C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_calc_rhs.F,v 1.74 2015/08/05 20:12:44 jmc Exp $ C $Name: $ #include "GAD_OPTIONS.h" CBOP C !ROUTINE: GAD_CALC_RHS C !INTERFACE: ========================================================== SUBROUTINE GAD_CALC_RHS( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, I xA, yA, maskUp, uFld, vFld, wFld, I uTrans, vTrans, rTrans, rTransKp1, I diffKh, diffK4, KappaR, diffKr4, TracerN, TracAB, I deltaTLev, trIdentity, I advectionScheme, vertAdvecScheme, I calcAdvection, implicitAdvection, applyAB_onTracer, I trUseDiffKr4, trUseGMRedi, trUseKPP, O fZon, fMer, U fVerT, gTracer, I myTime, myIter, myThid ) C !DESCRIPTION: C Calculates the tendency of a tracer due to advection and diffusion. C It calculates the fluxes in each direction indepentently and then C sets the tendency to the divergence of these fluxes. The advective C fluxes are only calculated here when using the linear advection schemes C otherwise only the diffusive and parameterized fluxes are calculated. C C Contributions to the flux are calculated and added: C \begin{equation*} C {\bf F} = {\bf F}_{adv} + {\bf F}_{diff} +{\bf F}_{GM} + {\bf F}_{KPP} C \end{equation*} C C The tendency is the divergence of the fluxes: C \begin{equation*} C G_\theta = G_\theta + \nabla \cdot {\bf F} C \end{equation*} C C The tendency is assumed to contain data on entry. C !USES: =============================================================== IMPLICIT NONE #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "SURFACE.h" #include "GAD.h" #ifdef ALLOW_AUTODIFF # include "AUTODIFF_PARAMS.h" #endif /* ALLOW_AUTODIFF */ C !INPUT PARAMETERS: =================================================== C bi, bj :: tile indices C iMin, iMax :: for called routines, to get valid output "gTracer" C jMin, jMax :: over this range of indices C k :: vertical index C kM1 :: =k-1 for k>1, =1 for k=1 C kUp :: index into 2 1/2D array, toggles between 1|2 C kDown :: index into 2 1/2D array, toggles between 2|1 C xA, yA :: areas of X and Y face of tracer cells C maskUp :: 2-D array for mask at W points C uFld, vFld, wFld :: Local copy of velocity field (3 components) C uTrans, vTrans :: 2-D arrays of volume transports at U,V points C rTrans :: 2-D arrays of volume transports at W points C rTransKp1 :: 2-D array of volume trans at W pts, interf k+1 C diffKh :: horizontal diffusion coefficient C diffK4 :: horizontal bi-harmonic diffusion coefficient C KappaR :: 2-D array for vertical diffusion coefficient, interf k C diffKr4 :: 1-D array for vertical bi-harmonic diffusion coefficient C TracerN :: tracer field @ time-step n (Note: only used C if applying AB on tracer field rather than on tendency gTr) C TracAB :: current tracer field (@ time-step n if applying AB on gTr C or extrapolated fwd in time to n+1/2 if applying AB on Tr) C trIdentity :: tracer identifier (required for KPP,GM) C advectionScheme :: advection scheme to use (Horizontal plane) C vertAdvecScheme :: advection scheme to use (Vertical direction) C calcAdvection :: =False if Advec computed with multiDim scheme C implicitAdvection:: =True if vertical Advec computed implicitly C applyAB_onTracer :: apply Adams-Bashforth on Tracer (rather than on gTr) C trUseDiffKr4 :: true if this tracer uses vertical bi-harmonic diffusion C trUseGMRedi :: true if this tracer uses GM-Redi C trUseKPP :: true if this tracer uses KPP C myTime :: current time C myIter :: iteration number C myThid :: thread number INTEGER bi,bj,iMin,iMax,jMin,jMax INTEGER k,kUp,kDown,kM1 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL wFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTransKp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL diffKh, diffK4 _RL KappaR(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL diffKr4(Nr) _RL TracerN(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL TracAB (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL deltaTLev(Nr) INTEGER trIdentity INTEGER advectionScheme, vertAdvecScheme LOGICAL calcAdvection LOGICAL implicitAdvection, applyAB_onTracer LOGICAL trUseDiffKr4, trUseGMRedi, trUseKPP _RL myTime INTEGER myIter, myThid C !OUTPUT PARAMETERS: ================================================== C gTracer :: tendency array C fZon :: zonal flux C fMer :: meridional flux C fVerT :: 2 1/2D arrays for vertical advective flux _RL gTracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) C !FUNCTIONS: ==================================================== #ifdef ALLOW_DIAGNOSTICS CHARACTER*4 GAD_DIAG_SUFX EXTERNAL GAD_DIAG_SUFX #endif /* ALLOW_DIAGNOSTICS */ C !LOCAL VARIABLES: ==================================================== C i,j :: loop indices C df4 :: used for storing del^2 T for bi-harmonic term C af :: advective flux C df :: diffusive flux C localT :: local copy of tracer field C locABT :: local copy of (AB-extrapolated) tracer field INTEGER i,j _RS maskLocW(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskLocS(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL df4 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL localT(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL locABT(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL advFac, rAdvFac #ifdef GAD_SMOLARKIEWICZ_HACK _RL outFlux, trac, fac, gTrFac #endif #ifdef ALLOW_DIAGNOSTICS CHARACTER*8 diagName CHARACTER*4 diagSufx #endif CEOP #ifdef ALLOW_AUTODIFF C-- only the kUp part of fverT is set in this subroutine C-- the kDown is still required fVerT(1,1,kDown) = fVerT(1,1,kDown) #endif #ifdef ALLOW_DIAGNOSTICS C-- Set diagnostic suffix for the current tracer IF ( useDiagnostics ) THEN diagSufx = GAD_DIAG_SUFX( trIdentity, myThid ) ENDIF #endif advFac = 0. _d 0 IF (calcAdvection) advFac = 1. _d 0 rAdvFac = rkSign*advFac IF (implicitAdvection) rAdvFac = rkSign DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fZon(i,j) = 0. _d 0 fMer(i,j) = 0. _d 0 fVerT(i,j,kUp) = 0. _d 0 df(i,j) = 0. _d 0 df4(i,j) = 0. _d 0 ENDDO ENDDO C-- Make local copy of tracer array IF ( applyAB_onTracer ) THEN DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx localT(i,j)=TracerN(i,j,k) locABT(i,j)= TracAB(i,j,k) ENDDO ENDDO ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx localT(i,j)=TracerN(i,j,k) locABT(i,j)=TracerN(i,j,k) ENDDO ENDDO ENDIF C-- Pre-calculate del^2 T if bi-harmonic coefficient is non-zero IF (diffK4 .NE. 0.) THEN CALL GAD_GRAD_X(bi,bj,k,xA,localT,fZon,myThid) CALL GAD_GRAD_Y(bi,bj,k,yA,localT,fMer,myThid) CALL GAD_DEL2(bi,bj,k,fZon,fMer,df4,myThid) ENDIF C-- Initialize net flux in X direction DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fZon(i,j) = 0. _d 0 ENDDO ENDDO C- Advective flux in X IF (calcAdvection) THEN IF (advectionScheme.EQ.ENUM_CENTERED_2ND) THEN CALL GAD_C2_ADV_X( bi,bj,k, uTrans, locABT, af, myThid ) ELSEIF ( advectionScheme.EQ.ENUM_UPWIND_1RST & .OR. advectionScheme.EQ.ENUM_DST2 ) THEN CALL GAD_DST2U1_ADV_X( bi,bj,k, advectionScheme, .TRUE., I deltaTLev(k), uTrans, uFld, locABT, O af, myThid ) ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx #ifdef ALLOW_OBCS maskLocW(i,j) = _maskW(i,j,k,bi,bj)*maskInW(i,j,bi,bj) #else /* ALLOW_OBCS */ maskLocW(i,j) = _maskW(i,j,k,bi,bj) #endif /* ALLOW_OBCS */ ENDDO ENDDO IF (advectionScheme.EQ.ENUM_FLUX_LIMIT) THEN CALL GAD_FLUXLIMIT_ADV_X( bi,bj,k, .TRUE., deltaTLev(k), I uTrans, uFld, maskLocW, locABT, O af, myThid ) ELSEIF (advectionScheme.EQ.ENUM_UPWIND_3RD ) THEN CALL GAD_U3_ADV_X( bi,bj,k, uTrans, maskLocW, locABT, O af, myThid ) ELSEIF (advectionScheme.EQ.ENUM_CENTERED_4TH) THEN CALL GAD_C4_ADV_X( bi,bj,k, uTrans, maskLocW, locABT, O af, myThid ) #ifdef ALLOW_AUTODIFF ELSEIF( advectionScheme.EQ.ENUM_DST3 .OR. & (advectionScheme.EQ.ENUM_DST3_FLUX_LIMIT .AND. inAdMode) & ) THEN cph This block is to trick the adjoint: cph If inAdExact=.FALSE., we want to use DST3 cph with limiters in forward, but without limiters in reverse. #else /* ALLOW_AUTODIFF */ ELSEIF( advectionScheme.EQ.ENUM_DST3 ) THEN #endif /* ALLOW_AUTODIFF */ CALL GAD_DST3_ADV_X( bi,bj,k, .TRUE., deltaTLev(k), I uTrans, uFld, maskLocW, locABT, O af, myThid ) ELSEIF (advectionScheme.EQ.ENUM_DST3_FLUX_LIMIT ) THEN CALL GAD_DST3FL_ADV_X( bi,bj,k, .TRUE., deltaTLev(k), I uTrans, uFld, maskLocW, locABT, O af, myThid ) #ifndef ALLOW_AUTODIFF ELSEIF (advectionScheme.EQ.ENUM_OS7MP ) THEN CALL GAD_OS7MP_ADV_X( bi,bj,k, .TRUE., deltaTLev(k), I uTrans, uFld, maskLocW, locABT, O af, myThid ) #endif ELSE STOP 'GAD_CALC_RHS: Bad advectionScheme (X)' ENDIF ENDIF #ifdef ALLOW_OBCS IF ( useOBCS ) THEN C- replace advective flux with 1st order upwind scheme estimate CALL OBCS_U1_ADV_TRACER( .TRUE., trIdentity, bi, bj, k, I maskW(1-OLx,1-OLy,k,bi,bj), I uTrans, locABT, U af, myThid ) ENDIF #endif /* ALLOW_OBCS */ DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fZon(i,j) = fZon(i,j) + af(i,j) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN diagName = 'ADVx'//diagSufx CALL DIAGNOSTICS_FILL( af, diagName, k,1, 2,bi,bj, myThid ) ENDIF #ifdef ALLOW_LAYERS IF ( useLayers ) THEN CALL LAYERS_FILL( af, trIdentity, 'AFX', & k, 1, 2,bi,bj, myThid ) ENDIF #endif /* ENDIF */ #endif ENDIF C- Diffusive flux in X IF (diffKh.NE.0.) THEN CALL GAD_DIFF_X(bi,bj,k,xA,diffKh,localT,df,myThid) ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx df(i,j) = 0. _d 0 ENDDO ENDDO ENDIF C- Add bi-harmonic diffusive flux in X IF (diffK4 .NE. 0.) THEN CALL GAD_BIHARM_X(bi,bj,k,xA,df4,diffK4,df,myThid) ENDIF #ifdef ALLOW_GMREDI C- GM/Redi flux in X IF ( trUseGMRedi ) THEN CALL GMREDI_XTRANSPORT( I trIdentity, bi, bj, k, iMin, iMax+1, jMin, jMax, I xA, TracerN, U df, I myThid ) ENDIF #endif C anelastic: advect.fluxes are scaled by rhoFac but hor.diff. flx are not DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fZon(i,j) = fZon(i,j) + df(i,j)*rhoFacC(k) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS C- Diagnostics of Tracer flux in X dir (mainly Diffusive term), C excluding advective terms: IF ( useDiagnostics .AND. & (diffKh.NE.0. .OR. diffK4 .NE.0. .OR. trUseGMRedi) ) THEN diagName = 'DFxE'//diagSufx CALL DIAGNOSTICS_FILL( df, diagName, k,1, 2,bi,bj, myThid ) #ifdef ALLOW_LAYERS IF ( useLayers ) THEN CALL LAYERS_FILL( df, trIdentity, 'DFX', & k, 1, 2,bi,bj, myThid ) ENDIF #endif /* ALLOW_LAYERS */ ENDIF #endif C-- Initialize net flux in Y direction DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fMer(i,j) = 0. _d 0 ENDDO ENDDO C- Advective flux in Y IF (calcAdvection) THEN IF (advectionScheme.EQ.ENUM_CENTERED_2ND) THEN CALL GAD_C2_ADV_Y( bi,bj,k, vTrans, locABT, af, myThid ) ELSEIF ( advectionScheme.EQ.ENUM_UPWIND_1RST & .OR. advectionScheme.EQ.ENUM_DST2 ) THEN CALL GAD_DST2U1_ADV_Y( bi,bj,k, advectionScheme, .TRUE., I deltaTLev(k), vTrans, vFld, locABT, O af, myThid ) ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx #ifdef ALLOW_OBCS maskLocS(i,j) = _maskS(i,j,k,bi,bj)*maskInS(i,j,bi,bj) #else /* ALLOW_OBCS */ maskLocS(i,j) = _maskS(i,j,k,bi,bj) #endif /* ALLOW_OBCS */ ENDDO ENDDO IF (advectionScheme.EQ.ENUM_FLUX_LIMIT) THEN CALL GAD_FLUXLIMIT_ADV_Y( bi,bj,k, .TRUE., deltaTLev(k), I vTrans, vFld, maskLocS, locABT, O af, myThid ) ELSEIF (advectionScheme.EQ.ENUM_UPWIND_3RD ) THEN CALL GAD_U3_ADV_Y( bi,bj,k, vTrans, maskLocS, locABT, O af, myThid ) ELSEIF (advectionScheme.EQ.ENUM_CENTERED_4TH) THEN CALL GAD_C4_ADV_Y( bi,bj,k, vTrans, maskLocS, locABT, O af, myThid ) #ifdef ALLOW_AUTODIFF ELSEIF( advectionScheme.EQ.ENUM_DST3 .OR. & (advectionScheme.EQ.ENUM_DST3_FLUX_LIMIT .AND. inAdMode) & ) THEN cph This block is to trick the adjoint: cph If inAdExact=.FALSE., we want to use DST3 cph with limiters in forward, but without limiters in reverse. #else /* ALLOW_AUTODIFF */ ELSEIF( advectionScheme.EQ.ENUM_DST3 ) THEN #endif /* ALLOW_AUTODIFF */ CALL GAD_DST3_ADV_Y( bi,bj,k, .TRUE., deltaTLev(k), I vTrans, vFld, maskLocS, locABT, O af, myThid ) ELSEIF (advectionScheme.EQ.ENUM_DST3_FLUX_LIMIT ) THEN CALL GAD_DST3FL_ADV_Y( bi,bj,k, .TRUE., deltaTLev(k), I vTrans, vFld, maskLocS, locABT, O af, myThid ) #ifndef ALLOW_AUTODIFF ELSEIF (advectionScheme.EQ.ENUM_OS7MP ) THEN CALL GAD_OS7MP_ADV_Y( bi,bj,k, .TRUE., deltaTLev(k), I vTrans, vFld, maskLocS, locABT, O af, myThid ) #endif ELSE STOP 'GAD_CALC_RHS: Bad advectionScheme (Y)' ENDIF ENDIF #ifdef ALLOW_OBCS IF ( useOBCS ) THEN C- replace advective flux with 1st order upwind scheme estimate CALL OBCS_U1_ADV_TRACER( .FALSE., trIdentity, bi, bj, k, I maskS(1-OLx,1-OLy,k,bi,bj), I vTrans, locABT, U af, myThid ) ENDIF #endif /* ALLOW_OBCS */ DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fMer(i,j) = fMer(i,j) + af(i,j) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN diagName = 'ADVy'//diagSufx CALL DIAGNOSTICS_FILL( af, diagName, k,1, 2,bi,bj, myThid ) ENDIF #ifdef ALLOW_LAYERS IF ( useLayers ) THEN CALL LAYERS_FILL( af, trIdentity, 'AFY', & k, 1, 2,bi,bj, myThid ) ENDIF #endif /* ALLOW_LAYES */ #endif ENDIF C- Diffusive flux in Y IF (diffKh.NE.0.) THEN CALL GAD_DIFF_Y(bi,bj,k,yA,diffKh,localT,df,myThid) ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx df(i,j) = 0. _d 0 ENDDO ENDDO ENDIF C- Add bi-harmonic flux in Y IF (diffK4 .NE. 0.) THEN CALL GAD_BIHARM_Y(bi,bj,k,yA,df4,diffK4,df,myThid) ENDIF #ifdef ALLOW_GMREDI C- GM/Redi flux in Y IF ( trUseGMRedi ) THEN CALL GMREDI_YTRANSPORT( I trIdentity, bi, bj, k, iMin, iMax, jMin, jMax+1, I yA, TracerN, U df, I myThid ) ENDIF #endif C anelastic: advect.fluxes are scaled by rhoFac but hor.diff. flx are not DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fMer(i,j) = fMer(i,j) + df(i,j)*rhoFacC(k) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS C- Diagnostics of Tracer flux in Y dir (mainly Diffusive terms), C excluding advective terms: IF ( useDiagnostics .AND. & (diffKh.NE.0. .OR. diffK4 .NE.0. .OR. trUseGMRedi) ) THEN diagName = 'DFyE'//diagSufx CALL DIAGNOSTICS_FILL( df, diagName, k,1, 2,bi,bj, myThid ) #ifdef ALLOW_LAYERS IF ( useLayers ) THEN CALL LAYERS_FILL( df, trIdentity, 'DFY', & k, 1, 2,bi,bj, myThid ) ENDIF #endif /* ALLOW_LAYERS */ ENDIF #endif C-- Compute vertical flux fVerT(kUp) at interface k (between k-1 & k): C- Advective flux in R #ifdef ALLOW_AIM C- a hack to prevent Water-Vapor vert.transport into the stratospheric level Nr IF (calcAdvection .AND. .NOT.implicitAdvection .AND. k.GE.2 .AND. & (.NOT.useAIM .OR. trIdentity.NE.GAD_SALINITY .OR. k.LT.Nr) & ) THEN #else IF (calcAdvection .AND. .NOT.implicitAdvection .AND. k.GE.2) THEN #endif IF ( applyAB_onTracer ) THEN C- Compute vertical advective flux in the interior using TracAB: IF (vertAdvecScheme.EQ.ENUM_CENTERED_2ND) THEN CALL GAD_C2_ADV_R( bi,bj,k, rTrans, TracAB, af, myThid ) ELSEIF ( vertAdvecScheme.EQ.ENUM_UPWIND_1RST & .OR. vertAdvecScheme.EQ.ENUM_DST2 ) THEN CALL GAD_DST2U1_ADV_R( bi,bj,k,vertAdvecScheme,deltaTLev(k), I rTrans, wFld, TracAB, O af, myThid ) ELSEIF (vertAdvecScheme.EQ.ENUM_FLUX_LIMIT) THEN CALL GAD_FLUXLIMIT_ADV_R( bi,bj,k, deltaTLev(k), I rTrans, wFld, TracAB, O af, myThid ) ELSEIF (vertAdvecScheme.EQ.ENUM_UPWIND_3RD ) THEN CALL GAD_U3_ADV_R( bi,bj,k, rTrans, TracAB, af, myThid ) ELSEIF (vertAdvecScheme.EQ.ENUM_CENTERED_4TH) THEN CALL GAD_C4_ADV_R( bi,bj,k, rTrans, TracAB, af, myThid ) #ifdef ALLOW_AUTODIFF ELSEIF( vertAdvecScheme.EQ.ENUM_DST3 .OR. & (vertAdvecScheme.EQ.ENUM_DST3_FLUX_LIMIT .AND. inAdMode) & ) THEN cph This block is to trick the adjoint: cph If inAdExact=.FALSE., we want to use DST3 cph with limiters in forward, but without limiters in reverse. #else /* ALLOW_AUTODIFF */ ELSEIF( vertAdvecScheme.EQ.ENUM_DST3 ) THEN #endif /* ALLOW_AUTODIFF */ CALL GAD_DST3_ADV_R( bi,bj,k, deltaTLev(k), I rTrans, wFld, TracAB, O af, myThid ) ELSEIF (vertAdvecScheme.EQ.ENUM_DST3_FLUX_LIMIT ) THEN CALL GAD_DST3FL_ADV_R( bi,bj,k, deltaTLev(k), I rTrans, wFld, TracAB, O af, myThid ) #ifndef ALLOW_AUTODIFF ELSEIF (vertAdvecScheme.EQ.ENUM_OS7MP ) THEN CALL GAD_OS7MP_ADV_R( bi,bj,k, deltaTLev(k), I rTrans, wFld, TracAB, O af, myThid ) #endif ELSE STOP 'GAD_CALC_RHS: Bad vertAdvecScheme (R)' ENDIF ELSE C- Compute vertical advective flux in the interior using TracerN: IF (vertAdvecScheme.EQ.ENUM_CENTERED_2ND) THEN CALL GAD_C2_ADV_R( bi,bj,k, rTrans, TracerN, af, myThid ) ELSEIF ( vertAdvecScheme.EQ.ENUM_UPWIND_1RST & .OR. vertAdvecScheme.EQ.ENUM_DST2 ) THEN CALL GAD_DST2U1_ADV_R( bi,bj,k,vertAdvecScheme,deltaTLev(k), I rTrans, wFld, TracerN, O af, myThid ) ELSEIF (vertAdvecScheme.EQ.ENUM_FLUX_LIMIT) THEN CALL GAD_FLUXLIMIT_ADV_R( bi,bj,k, deltaTLev(k), I rTrans, wFld, TracerN, O af, myThid ) ELSEIF (vertAdvecScheme.EQ.ENUM_UPWIND_3RD ) THEN CALL GAD_U3_ADV_R( bi,bj,k, rTrans, TracerN, af, myThid ) ELSEIF (vertAdvecScheme.EQ.ENUM_CENTERED_4TH) THEN CALL GAD_C4_ADV_R( bi,bj,k, rTrans, TracerN, af, myThid ) #ifdef ALLOW_AUTODIFF ELSEIF( vertAdvecScheme.EQ.ENUM_DST3 .OR. & (vertAdvecScheme.EQ.ENUM_DST3_FLUX_LIMIT .AND. inAdMode) & ) THEN cph This block is to trick the adjoint: cph If inAdExact=.FALSE., we want to use DST3 cph with limiters in forward, but without limiters in reverse. #else /* ALLOW_AUTODIFF */ ELSEIF( vertAdvecScheme.EQ.ENUM_DST3 ) THEN #endif /* ALLOW_AUTODIFF */ CALL GAD_DST3_ADV_R( bi,bj,k, deltaTLev(k), I rTrans, wFld, TracerN, O af, myThid ) ELSEIF (vertAdvecScheme.EQ.ENUM_DST3_FLUX_LIMIT ) THEN CALL GAD_DST3FL_ADV_R( bi,bj,k, deltaTLev(k), I rTrans, wFld, TracerN, O af, myThid ) #ifndef ALLOW_AUTODIFF ELSEIF (vertAdvecScheme.EQ.ENUM_OS7MP ) THEN CALL GAD_OS7MP_ADV_R( bi,bj,k, deltaTLev(k), I rTrans, wFld, TracerN, O af, myThid ) #endif ELSE STOP 'GAD_CALC_RHS: Bad vertAdvecScheme (R)' ENDIF ENDIF C- add the advective flux to fVerT DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fVerT(i,j,kUp) = fVerT(i,j,kUp) + af(i,j)*maskInC(i,j,bi,bj) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN diagName = 'ADVr'//diagSufx CALL DIAGNOSTICS_FILL( af, diagName, k,1, 2,bi,bj, myThid ) C- note: needs to explicitly increment the counter since DIAGNOSTICS_FILL C does it only if k=1 (never the case here) IF ( k.EQ.2 ) CALL DIAGNOSTICS_COUNT(diagName,bi,bj,myThid) #ifdef ALLOW_LAYERS IF ( useLayers ) THEN CALL LAYERS_FILL(af,trIdentity,'AFR',k,1,2,bi,bj,myThid) ENDIF #endif /* ALLOW_LAYERS */ ENDIF #endif ENDIF C- Diffusive flux in R C Note: For K=1 then KM1=1 and this gives a dT/dr = 0 upper C boundary condition. IF (implicitDiffusion) THEN DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx df(i,j) = 0. _d 0 ENDDO ENDDO ELSE CALL GAD_DIFF_R(bi,bj,k,KappaR,TracerN,df,myThid) ENDIF IF ( trUseDiffKr4 ) THEN CALL GAD_BIHARM_R( bi,bj,k, diffKr4, TracerN, df, myThid ) ENDIF #ifdef ALLOW_GMREDI C- GM/Redi flux in R IF ( trUseGMRedi ) THEN CALL GMREDI_RTRANSPORT( I trIdentity, bi, bj, k, iMin, iMax, jMin, jMax, I TracerN, U df, I myThid ) ENDIF #endif DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fVerT(i,j,kUp) = fVerT(i,j,kUp) + df(i,j)*maskUp(i,j) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS C- Diagnostics of Tracer flux in R dir (mainly Diffusive terms), C Explicit terms only & excluding advective terms: IF ( useDiagnostics .AND. & (.NOT.implicitDiffusion .OR. trUseDiffKr4 .OR. trUseGMRedi) & ) THEN diagName = 'DFrE'//diagSufx CALL DIAGNOSTICS_FILL( df, diagName, k,1, 2,bi,bj, myThid ) #ifdef ALLOW_LAYERS IF ( useLayers ) THEN CALL LAYERS_FILL(df,trIdentity,'DFR',k,1,2,bi,bj,myThid) ENDIF #endif /* ALLOW_LAYERS */ ENDIF #endif #ifdef ALLOW_KPP C- Set non local KPP transport term (ghat): IF ( trUseKPP .AND. k.GE.2 ) THEN DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx df(i,j) = 0. _d 0 ENDDO ENDDO IF (trIdentity.EQ.GAD_TEMPERATURE) THEN CALL KPP_TRANSPORT_T( I iMin,iMax,jMin,jMax,bi,bj,k,km1, O df, I myTime, myIter, myThid ) ELSEIF (trIdentity.EQ.GAD_SALINITY) THEN CALL KPP_TRANSPORT_S( I iMin,iMax,jMin,jMax,bi,bj,k,km1, O df, I myTime, myIter, myThid ) #ifdef ALLOW_PTRACERS ELSEIF (trIdentity .GE. GAD_TR1) THEN CALL KPP_TRANSPORT_PTR( I iMin,iMax,jMin,jMax,bi,bj,k,km1, I trIdentity-GAD_TR1+1, O df, I myTime, myIter, myThid ) #endif ELSE WRITE(errorMessageUnit,*) & 'tracer identity =', trIdentity, ' is not valid => STOP' STOP 'ABNORMAL END: S/R GAD_CALC_RHS: invalid tracer identity' ENDIF DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fVerT(i,j,kUp) = fVerT(i,j,kUp) & + df(i,j)*maskUp(i,j)*rhoFacF(k) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS C- Diagnostics of Non-Local Tracer (vertical) flux IF ( useDiagnostics ) THEN diagName = 'KPPg'//diagSufx CALL DIAGNOSTICS_FILL( df, diagName, k,1, 2,bi,bj, myThid ) C- note: needs to explicitly increment the counter since DIAGNOSTICS_FILL C does it only if k=1 (never the case here) IF ( k.EQ.2 ) CALL DIAGNOSTICS_COUNT(diagName,bi,bj,myThid) #ifdef ALLOW_LAYERS IF ( useLayers ) THEN CALL LAYERS_FILL(df,trIdentity,'DFR',k,1,2,bi,bj,myThid) ENDIF #endif /* ALLOW_LAYERS */ ENDIF #endif ENDIF #endif /* ALLOW_KPP */ #ifdef GAD_SMOLARKIEWICZ_HACK coj Hack to make redi (and everything else in this s/r) positive coj (see Smolarkiewicz MWR 1989 and Bott MWR 1989). coj Only works if 'down' is k+1 and k loop in thermodynamics is k=Nr,1,-1 coj coj Apply to all tracers except temperature IF ( trIdentity.NE.GAD_TEMPERATURE .AND. & trIdentity.NE.GAD_SALINITY ) THEN DO j=1-OLy,sNy+OLy-1 DO i=1-OLx,sNx+OLx-1 coj Add outgoing fluxes outFlux=deltaTLev(k)* & _recip_hFacC(i,j,k,bi,bj)*recip_drF(k) & *recip_rA(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k) & *( MAX(0. _d 0,fZon(i+1,j)) + MAX(0. _d 0,-fZon(i,j)) & +MAX(0. _d 0,fMer(i,j+1)) + MAX(0. _d 0,-fMer(i,j)) & +MAX(0. _d 0,fVerT(i,j,kDown)*rkSign) & +MAX(0. _d 0,-fVerT(i,j,kUp)*rkSign) & ) trac = localT(i,j) coj If they would reduce tracer by a fraction of more than coj SmolarkiewiczMaxFrac, scale them down IF (outFlux.GT.0. _d 0 .AND. & outFlux.GT.SmolarkiewiczMaxFrac*trac) THEN coj If tracer is already negative, scale flux to zero fac = MAX(0. _d 0,SmolarkiewiczMaxFrac*trac/outFlux) IF (fZon(i+1,j).GT.0. _d 0) fZon(i+1,j)=fac*fZon(i+1,j) IF (-fZon(i,j) .GT.0. _d 0) fZon(i,j) =fac*fZon(i,j) IF (fMer(i,j+1).GT.0. _d 0) fMer(i,j+1)=fac*fMer(i,j+1) IF (-fMer(i,j) .GT.0. _d 0) fMer(i,j) =fac*fMer(i,j) IF (-fVerT(i,j,kUp)*rkSign .GT.0. _d 0) & fVerT(i,j,kUp)=fac*fVerT(i,j,kUp) IF (k.LT.Nr .AND. fVerT(i,j,kDown)*rkSign.GT.0. _d 0) THEN coj Down flux is special: it has already been applied in lower layer, coj so we have to readjust this. coj undo down flux, ... gTracer(i,j,k+1) = gTracer(i,j,k+1) & +_recip_hFacC(i,j,k+1,bi,bj)*recip_drF(k+1) & *recip_rA(i,j,bi,bj)*recip_deepFac2C(k+1) & *recip_rhoFacC(k+1) & *( -fVerT(i,j,kDown)*rkSign ) coj ... scale ... fVerT(i,j,kDown)=fac*fVerT(i,j,kDown) coj ... and reapply gTracer(i,j,k+1) = gTracer(i,j,k+1) & +_recip_hFacC(i,j,k+1,bi,bj)*recip_drF(k+1) & *recip_rA(i,j,bi,bj)*recip_deepFac2C(k+1) & *recip_rhoFacC(k+1) & *( fVerT(i,j,kDown)*rkSign ) ENDIF ENDIF ENDDO ENDDO ENDIF #endif C-- Divergence of fluxes C Anelastic: scale vertical fluxes by rhoFac and leave Horizontal fluxes unchanged C for Stevens OBC: keep only vertical diffusive contribution on boundaries DO j=1-OLy,sNy+OLy-1 DO i=1-OLx,sNx+OLx-1 gTracer(i,j,k) = gTracer(i,j,k) & -_recip_hFacC(i,j,k,bi,bj)*recip_drF(k) & *recip_rA(i,j,bi,bj)*recip_deepFac2C(k)*recip_rhoFacC(k) & *( (fZon(i+1,j)-fZon(i,j))*maskInC(i,j,bi,bj) & +(fMer(i,j+1)-fMer(i,j))*maskInC(i,j,bi,bj) & +(fVerT(i,j,kDown)-fVerT(i,j,kUp))*rkSign & -localT(i,j)*( (uTrans(i+1,j)-uTrans(i,j))*advFac & +(vTrans(i,j+1)-vTrans(i,j))*advFac & +(rTransKp1(i,j)-rTrans(i,j))*rAdvFac & )*maskInC(i,j,bi,bj) & ) ENDDO ENDDO #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevC & .AND. trIdentity.EQ.GAD_TEMPERATURE & .AND. k.EQ.2 .AND. myIter.EQ.1+nIter0 & .AND. nPx.EQ.1 .AND. nPy.EQ.1 & .AND. useCubedSphereExchange ) THEN CALL DEBUG_CS_CORNER_UV( ' fZon,fMer from GAD_CALC_RHS', & fZon,fMer, k, standardMessageUnit,bi,bj,myThid ) ENDIF #endif /* ALLOW_DEBUG */ RETURN END