C $Header: /u/gcmpack/MITgcm/pkg/aim_v23/phy_suflux_post.F,v 1.3 2004/06/24 23:43:11 jmc Exp $ C $Name: $ #include "AIM_OPTIONS.h" CBOP C !ROUTINE: SUFLUX_POST C !INTERFACE: SUBROUTINE SUFLUX_POST( I FMASK, EMISloc, I TLAND, TSEA, TSICE, dTskin, SLRD, I T0, Q0, DENVV, U DRAG, SHF, EVAP, SLRup, O SLRU, TSFC, TSKIN, I bi,bj,myThid) C !DESCRIPTION: \bv C *==========================================================* C | S/R SUFLUX_POST C | o finish surface flux calculation C *==========================================================* C | o contain 2nd part of original S/R SUFLUX (Speedy code) C *==========================================================* C-- C-- SUBROUTINE SUFLUX (PSA,UA,VA,TA,QA,RH,PHI, C-- & PHI0,FMASK,TLAND,TSEA,SWAV,SSR,SLRD, C-- & USTR,VSTR,SHF,EVAP,SLRU, C-- & TSFC,TSKIN,U0,V0,T0,Q0) C-- C-- Purpose: Compute surface fluxes of momentum, energy and moisture, C-- and define surface skin temperature from energy balance C *==========================================================* C \ev C !USES: IMPLICIT NONE C Resolution parameters C-- size for MITgcm & Physics package : #include "AIM_SIZE.h" #include "EEPARAMS.h" #include "GRID.h" C Physical constants + functions of sigma and latitude #include "com_physcon.h" C Surface flux constants #include "com_sflcon.h" C !INPUT/OUTPUT PARAMETERS: C == Routine Arguments == C-- Input: C FMASK :: fraction land - sea - sea-ice (2.5-dim) C EMISloc:: longwave surface emissivity C TLAND :: land-surface temperature (2-dim) C TSEA :: sea-surface temperature (2-dim) C TSICE :: sea-ice surface temperature (2-dim) C dTskin :: temp. correction for daily-cycle heating [K] C SLRD :: sfc lw radiation (downward flux)(2-dim) C SSR :: sfc sw radiation (net flux) (2-dim) C T0 :: near-surface air temperature (2-dim) C Q0 :: near-surface sp. humidity [g/kg](2-dim) C DENVV :: surface flux (sens,lat.) coeff. (=Rho*|V|) [kg/m2/s] C-- Output: C DRAG :: surface Drag term (= Cd*Rho*|V|)(2-dim) C SHF :: sensible heat flux (2-dim) C EVAP :: evaporation [g/(m^2 s)] (2-dim) C SLRU :: sfc lw radiation (upward flux) (2-dim) C SLRup :: same, for each surface type (2-dim) C TSFC :: surface temperature (clim.) (2-dim) C TSKIN :: skin surface temperature (2-dim) C-- Input: C bi,bj :: tile index C myThid :: Thread number for this instance of the routine C-- _RL FMASK(NGP,3), EMISloc _RL TLAND(NGP), TSEA(NGP), TSICE(NGP), dTskin(NGP), SLRD(NGP) _RL T0(NGP), Q0(NGP), DENVV(NGP) _RL DRAG(NGP,0:3), SHF(NGP,0:3), EVAP(NGP,0:3), SLRup(NGP,3) _RL SLRU(NGP), TSFC(NGP), TSKIN(NGP) INTEGER bi,bj,myThid CEOP #ifdef ALLOW_AIM C-- Local variables: C J,i1,j1 :: Loop counters C msgBuf :: Informational/error message buffer INTEGER J,i1,j1 CHARACTER*(MAX_LEN_MBUF) msgBuf C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C-- 1. Extrapolation of wind, temp, hum. and density to the surface C-- 2. Computation of fluxes over land and sea C-- 3. Adjustment of skin temperature and fluxes over land C-- based on energy balance (to be implemented) C-- 4. Weighted average of surface fluxes and temperatures C-- according to land-sea mask DO J=1,NGP c USTR(J,3) = USTR(J,2)+FMASK(J,1)*(USTR(J,1)-USTR(J,2)) c VSTR(J,3) = VSTR(J,2)+FMASK(J,1)*(VSTR(J,1)-VSTR(J,2)) c DRAG(J,0) = DRAG(J,2)+FMASK(J,1)*(DRAG(J,1)-DRAG(J,2)) c SHF(J,0) = SHF(J,2)+FMASK(J,1)*( SHF(J,1)- SHF(J,2)) c EVAP(J,0) = EVAP(J,2)+FMASK(J,1)*(EVAP(J,1)-EVAP(J,2)) c SLRU(J) = SLRup(J,2)+FMASK(J,1)*(SLRup(J,1)-SLRup(J,2)) DRAG(J,0) = (FMASK(J,1)*DRAG(J,1)+FMASK(J,2)*DRAG(J,2) & +FMASK(J,3)*DRAG(J,3)) SHF (J,0) = (FMASK(J,1)*SHF(J,1) +FMASK(J,2)*SHF(J,2) & +FMASK(J,3)*SHF(J,3) ) EVAP(J,0) = (FMASK(J,1)*EVAP(J,1)+FMASK(J,2)*EVAP(J,2) & +FMASK(J,3)*EVAP(J,3)) SLRU(J) = (FMASK(J,1)*SLRup(J,1)+FMASK(J,2)*SLRup(J,2) & +FMASK(J,3)*SLRup(J,3)) ENDDO DO J=1,NGP c TSFC(J) = TSEA(J)+FMASK(J,1)*(TLAND(J)-TSEA(J)) TSFC(J) = (FMASK(J,1)*TLAND(J) + FMASK(J,2)*TSEA(J) & + FMASK(J,3)*TSICE(J)) TSKIN(J) = TSFC(J)+FMASK(J,1)*dTskin(J) ENDDO C- Compute Net LW surf flux (+=upward) for each surface type: C (for diagnostic only) DO J=1,NGP SLRup(J,1)=EMISloc*SLRup(J,1)-SLRD(J) SLRup(J,2)=EMISloc*SLRup(J,2)-SLRD(J) SLRup(J,3)=EMISloc*SLRup(J,3)-SLRD(J) SLRU(J) =EMISloc*SLRU(J) ENDDO C- Check that Temp is OK for LW Radiation scheme : DO J=1,NGP IF ( TSFC(J).LT.lwTemp1 .OR. & TSFC(J).GT.lwTemp2 ) THEN i1 = 1 + mod((J-1),sNx) j1 = 1 + int((J-1)/sNx) WRITE(msgBuf,'(A,1PE20.13,A,2I4)') & 'SUFLUX_POST: TS=', TSFC(J), & ' out of range ',lwTemp1,lwTemp2 CALL PRINT_ERROR( msgBuf , myThid) WRITE(msgBuf,'(A,1P3E10.3,A,0P3F8.5)') & 'SUFLUX_POST: T_Lnd,Sea,Sic=',TLAND(J),TSEA(J),TSICE(J), & ' Mask:',FMASK(J,1),FMASK(J,2),FMASK(J,3) CALL PRINT_ERROR( msgBuf , myThid) WRITE(msgBuf,'(A,2I4,3I3,I6,2F9.3)') & 'SUFLUX_POST: Pb in i,j,bi,bj,myThid,IJ,X,Y=', & i1,j1,bi,bj,myThid,J,xC(i1,j1,bi,bj),yC(i1,j1,bi,bj) CALL PRINT_ERROR( msgBuf , myThid) STOP 'ABNORMAL END: S/R SUFLUX_POST' ENDIF ENDDO C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| #endif /* ALLOW_AIM */ RETURN END