C $Header: /u/gcmpack/MITgcm/model/src/solve_for_pressure.F,v 1.82 2016/05/28 23:25:55 jmc Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" CBOP C !ROUTINE: SOLVE_FOR_PRESSURE C !INTERFACE: SUBROUTINE SOLVE_FOR_PRESSURE( myTime, myIter, myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE SOLVE_FOR_PRESSURE C | o Controls inversion of two and/or three-dimensional C | elliptic problems for the pressure field. C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global variables #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "SURFACE.h" #include "FFIELDS.h" #include "DYNVARS.h" #include "SOLVE_FOR_PRESSURE.h" #ifdef ALLOW_NONHYDROSTATIC #include "SOLVE_FOR_PRESSURE3D.h" #include "NH_VARS.h" #endif #ifdef ALLOW_CD_CODE #include "CD_CODE_VARS.h" #endif C === Functions ==== LOGICAL DIFFERENT_MULTIPLE EXTERNAL DIFFERENT_MULTIPLE #ifdef ALLOW_DIAGNOSTICS LOGICAL DIAGNOSTICS_IS_ON EXTERNAL DIAGNOSTICS_IS_ON #endif /* ALLOW_DIAGNOSTICS */ C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myTime :: Current time in simulation C myIter :: Current iteration number in simulation C myThid :: Thread number for this instance of SOLVE_FOR_PRESSURE _RL myTime INTEGER myIter INTEGER myThid C !LOCAL VARIABLES: C == Local variables == INTEGER i,j,k,bi,bj INTEGER ks INTEGER numIters, nIterMin _RL firstResidual, minResidualSq, lastResidual _RL tmpFac _RL sumEmP, tileEmP(nSx,nSy) LOGICAL putPmEinXvector INTEGER ioUnit CHARACTER*10 sufx CHARACTER*(MAX_LEN_MBUF) msgBuf #ifdef ALLOW_NONHYDROSTATIC LOGICAL zeroPsNH, zeroMeanPnh, oldFreeSurfTerm #else _RL cg3d_b(1) #endif #ifdef ALLOW_DIAGNOSTICS CHARACTER*8 diagName _RL tmpVar (1-OLx:sNx+OLx,1-OLy:sNy+OLy) #endif /* ALLOW_DIAGNOSTICS */ CEOP #ifdef ALLOW_NONHYDROSTATIC zeroPsNH = .FALSE. c zeroPsNH = use3Dsolver .AND. exactConserv c & .AND. select_rStar.EQ.0 zeroMeanPnh = .FALSE. c zeroMeanPnh = use3Dsolver .AND. select_rStar.NE.0 c oldFreeSurfTerm = use3Dsolver .AND. select_rStar.EQ.0 c & .AND. .NOT.zeroPsNH oldFreeSurfTerm = use3Dsolver .AND. .NOT.exactConserv #else cg3d_b(1) = 0. #endif C deepAtmosphere & useRealFreshWaterFlux: only valid if deepFac2F(ksurf)=1 C anelastic (always Z-coordinate): C 1) assume that rhoFacF(1)=1 (and ksurf == 1); C (this reduces the number of lines of code to modify) C 2) (a) 2-D continuity eq. compute div. of mass transport (<- add rhoFac) C (b) gradient of surf.Press in momentum eq. (<- add 1/rhoFac) C => 2 factors cancel in elliptic eq. for Phi_s , C but 1rst factor(a) remains in RHS cg2d_b. C-- Initialise the Vector solution with etaN + deltaT*Global_mean_PmE C instead of simply etaN ; This can speed-up the solver convergence in C the case where |Global_mean_PmE| is large. putPmEinXvector = .FALSE. c putPmEinXvector = useRealFreshWaterFlux.AND.fluidIsWater IF ( myIter.EQ.1+nIter0 .AND. debugLevel .GE. debLevA ) THEN _BEGIN_MASTER( myThid ) ioUnit = standardMessageUnit WRITE(msgBuf,'(2A,L5)') 'SOLVE_FOR_PRESSURE:', & ' putPmEinXvector =', putPmEinXvector CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) #ifdef ALLOW_NONHYDROSTATIC WRITE(msgBuf,'(A,2(A,L5))') 'SOLVE_FOR_PRESSURE:', & ' zeroPsNH=', zeroPsNH, ' , zeroMeanPnh=', zeroMeanPnh CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A,L5)') 'SOLVE_FOR_PRESSURE:', & ' oldFreeSurfTerm =', oldFreeSurfTerm CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) #endif _END_MASTER( myThid ) ENDIF C-- Save previous solution & Initialise Vector solution and source term : sumEmP = 0. DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx #ifdef ALLOW_CD_CODE etaNm1(i,j,bi,bj) = etaN(i,j,bi,bj) #endif cg2d_x(i,j,bi,bj) = Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj) cg2d_b(i,j,bi,bj) = 0. ENDDO ENDDO IF (useRealFreshWaterFlux.AND.fluidIsWater) THEN tmpFac = freeSurfFac*mass2rUnit*implicDiv2DFlow DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = & tmpFac*_rA(i,j,bi,bj)*EmPmR(i,j,bi,bj)/deltaTMom & *maskInC(i,j,bi,bj) ENDDO ENDDO ENDIF IF ( putPmEinXvector ) THEN tileEmP(bi,bj) = 0. DO j=1,sNy DO i=1,sNx tileEmP(bi,bj) = tileEmP(bi,bj) & + rA(i,j,bi,bj)*EmPmR(i,j,bi,bj) & *maskInC(i,j,bi,bj) ENDDO ENDDO ENDIF ENDDO ENDDO IF ( putPmEinXvector ) THEN CALL GLOBAL_SUM_TILE_RL( tileEmP, sumEmP, myThid ) ENDIF DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) IF ( putPmEinXvector ) THEN tmpFac = 0. IF (globalArea.GT.0.) tmpFac = & freeSurfFac*deltaTFreeSurf*mass2rUnit*sumEmP/globalArea DO j=1,sNy DO i=1,sNx cg2d_x(i,j,bi,bj) = cg2d_x(i,j,bi,bj) & - tmpFac*Bo_surf(i,j,bi,bj) ENDDO ENDDO ENDIF C- RHS: similar to the divergence of the vertically integrated mass transport: C del_i { Sum_k [ rhoFac.(dr.hFac).(dy.deepFac).(u*) ] } / deltaT DO k=Nr,1,-1 CALL CALC_DIV_GHAT( I bi,bj,k, U cg2d_b, cg3d_b, I myThid ) ENDDO ENDDO ENDDO DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) #ifdef ALLOW_NONHYDROSTATIC IF ( oldFreeSurfTerm ) THEN C-- Add source term arising from w=d/dt (p_s + p_nh) DO j=1,sNy DO i=1,sNx ks = kSurfC(i,j,bi,bj) IF ( ks.LE.Nr ) THEN cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)*deepFac2F(ks) & /deltaTMom/deltaTFreeSurf & *( etaN(i,j,bi,bj) & +phi_nh(i,j,ks,bi,bj)*recip_Bo(i,j,bi,bj) ) cg3d_b(i,j,ks,bi,bj) = cg3d_b(i,j,ks,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)*deepFac2F(ks) & /deltaTMom/deltaTFreeSurf & *( etaN(i,j,bi,bj) & +phi_nh(i,j,ks,bi,bj)*recip_Bo(i,j,bi,bj) ) ENDIF ENDDO ENDDO ELSEIF ( exactConserv ) THEN #else C-- Add source term arising from w=d/dt (p_s) IF ( exactConserv ) THEN #endif /* ALLOW_NONHYDROSTATIC */ DO j=1,sNy DO i=1,sNx ks = kSurfC(i,j,bi,bj) cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)*deepFac2F(ks) & /deltaTMom/deltaTFreeSurf & * etaH(i,j,bi,bj) ENDDO ENDDO ELSE DO j=1,sNy DO i=1,sNx ks = kSurfC(i,j,bi,bj) cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)*deepFac2F(ks) & /deltaTMom/deltaTFreeSurf & * etaN(i,j,bi,bj) ENDDO ENDDO ENDIF #ifdef ALLOW_OBCS C- Note: solver matrix is trivial outside OB region (main diagonal only) C => no real need to reset RHS (=cg2d_b) & cg2d_x, except that: C a) normalisation is fct of Max(RHS), which can be large ouside OB region C (would be different if we were solving for increment of eta/g C instead of directly for eta/g). C => need to reset RHS to ensure that interior solution does not depend C on ouside OB region. C b) provide directly the trivial solution cg2d_x == 0 for outside OB region C (=> no residual => no effect on solver convergence and interior solution) IF (useOBCS) THEN DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj)*maskInC(i,j,bi,bj) cg2d_x(i,j,bi,bj) = cg2d_x(i,j,bi,bj)*maskInC(i,j,bi,bj) ENDDO ENDDO ENDIF #endif /* ALLOW_OBCS */ C- end bi,bj loops ENDDO ENDDO #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevD ) THEN CALL DEBUG_STATS_RL(1,cg2d_b,'cg2d_b (SOLVE_FOR_PRESSURE)', & myThid) ENDIF #endif IF ( DIFFERENT_MULTIPLE(diagFreq, myTime, deltaTClock) ) THEN WRITE(sufx,'(I10.10)') myIter CALL WRITE_FLD_XY_RL( 'cg2d_b.', sufx, cg2d_b, myIter, myThid ) ENDIF C-- Find the surface pressure using a two-dimensional conjugate C gradient solver. See CG2D.h for the interface to this routine. C In rare cases of a poor solver convergence, better to select the C solver minimum-residual solution (instead of the last-iter solution) C by setting cg2dUseMinResSol=1 (<-> nIterMin=0 in input) numIters = cg2dMaxIters nIterMin = cg2dUseMinResSol - 1 c CALL TIMER_START('CG2D [SOLVE_FOR_PRESSURE]',myThid) #ifdef DISCONNECTED_TILES C-- Call the not-self-adjoint version of cg2d CALL CG2D_EX0( U cg2d_b, cg2d_x, O firstResidual, minResidualSq, lastResidual, U numIters, nIterMin, I myThid ) #else /* not DISCONNECTED_TILES = default */ #ifdef ALLOW_CG2D_NSA C-- Call the not-self-adjoint version of cg2d CALL CG2D_NSA( U cg2d_b, cg2d_x, O firstResidual, minResidualSq, lastResidual, U numIters, nIterMin, I myThid ) #else /* not ALLOW_CG2D_NSA = default */ #ifdef ALLOW_SRCG IF ( useSRCGSolver ) THEN C-- Call the single reduce CG solver CALL CG2D_SR( U cg2d_b, cg2d_x, O firstResidual, minResidualSq, lastResidual, U numIters, nIterMin, I myThid ) ELSE #else IF (.TRUE.) THEN C-- Call the default CG solver #endif /* ALLOW_SRCG */ CALL CG2D( U cg2d_b, cg2d_x, O firstResidual, minResidualSq, lastResidual, U numIters, nIterMin, I myThid ) ENDIF #endif /* ALLOW_CG2D_NSA */ #endif /* DISCONNECTED_TILES */ _EXCH_XY_RL( cg2d_x, myThid ) c CALL TIMER_STOP ('CG2D [SOLVE_FOR_PRESSURE]',myThid) #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevD ) THEN CALL DEBUG_STATS_RL(1,cg2d_x,'cg2d_x (SOLVE_FOR_PRESSURE)', & myThid) ENDIF #endif C- dump CG2D output at monitorFreq (to reduce size of STD-OUTPUT files) : IF ( DIFFERENT_MULTIPLE(monitorFreq,myTime,deltaTClock) & ) THEN IF ( debugLevel .GE. debLevA ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A20,1PE23.14)') 'cg2d_init_res =',firstResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A27,2I8)') & 'cg2d_iters(min,last) =', nIterMin, numIters CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) IF ( minResidualSq.GE.0. ) THEN minResidualSq = SQRT(minResidualSq) WRITE(msgBuf,'(A20,1PE23.14)') 'cg2d_min_res =',minResidualSq CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) ENDIF WRITE(msgBuf,'(A20,1PE23.14)') 'cg2d_last_res =',lastResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) _END_MASTER( myThid ) ENDIF ENDIF #ifdef ALLOW_DIAGNOSTICS C-- Fill diagnostics IF ( useDiagnostics .AND. implicSurfPress.NE.oneRL ) THEN diagName = 'PHI_SURF' IF ( DIAGNOSTICS_IS_ON(diagName,myThid) ) THEN DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx tmpVar(i,j) = implicSurfPress * cg2d_x(i,j,bi,bj) & + (oneRL - implicSurfPress)* Bo_surf(i,j,bi,bj) & * etaN(i,j,bi,bj) ENDDO ENDDO CALL DIAGNOSTICS_FILL( tmpVar,diagName,1,1,2,bi,bj,myThid ) ENDDO ENDDO ENDIF ELSEIF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL( cg2d_x,'PHI_SURF', 0,1, 0,1,1, myThid ) ENDIF #endif /* ALLOW_DIAGNOSTICS */ C-- Transfert the 2D-solution to "etaN" : DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx etaN(i,j,bi,bj) = recip_Bo(i,j,bi,bj)*cg2d_x(i,j,bi,bj) ENDDO ENDDO ENDDO ENDDO #ifdef ALLOW_NONHYDROSTATIC IF ( use3Dsolver ) THEN IF ( DIFFERENT_MULTIPLE(diagFreq, myTime, deltaTClock) ) THEN WRITE(sufx,'(I10.10)') myIter CALL WRITE_FLD_XY_RL( 'cg2d_x.',sufx, cg2d_x, myIter, myThid ) ENDIF C-- Solve for a three-dimensional pressure term (NH or IGW or both ). C see CG3D.h for the interface to this routine. C-- Finish updating cg3d_b: 1) Add EmPmR contribution to top level cg3d_b: C 2) Update or Add free-surface contribution C 3) increment in horiz velocity due to new cg2d_x C 4) add vertical velocity contribution. CALL PRE_CG3D( I oldFreeSurfTerm, I cg2d_x, U cg3d_b, I myTime, myIter, myThid ) #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevD ) THEN CALL DEBUG_STATS_RL(Nr,cg3d_b,'cg3d_b (SOLVE_FOR_PRESSURE)', & myThid) ENDIF #endif IF ( DIFFERENT_MULTIPLE( diagFreq, myTime, deltaTClock) ) THEN WRITE(sufx,'(I10.10)') myIter CALL WRITE_FLD_XYZ_RL('cg3d_b.',sufx, cg3d_b, myIter,myThid ) ENDIF firstResidual=0. lastResidual=0. numIters=cg3dMaxIters CALL TIMER_START('CG3D [SOLVE_FOR_PRESSURE]',myThid) #ifdef DISCONNECTED_TILES CALL CG3D_EX0( U cg3d_b, phi_nh, O firstResidual, lastResidual, U numIters, I myIter, myThid ) #else /* not DISCONNECTED_TILES = default */ CALL CG3D( U cg3d_b, phi_nh, O firstResidual, lastResidual, U numIters, I myIter, myThid ) #endif /* DISCONNECTED_TILES */ _EXCH_XYZ_RL( phi_nh, myThid ) CALL TIMER_STOP ('CG3D [SOLVE_FOR_PRESSURE]',myThid) IF ( DIFFERENT_MULTIPLE(monitorFreq,myTime,deltaTClock) & ) THEN IF ( debugLevel .GE. debLevA ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A20,1PE23.14)') 'cg3d_init_res =',firstResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A27,I16)') 'cg3d_iters (last) = ',numIters CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A20,1PE23.14)') 'cg3d_last_res =',lastResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) _END_MASTER( myThid ) ENDIF ENDIF C-- Separate the Hydrostatic Surface Pressure adjusment (=> put it in dPhiNH) C from the Non-hydrostatic pressure (since cg3d_x contains both contribution) IF ( nonHydrostatic .AND. exactConserv ) THEN IF ( DIFFERENT_MULTIPLE( diagFreq, myTime, deltaTClock) ) THEN WRITE(sufx,'(I10.10)') myIter CALL WRITE_FLD_XYZ_RL('cg3d_x.',sufx, phi_nh, myIter,myThid ) ENDIF CALL POST_CG3D( I zeroPsNH, zeroMeanPnh, I myTime, myIter, myThid ) ENDIF ENDIF #endif /* ALLOW_NONHYDROSTATIC */ #ifdef ALLOW_SHOWFLOPS CALL SHOWFLOPS_INSOLVE( myThid) #endif RETURN END