C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.77 2015/09/10 18:08:51 jmc Exp $ C $Name: $ #include "MOM_VECINV_OPTIONS.h" #ifdef ALLOW_AUTODIFF # include "AUTODIFF_OPTIONS.h" #endif #ifdef ALLOW_MOM_COMMON # include "MOM_COMMON_OPTIONS.h" #endif SUBROUTINE MOM_VECINV( I bi,bj,k,iMin,iMax,jMin,jMax, I kappaRU, kappaRV, I fVerUkm, fVerVkm, O fVerUkp, fVerVkp, O guDiss, gvDiss, I myTime, myIter, myThid ) C *==========================================================* C | S/R MOM_VECINV | C | o Form the right hand-side of the momentum equation. | C *==========================================================* C | Terms are evaluated one layer at a time working from | C | the bottom to the top. The vertically integrated | C | barotropic flow tendency term is evluated by summing the | C | tendencies. | C | Notes: | C | We have not sorted out an entirely satisfactory formula | C | for the diffusion equation bc with lopping. The present | C | form produces a diffusive flux that does not scale with | C | open-area. Need to do something to solidfy this and to | C | deal "properly" with thin walls. | C *==========================================================* IMPLICIT NONE C == Global variables == #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "SURFACE.h" #include "DYNVARS.h" #ifdef ALLOW_MOM_COMMON # include "MOM_VISC.h" #endif #ifdef ALLOW_TIMEAVE # include "TIMEAVE_STATV.h" #endif #ifdef ALLOW_MNC # include "MNC_PARAMS.h" #endif #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" # include "tamc_keys.h" #endif C == Routine arguments == C bi,bj :: current tile indices C k :: current vertical level C iMin,iMax,jMin,jMax :: loop ranges C fVerU :: Flux of momentum in the vertical direction, out of the upper C fVerV :: face of a cell k ( flux into the cell above ). C fVerUkm :: vertical viscous flux of U, interface above (k-1/2) C fVerVkm :: vertical viscous flux of V, interface above (k-1/2) C fVerUkp :: vertical viscous flux of U, interface below (k+1/2) C fVerVkp :: vertical viscous flux of V, interface below (k+1/2) C guDiss :: dissipation tendency (all explicit terms), u component C gvDiss :: dissipation tendency (all explicit terms), v component C myTime :: current time C myIter :: current time-step number C myThid :: my Thread Id number INTEGER bi,bj,k INTEGER iMin,iMax,jMin,jMax _RL kappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) _RL kappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) _RL fVerUkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerVkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerUkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerVkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL myTime INTEGER myIter INTEGER myThid #ifdef ALLOW_MOM_VECINV C == Functions == LOGICAL DIFFERENT_MULTIPLE EXTERNAL DIFFERENT_MULTIPLE C == Local variables == C strainBC :: same as strain but account for no-slip BC C vort3BC :: same as vort3 but account for no-slip BC _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vrF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uCf(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vCf(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS hFacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS h0FacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS r_hFacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL del2u (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL del2v (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dStar (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL zStar (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL tension (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL strain (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL strainBC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KE (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL omega3 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vort3 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vort3BC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL hDiv (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) C i,j :: Loop counters INTEGER i,j C xxxFac :: On-off tracer parameters used for switching terms off. _RL ArDudrFac _RL ArDvdrFac _RL sideMaskFac LOGICAL bottomDragTerms LOGICAL writeDiag #ifdef ALLOW_AUTODIFF_TAMC INTEGER imomkey #endif #ifdef ALLOW_MNC INTEGER offsets(9) CHARACTER*(1) pf #endif #ifdef ALLOW_AUTODIFF C-- only the kDown part of fverU/V is set in this subroutine C-- the kUp is still required C-- In the case of mom_fluxform kUp is set as well C-- (at least in part) fVerUkm(1,1) = fVerUkm(1,1) fVerVkm(1,1) = fVerVkm(1,1) #endif #ifdef ALLOW_AUTODIFF_TAMC act0 = k - 1 max0 = Nr act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 act3 = myThid - 1 max3 = nTx*nTy act4 = ikey_dynamics - 1 imomkey = (act0 + 1) & + act1*max0 & + act2*max0*max1 & + act3*max0*max1*max2 & + act4*max0*max1*max2*max3 #endif /* ALLOW_AUTODIFF_TAMC */ writeDiag = DIFFERENT_MULTIPLE(diagFreq, myTime, deltaTClock) #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc .AND. writeDiag) THEN IF ( writeBinaryPrec .EQ. precFloat64 ) THEN pf(1:1) = 'D' ELSE pf(1:1) = 'R' ENDIF IF ((bi .EQ. 1).AND.(bj .EQ. 1).AND.(k .EQ. 1)) THEN CALL MNC_CW_SET_UDIM('mom_vi', -1, myThid) CALL MNC_CW_RL_W_S('D','mom_vi',0,0,'T',myTime,myThid) CALL MNC_CW_SET_UDIM('mom_vi', 0, myThid) CALL MNC_CW_I_W_S('I','mom_vi',0,0,'iter',myIter,myThid) ENDIF DO i = 1,9 offsets(i) = 0 ENDDO offsets(3) = k c write(*,*) 'offsets = ',(offsets(i),i=1,9) ENDIF #endif /* ALLOW_MNC */ C-- Initialise intermediate terms DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx vF(i,j) = 0. vrF(i,j) = 0. uCf(i,j) = 0. vCf(i,j) = 0. del2u(i,j) = 0. del2v(i,j) = 0. dStar(i,j) = 0. zStar(i,j) = 0. guDiss(i,j)= 0. gvDiss(i,j)= 0. vort3(i,j) = 0. omega3(i,j)= 0. KE(i,j) = 0. C- need to initialise hDiv for MOM_VI_DEL2UV(call FILL_CS_CORNER_TR_RL) hDiv(i,j) = 0. c viscAh_Z(i,j) = 0. c viscAh_D(i,j) = 0. c viscA4_Z(i,j) = 0. c viscA4_D(i,j) = 0. strain(i,j) = 0. _d 0 strainBC(i,j)= 0. _d 0 tension(i,j) = 0. _d 0 #ifdef ALLOW_AUTODIFF hFacZ(i,j) = 0. _d 0 #endif ENDDO ENDDO C-- Term by term tracer parmeters C o U momentum equation ArDudrFac = vfFacMom*1. C o V momentum equation ArDvdrFac = vfFacMom*1. C note: using standard stencil (no mask) results in under-estimating C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor IF ( no_slip_sides ) THEN sideMaskFac = sideDragFactor ELSE sideMaskFac = 0. _d 0 ENDIF IF ( no_slip_bottom & .OR. selectBotDragQuadr.GE.0 & .OR. bottomDragLinear.NE.0.) THEN bottomDragTerms=.TRUE. ELSE bottomDragTerms=.FALSE. ENDIF C-- Calculate open water fraction at vorticity points CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid) C Make local copies of horizontal flow field DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx uFld(i,j) = uVel(i,j,k,bi,bj) vFld(i,j) = vVel(i,j,k,bi,bj) ENDDO ENDDO C note (jmc) : Dissipation and Vort3 advection do not necesary C use the same maskZ (and hFacZ) => needs 2 call(s) c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid) CALL MOM_CALC_KE(bi,bj,k,selectKEscheme,uFld,vFld,KE,myThid) CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid) C- mask vort3 and account for no-slip / free-slip BC in vort3BC: DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx vort3BC(i,j) = vort3(i,j) IF ( hFacZ(i,j).EQ.zeroRS ) THEN vort3BC(i,j) = sideMaskFac*vort3BC(i,j) vort3(i,j) = 0. ENDIF ENDDO ENDDO IF (momViscosity) THEN C-- For viscous term, compute horizontal divergence, tension & strain C and mask relative vorticity (free-slip case): DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx h0FacZ(i,j) = hFacZ(i,j) ENDDO ENDDO #ifdef NONLIN_FRSURF IF ( no_slip_sides .AND. nonlinFreeSurf.GT.0 ) THEN DO j=2-OLy,sNy+OLy DO i=2-OLx,sNx+OLx h0FacZ(i,j) = MIN( & MIN( h0FacW(i,j,k,bi,bj), h0FacW(i,j-1,k,bi,bj) ), & MIN( h0FacS(i,j,k,bi,bj), h0FacS(i-1,j,k,bi,bj) ) ) ENDDO ENDDO ENDIF #endif /* NONLIN_FRSURF */ CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid) IF ( useVariableVisc .OR. useStrainTensionVisc ) THEN CALL MOM_CALC_TENSION( bi,bj,k,uFld,vFld,tension,myThid ) CALL MOM_CALC_STRAIN( bi,bj,k,uFld,vFld,hFacZ,strain,myThid ) C- mask strain and account for no-slip / free-slip BC in strainBC: DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx strainBC(i,j) = strain(i,j) IF ( hFacZ(i,j).EQ.zeroRS ) THEN strainBC(i,j) = sideMaskFac*strainBC(i,j) strain(i,j) = 0. ENDIF ENDDO ENDDO ENDIF C-- Calculate Lateral Viscosities DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx viscAh_D(i,j) = viscAhD viscAh_Z(i,j) = viscAhZ viscA4_D(i,j) = viscA4D viscA4_Z(i,j) = viscA4Z ENDDO ENDDO IF ( useVariableVisc ) THEN C- uses vort3BC & strainBC which account for no-slip / free-slip BC CALL MOM_CALC_VISC( bi, bj, k, O viscAh_Z, viscAh_D, viscA4_Z, viscA4_D, I hDiv, vort3BC, tension, strainBC, KE, hfacZ, I myThid ) ENDIF C Calculate del^2 u and del^2 v for bi-harmonic term IF (useBiharmonicVisc) THEN CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ, O del2u,del2v, I myThid) CALL MOM_CALC_HDIV(bi,bj,k,2,del2u,del2v,dStar,myThid) CALL MOM_CALC_RELVORT3(bi,bj,k, & del2u,del2v,hFacZ,zStar,myThid) ENDIF C--- Calculate dissipation terms for U and V equations C- in terms of tension and strain IF (useStrainTensionVisc) THEN C use masked strain as if free-slip since side-drag is computed separately CALL MOM_HDISSIP( bi, bj, k, I tension, strain, hFacZ, I viscAh_Z, viscAh_D, viscA4_Z, viscA4_D, I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, O guDiss, gvDiss, I myThid ) ELSE C- in terms of vorticity and divergence CALL MOM_VI_HDISSIP( bi, bj, k, I hDiv, vort3, dStar, zStar, hFacZ, I viscAh_Z, viscAh_D, viscA4_Z, viscA4_D, I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, O guDiss, gvDiss, I myThid ) ENDIF C--- Other dissipation terms in Zonal momentum equation C-- Vertical flux (fVer is at upper face of "u" cell) C Eddy component of vertical flux (interior component only) -> vrF IF ( .NOT.implicitViscosity ) THEN CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,kappaRU,vrF,myThid) C Combine fluxes DO j=jMin,jMax DO i=iMin,iMax fVerUkp(i,j) = ArDudrFac*vrF(i,j) ENDDO ENDDO C-- Tendency is minus divergence of the fluxes C vert.visc.flx is scaled by deepFac2F (deep-atmos) and rhoFac (anelastic) DO j=jMin,jMax DO i=iMin,iMax guDiss(i,j) = guDiss(i,j) & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k) & *recip_rAw(i,j,bi,bj) & *( fVerUkp(i,j) - fVerUkm(i,j) )*rkSign & *recip_deepFac2C(k)*recip_rhoFacC(k) ENDDO ENDDO ENDIF C-- No-slip and drag BCs appear as body forces in cell abutting topography IF ( no_slip_sides ) THEN C- No-slip BCs impose a drag at walls... CALL MOM_U_SIDEDRAG( bi, bj, k, I uFld, del2u, h0FacZ, I viscAh_Z, viscA4_Z, I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, O vF, I myThid ) DO j=jMin,jMax DO i=iMin,iMax guDiss(i,j) = guDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF C- No-slip BCs impose a drag at bottom IF ( bottomDragTerms ) THEN CALL MOM_U_BOTTOMDRAG( bi, bj, k, I uFld, vFld, KE, kappaRU, O vF, I myThid ) DO j=jMin,jMax DO i=iMin,iMax guDiss(i,j) = guDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF #ifdef ALLOW_SHELFICE IF ( useShelfIce ) THEN CALL SHELFICE_U_DRAG( bi, bj, k, I uFld, vFld, KE, kappaRU, O vF, I myThid ) DO j=jMin,jMax DO i=iMin,iMax guDiss(i,j) = guDiss(i,j) + vF(i,j) ENDDO ENDDO ENDIF #endif /* ALLOW_SHELFICE */ C--- Other dissipation terms in Meridional momentum equation C-- Vertical flux (fVer is at upper face of "v" cell) C Eddy component of vertical flux (interior component only) -> vrF IF ( .NOT.implicitViscosity ) THEN CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,kappaRV,vrF,myThid) C Combine fluxes -> fVerV DO j=jMin,jMax DO i=iMin,iMax fVerVkp(i,j) = ArDvdrFac*vrF(i,j) ENDDO ENDDO C-- Tendency is minus divergence of the fluxes C vert.visc.flx is scaled by deepFac2F (deep-atmos) and rhoFac (anelastic) DO j=jMin,jMax DO i=iMin,iMax gvDiss(i,j) = gvDiss(i,j) & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k) & *recip_rAs(i,j,bi,bj) & *( fVerVkp(i,j) - fVerVkm(i,j) )*rkSign & *recip_deepFac2C(k)*recip_rhoFacC(k) ENDDO ENDDO ENDIF C-- No-slip and drag BCs appear as body forces in cell abutting topography IF ( no_slip_sides ) THEN C- No-slip BCs impose a drag at walls... CALL MOM_V_SIDEDRAG( bi, bj, k, I vFld, del2v, h0FacZ, I viscAh_Z, viscA4_Z, I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, O vF, I myThid ) DO j=jMin,jMax DO i=iMin,iMax gvDiss(i,j) = gvDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF C- No-slip BCs impose a drag at bottom IF ( bottomDragTerms ) THEN CALL MOM_V_BOTTOMDRAG( bi, bj, k, I uFld, vFld, KE, kappaRV, O vF, I myThid ) DO j=jMin,jMax DO i=iMin,iMax gvDiss(i,j) = gvDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF #ifdef ALLOW_SHELFICE IF ( useShelfIce ) THEN CALL SHELFICE_V_DRAG( bi, bj, k, I uFld, vFld, KE, kappaRV, O vF, I myThid ) DO j=jMin,jMax DO i=iMin,iMax gvDiss(i,j) = gvDiss(i,j) + vF(i,j) ENDDO ENDDO ENDIF #endif /* ALLOW_SHELFICE */ C-- if (momViscosity) end of block. ENDIF C- Return to standard hfacZ (min-4) and mask vort3 accordingly: c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid) C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C--- Prepare for Advection & Coriolis terms: C- calculate absolute vorticity IF (useAbsVorticity) & CALL MOM_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid) C-- Horizontal Coriolis terms c IF (useCoriolis .AND. .NOT.useCDscheme c & .AND. .NOT. useAbsVorticity) THEN C- jmc: change it to keep the Coriolis terms when useAbsVorticity=T & momAdvection=F IF ( useCoriolis .AND. & .NOT.( useCDscheme .OR. useAbsVorticity.AND.momAdvection ) & ) THEN IF (useAbsVorticity) THEN CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,omega3,hFacZ,r_hFacZ, & uCf,myThid) CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,omega3,hFacZ,r_hFacZ, & vCf,myThid) ELSE CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,hFacZ,r_hFacZ, & uCf,vCf,myThid) ENDIF DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = uCf(i,j) gV(i,j,k,bi,bj) = vCf(i,j) ENDDO ENDDO IF ( writeDiag ) THEN IF (snapshot_mdsio) THEN CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid) ENDIF #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc) THEN CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'fV', uCf, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'fU', vCf, & offsets, myThid) ENDIF #endif /* ALLOW_MNC */ ENDIF #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(uCf,'Um_Cori ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(vCf,'Vm_Cori ',k,1,2,bi,bj,myThid) ENDIF #endif /* ALLOW_DIAGNOSTICS */ ELSE DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = 0. _d 0 gV(i,j,k,bi,bj) = 0. _d 0 ENDDO ENDDO ENDIF IF (momAdvection) THEN C-- Horizontal advection of relative (or absolute) vorticity IF ( (highOrderVorticity.OR.upwindVorticity) & .AND.useAbsVorticity ) THEN CALL MOM_VI_U_CORIOLIS_C4(bi,bj,k,vFld,omega3,r_hFacZ, & uCf,myThid) ELSEIF ( (highOrderVorticity.OR.upwindVorticity) ) THEN CALL MOM_VI_U_CORIOLIS_C4(bi,bj,k,vFld,vort3, r_hFacZ, & uCf,myThid) ELSEIF ( useAbsVorticity ) THEN CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,omega3,hFacZ,r_hFacZ, & uCf,myThid) ELSE CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3, hFacZ,r_hFacZ, & uCf,myThid) ENDIF DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) ENDDO ENDDO IF ( (highOrderVorticity.OR.upwindVorticity) & .AND.useAbsVorticity ) THEN CALL MOM_VI_V_CORIOLIS_C4(bi,bj,k,uFld,omega3,r_hFacZ, & vCf,myThid) ELSEIF ( (highOrderVorticity.OR.upwindVorticity) ) THEN CALL MOM_VI_V_CORIOLIS_C4(bi,bj,k,uFld,vort3, r_hFacZ, & vCf,myThid) ELSEIF ( useAbsVorticity ) THEN CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,omega3,hFacZ,r_hFacZ, & vCf,myThid) ELSE CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3, hFacZ,r_hFacZ, & vCf,myThid) ENDIF DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO IF ( writeDiag ) THEN IF (snapshot_mdsio) THEN CALL WRITE_LOCAL_RL('zV','I10',1,uCf,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('zU','I10',1,vCf,bi,bj,k,myIter,myThid) ENDIF #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc) THEN CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'zV', uCf, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'zU', vCf, & offsets, myThid) ENDIF #endif /* ALLOW_MNC */ ENDIF #ifdef ALLOW_TIMEAVE IF (taveFreq.GT.0.) THEN CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock, & Nr, k, bi, bj, myThid) CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock, & Nr, k, bi, bj, myThid) ENDIF #endif /* ALLOW_TIMEAVE */ #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(uCf,'Um_AdvZ3',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(vCf,'Vm_AdvZ3',k,1,2,bi,bj,myThid) ENDIF #endif /* ALLOW_DIAGNOSTICS */ C-- Vertical shear terms (-w*du/dr & -w*dv/dr) IF ( .NOT. momImplVertAdv ) THEN CALL MOM_VI_U_VERTSHEAR(bi,bj,k,uVel,wVel,uCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) ENDDO ENDDO CALL MOM_VI_V_VERTSHEAR(bi,bj,k,vVel,wVel,vCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(uCf,'Um_AdvRe',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(vCf,'Vm_AdvRe',k,1,2,bi,bj,myThid) ENDIF #endif /* ALLOW_DIAGNOSTICS */ ENDIF C-- Bernoulli term CALL MOM_VI_U_GRAD_KE(bi,bj,k,KE,uCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) ENDDO ENDDO CALL MOM_VI_V_GRAD_KE(bi,bj,k,KE,vCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO IF ( writeDiag ) THEN IF (snapshot_mdsio) THEN CALL WRITE_LOCAL_RL('KEx','I10',1,uCf,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('KEy','I10',1,vCf,bi,bj,k,myIter,myThid) ENDIF #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc) THEN CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'KEx', uCf, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'KEy', vCf, & offsets, myThid) ENDIF #endif /* ALLOW_MNC */ ENDIF C-- end if momAdvection ENDIF C-- 3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w) IF ( use3dCoriolis ) THEN CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,uCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) ENDDO ENDDO IF ( usingCurvilinearGrid ) THEN C- presently, non zero angleSinC array only supported with Curvilinear-Grid CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,vCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO ENDIF ENDIF C-- Non-Hydrostatic (spherical) metric terms IF ( useNHMTerms ) THEN CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,uCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) ENDDO ENDDO CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,vCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO ENDIF C-- Set du/dt & dv/dt on boundaries to zero DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj) gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj) ENDDO ENDDO #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevC & .AND. k.EQ.4 .AND. myIter.EQ.nIter0 & .AND. nPx.EQ.1 .AND. nPy.EQ.1 & .AND. useCubedSphereExchange ) THEN CALL DEBUG_CS_CORNER_UV( ' uDiss,vDiss from MOM_VECINV', & guDiss,gvDiss, k, standardMessageUnit,bi,bj,myThid ) ENDIF #endif /* ALLOW_DEBUG */ IF ( writeDiag ) THEN IF (useBiharmonicVisc) THEN CALL WRITE_LOCAL_RL( 'del2u', 'I10', 1, del2u, & bi,bj,k, myIter, myThid ) CALL WRITE_LOCAL_RL( 'del2v', 'I10', 1, del2v, & bi,bj,k, myIter, myThid ) CALL WRITE_LOCAL_RL( 'dStar', 'I10', 1, dStar, & bi,bj,k, myIter, myThid ) CALL WRITE_LOCAL_RL( 'zStar', 'I10', 1, zStar, & bi,bj,k, myIter, myThid ) ENDIF IF (snapshot_mdsio) THEN CALL WRITE_LOCAL_RL('W3','I10',1,omega3, bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('Z3','I10',1,vort3BC,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('KE','I10',1,KE, bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('D', 'I10',1,hDiv, bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL( 'Ds', 'I10', 1, strainBC, & bi,bj,k, myIter, myThid ) CALL WRITE_LOCAL_RL('Du','I10',1,guDiss, bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('Dv','I10',1,gvDiss, bi,bj,k,myIter,myThid) ENDIF #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc) THEN CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'W3',omega3, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Z3',vort3BC, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'KE',KE, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'D', hDiv, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Dt',tension, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Ds',strainBC, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Du',guDiss, & offsets, myThid) CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Dv',gvDiss, & offsets, myThid) ENDIF #endif /* ALLOW_MNC */ ENDIF #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(vort3BC,'momVort3',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid) IF (momViscosity) THEN CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid) ENDIF IF ( useVariableVisc .OR. useStrainTensionVisc ) THEN CALL DIAGNOSTICS_FILL(tension, 'Tension ',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(strainBC,'Strain ',k,1,2,bi,bj,myThid) ENDIF CALL DIAGNOSTICS_FILL(gU(1-OLx,1-OLy,k,bi,bj), & 'Um_Advec',k,1,2,bi,bj,myThid) CALL DIAGNOSTICS_FILL(gV(1-OLx,1-OLy,k,bi,bj), & 'Vm_Advec',k,1,2,bi,bj,myThid) ENDIF #endif /* ALLOW_DIAGNOSTICS */ #endif /* ALLOW_MOM_VECINV */ RETURN END