 8/9 8/8 8/9 8/10 8/11 222 8/8 8/9 8/10 8/11 8/12 
46 226 8/14 8/13 8/14 8/15 8/16 227 8/13 8/14 8/15 8/16 8/17 
47 231 8/19 8/18 8/19 8/20 8/21 232 8/18 8/19 8/20 8/21 8/22 
48 236 8/24 8/23 8/24 8/25 8/26 237 8/23 8/24 8/25 8/26 8/27 
49 241 8/29 8/28 8/29 8/30 8/31 242 8/28 8/29 8/30 8/31 9/1 
50 246 9/3 9/2 9/3 9/4 9/5 247 9/2 9/3 9/4 9/5 9/6 
51 251 9/8 9/7 9/8 9/9 9/10 252 9/7 9/8 9/9 9/10 9/11 
52 256 9/13 9/12 9/13 9/14 9/15 257 9/12 9/13 9/14 9/15 9/16 
53 261 9/18 9/17 9/18 9/19 9/20 262 9/17 9/18 9/19 9/20 9/21 
54 266 9/23 9/22 9/23 9/24 9/25 267 9/22 9/23 9/24 9/25 9/26 
55 271 9/28 9/27 9/28 9/29 9/30 272 9/27 9/28 9/29 9/30 10/1 
56 276 10/3 10/2 10/3 10/4 10/5 277 10/2 10/3 10/4 10/5 10/6 
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